CN116666575A - 一种硅基复合材料的制备方法和应用 - Google Patents

一种硅基复合材料的制备方法和应用 Download PDF

Info

Publication number
CN116666575A
CN116666575A CN202211650815.5A CN202211650815A CN116666575A CN 116666575 A CN116666575 A CN 116666575A CN 202211650815 A CN202211650815 A CN 202211650815A CN 116666575 A CN116666575 A CN 116666575A
Authority
CN
China
Prior art keywords
silicon
based composite
lif
composite material
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211650815.5A
Other languages
English (en)
Inventor
林杰
彭栋梁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University
Original Assignee
Xiamen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University filed Critical Xiamen University
Priority to CN202211650815.5A priority Critical patent/CN116666575A/zh
Publication of CN116666575A publication Critical patent/CN116666575A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/582Halogenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明公开了一种硅基复合材料的制备方法和应用,是基于现有的硅基负极材料用于锂离子电池在充放电过程中发生体积膨胀,影响电池的比容量和循环寿命的问题提出的。本发明采用双靶材或三个靶材在惰性气体下进行共沉积,在基底上制备硅基复合材料。该硅基复合材料可以制备成薄膜作为电池负极材料使用,能有效缓解硅负极的体积膨胀,保持充放电过程中锂化和去锂化时的结构稳定性,充放电比容量高、库伦效率高、循环性能好。

Description

一种硅基复合材料的制备方法和应用
技术领域
本发明涉及电池技术领域,特别涉及一种硅基复合材料的制备方法和应用。
背景技术
目前,锂离子电池的负极材料主要有以下几种:石墨类碳材料、无定形碳材料、硅基材料、锡基材料等。现阶段商业化石墨负极材料已经接近其理论比容量极限(372 mAh/g),为进一步提升电池能量密度,寻找更高比容量负极材料成为产业研究重点。
硅材料的理论比容量高达4200 mAh/g,是目前石墨类负极材料的十倍以上。硅基负极不存在析锂隐患、充电效率高,安全性好于石墨类负极材料,且储量丰富,成本低廉。能从各个方向提供锂离子嵌入和脱出的通道,快充性能优异,是最具潜力的下一代锂电池负极材料。但硅材料自身电导率较低,且在脱嵌锂时体积膨胀严重,造成首次充放电效率低(80%以下)和循环性能等问题制约了其商业化应用。此外,由于这种体积效应,硅在电解液中难以形成稳定的固体电解质界面(SEI)膜;伴随着电极结构的破坏,导致在循环过程中硅颗粒不断粉化,使表面的SEI膜不断破裂,加剧了硅的腐蚀和容量衰减,导致库伦效率降低。因此,如何提高硅材料作为负极材料时的循环稳定性是本发明拟要解决的问题。
为了提高硅的循环稳定性,现有改进的手段,通过硅材料纳米化,减少硅颗粒尺寸,减少材料的粉化,但是纳米化具有高比表面易团聚,压实密度低;/>多孔化设计,制备成硅纳米线、纳米管等,降低硅在锂化过程中的应力变化,但成本高、制备困难;/>将硅与其他物质复合如石墨或石墨烯等,抑制或缓冲充放电过程硅的体积变化,例如在材料表面包覆碳材料可以降低其膨胀及其提高首次充放电效率,但是引入的活性物质容易产生多种副反应,仍然难以满足市场对硅基材料高首效、高容量、高循环的需求。如公开号为CN115132994A的专利申请公开了一种LiF改性纳米硅锂离子电池负极材料及其制备方法和应用,主要讲述的是采用LiF溶液浸泡纳米硅负极的改性方法。公开号为CN113270587A的专利申请公开了一种原位氟化构筑高稳定性硅基复合材料的制备方法及应用,通过一种原位氟化的方法在硅基复合材料表面构筑以LiF为主导的包覆层,该方法在材料表面残盐会溶于水从而在分散过程中造成材料的结构破坏。
发明内容
针对现有的技术问题,本发明的目的在于提供一种硅基复合材料,应用于锂电池负极,具有更稳定的固体电解质层,能有效缓解硅负极的体积膨胀,高容量、稳定性更强,表现出优异的电化学性能。
为达上述目的,本发明采用以下技术方案:
本发明提供一种硅基复合材料,以硅材料、LiF、Li2CO3为原料,其中所述LiF和Li2CO3分散在硅的体相中,形成具有网络结构的复合硅材料;所述硅与LiF及Li2CO3的总和的摩尔质量比为60:40~99:1。
优选的,硅基复合材料中LiF与Li2CO3的摩尔质量比为95:5。
所述硅材料选自无定形硅、硅纳米颗粒、硅纳米管、硅纳米线、多孔硅、硅氧化物、改性氧化亚硅、硅碳复合材料中的其中一种或多种。
本发明还提供了一种硅基复合材料的制备方法,具体包括以下步骤:
(1)将基底清洗干燥后放置在沉积设备腔体内备用;
(2)将硅靶材和锂化合物靶材作为双溅射源,分别安装好硅靶材及锂化合物靶材;
(3)采用机械泵、分子泵对腔体进行抽真空处理后,通入高纯氩气使腔体压力上升到0.1~1 Pa;开始沉积,得到厚度0.1~5μm的硅基复合材料。
所述沉积设备包括但不限于磁控溅射、原子层沉积、脉冲激光沉积、化学气相沉积、热蒸发等真空沉积设备。
所述基底是为连续的材料片材。基底可包含的金属的实例包括:碳(C)、铁(Fe)、钴(Co)、铜(Cu)、镍(Ni)上述金属或金属合金。此外,基底可为金属箔、片或板,或三维多孔形状。
硅靶材是硅片或者硅粉末的压制靶材。
锂化合物靶材是LiF-Li2CO3复合靶材,或者分开的LiF靶材、Li2CO3靶材。
优选的,本发明还包括步骤(4),以步骤(3)制备附着有硅基复合材料为基底二,将基底二固定在样品台上,以高纯LiF、高纯Li2CO3为靶材或二者的复合靶材,抽真空,通入惰性气体,进行真空沉积,得到附有LiF/Li2CO3包覆层的基底二。
与现有技术相比,本发明的有益效果在于:
(1)本发明制备的硅基复合材料,LiF/Li2CO3不是与硅材料分层,也不是包覆在硅材料表面,而是分散在硅的体相中,经体相复合形成具有网络结构的Si/LiF/Li2CO3复合硅材料(图2和图3)。这样的网络结构有助于促进Li2Si的锂化和Li3.75Si的去锂化,诱导形成富氟的固体电解质界面,进一步稳定Si/LiF/Li2CO3复合材料,减缓循环过程中硅负极的体积变化。
(2)本发明采用同时沉积硅、LiF、Li2CO3的方式制备结晶完整,通过控制磁控溅射时间来控制沉积厚度,本发明制备的硅基复合材料,可以有效的抑制颗粒团聚,缓解硅负极的体积膨胀,将其作为硅负极材料具有更高的充放电比容量、高的库伦效率,提升材料的加工性能和安全性能;并且可降低材料与电解液接触,降低腐蚀,减小界面阻抗,从而提升材料的循环性能。以二维铜箔为基底制备的复合硅材料,充电比容量和库伦效率均优于二维纯硅材料(图4和图5)。
(3)本发明在复合硅薄膜的基础上,均匀包覆LiF/Li2CO3层,进一步增强了硅的结构稳定性,从而提高其储锂性能。以三维泡沫铜为基底制备的复合硅+包覆层复合材料,充电比容量和库伦效率均优于三维纯硅和三维复合硅材料(图4和图5)。
(4)本发明所制电池电化学性能优异,归因于充电过程中抑制的界面副反应、增强富氟的SEI的稳定性、复合纳米晶体的稳定以及硅负极体积膨胀的释放。
(5)本发明所制备的硅基复合材料中,硅与LiF/Li2CO3总和的摩尔质量比约为60:40~99:1。本发明制备的硅基复合材料作为电池负极使用时,电池容量贡献主体为硅,若其它组分过多不容易形成体相复合的状态,而是分离的物相,且活性物质少,则容量过低(倍率性能差);而硅含量若过多,那硅与LiF/Li2CO3三者复合的区域过少,则性能改善效果不明显(但是倍率性能好),所以此摩尔质量比是较优的选择。也就是说,以锂化物为骨架,材料导电能力差,倍率性能差,其电化学性能也不好,而三者复合的话可以互相取长补短,表现出更好的综合性能。
(6)本发明的制备方法还可用于P、Ge、Sn、Pb等合金负极或其他储能电极。
附图说明
图1为本发明所用LiF/Li2CO3复合靶材的XRD图谱;
图2为实施例1中“复合硅”的透射电子显微镜(TEM)及其元素分布图;
图3为实施例3、实施例4、对比例2的扫描电子显微镜(SEM)对比图;
图4为实施例1、实施例3、实施例4和对比例1在0.2C下的充电容量对比图;
图5为实施例1、实施例3、实施例4和对比例1在0.2C下的库伦效率对比图。
具体实施方式
以下结合具体实施方式对本发明进行详细阐述,以使本领域技术人员可以更好的理解本发明的技术方案。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
下述实施例中所用的试验材料和试剂等,如无特殊说明,均可从商业途径获得。实施例中未注明具体技术或条件者,均可以按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。
所述沉积手段包括但不限于磁控溅射、热蒸发、脉冲激光沉积、原子层沉积、化学气相沉积等真空沉积方法。
在以下实施方式中,基底为连续的材料片材。基底可包含的金属的实例包括:碳(C)、铁(Fe)、钴(Co)、铜(Cu)、镍(Ni)上述的合金以及上述的组合。此外,基底可为金属箔、片或板,或三维多孔形状。按照以下步骤进行沉积:
(1)将基底清洗干燥后放置在沉积设备腔体内备用;
(2)分别安装好高纯硅靶材及高纯LiF/Li2CO3复合靶材,或者是高纯硅靶材、高纯LiF、高纯Li2CO33个靶材;
(3)采用机械泵、分子泵对腔体进行抽真空处理后,通入高纯氩气使腔体压力上升到0.1~1 Pa;以一定沉积速率开始沉积,制备厚度0.1~5μm的硅基复合材料。
为方便说明,以下实施例以铜箔或泡沫铜为基底进行说明。采用磁控溅射法制备硅与LiF/Li2CO3体相复合的复合硅材料、或以LiF/Li2CO3包覆前述复合硅材料的薄膜材料。所用材料及试剂如下:二维铜箔、三维泡沫铜(孔径100~1000μm不等),高纯硅靶材、高纯LiF/Li2CO3复合靶材、高纯氩气。高纯LiF/Li2CO3复合靶材也可以替换为单独的高纯LiF靶材、高纯Li2CO3靶材。所述高纯硅靶材是硅片或者硅粉末的压制靶材。
实施例1 (二维铜箔+复合硅),实施步骤如下:
(1) 选择的二维铜箔,用去离子水、丙酮、无水乙醇依次超声清洗,干燥后放置在磁控溅射腔体内备用;
(2) 将硅靶材和锂化合物靶材作为双溅射源,分别安装好高纯硅靶材及高纯LiF/Li2CO3复合靶材,其中高纯LiF/Li2CO3复合靶材的质量分数比例为85:15,鉴定其组分的X射线衍射谱(XRD)如图1所示;
(3) 采用机械泵、分子泵对腔体进行抽真空处理至6.6×10-4 Pa,通入高纯氩气使腔体压力上升到约0.5 Pa;
(4) 对两个靶材同时进行磁控溅射,保持基底温度为常温;高纯硅靶材采用150W的直流溅射功率,高纯LiF/Li2CO3复合靶材采用50W的射频溅射功率;最终得到“二维铜箔+复合硅”的薄膜。
如图2所示,图2(a)是实施例1得到的硅基复合材料的TEM图,可以看到沉积层是由Si/LiF/Li2CO3通过纳米复合而形成的完整薄膜,LiF与Li2CO3同时存在于硅的体相中;从标记区域的HRTEM图可以看出LiF(200)的晶面间距0.201nm,以及Li2CO3(220)的晶面间距0.208nm。图2(b-e)是实施例1得到的硅基复合材料的元素分布图,能够明显地看出Si、O、F均匀地分布在整个薄膜中。
实施例2 (二维铜箔+复合硅+包覆层)
按照实施例1的方法,不同之处在于,在实施例1制备得到的沉积层表面再溅射厚度为5 nm的LiF/Li2CO3作为包覆层。具体步骤是将实施例1制备的“二维铜箔+复合硅”样品作为基底固定在样品台上,以高纯LiF、高纯Li2CO3为靶材或二者的复合靶材,抽真空,通入惰性气体,进行真空沉积,得到附有LiF/Li2CO3包覆层的薄膜。保持基底的温度为常温,采用50W的射频溅射功率。最终得到“二维铜箔+复合硅+包覆层”的薄膜。
实施例3 (三维泡沫铜+复合硅)
按照实施例1的步骤与参数,不同之处在于,基底采用三维泡沫铜。将清洁干燥后的三维泡沫铜基底放入磁控溅射腔体内,安装好高纯硅靶材及高纯LiF/Li2CO3复合靶材,对两个靶材同时进行磁控溅射,保持基底温度为常温;高纯硅靶材采用150W的直流溅射功率,高纯LiF/Li2CO3复合靶材采用200W的射频溅射功率;所用三维泡沫铜的孔径为100~1000 μm不等。最终得到“三维泡沫铜+复合硅”的薄膜。
实施例4 (三维泡沫铜+复合硅+包覆层)
在实施例3的“三维泡沫铜+复合硅”样品表面再溅射了厚度为5 nm的LiF/Li2CO3包覆层。具体步骤是将实施例3制备的“三维泡沫铜+复合硅”样品作为基底固定在样品台上,以高纯LiF、高纯Li2CO3为靶材或二者的复合靶材,抽真空,通入惰性气体,进行真空沉积,得到附有LiF/Li2CO3包覆层的薄膜。保持基底的温度为常温,采用50W的射频溅射功率。最终得到“三维泡沫铜+复合硅+包覆层”的薄膜。
对比例1 (二维铜箔+纯硅)
按照实施例1的步骤,不同之处在于只有高纯硅靶材,采用直流溅射的方法在二维铜箔沉积硅。最终得到“二维铜箔+纯硅”的薄膜。
对比例2 (三维泡沫铜+纯硅)
步骤与参数同实施例3,差别在于只有高纯硅靶材,采用直流溅射的方法在三维泡沫铜上沉积硅。最终得到“三维泡沫铜+纯硅”的薄膜。
由于沉积二维薄膜和三维薄膜的工艺参数完全一致,所以其表面形貌相类似,故提供对比例2“三维泡沫铜+纯硅”薄膜、实施例3“三维泡沫铜+复合硅”薄膜、实施例4“三维泡沫铜+复合硅+包覆层”薄膜的SEM如图3所示。
由于复合硅+包覆层的效果在二维和三维薄膜中类似,故将上述实施例1、实施例3和实施例4制备的含硅基复合材料层的薄膜作为负极,以及对比例1提供的“二维铜箔+纯硅”薄膜作为对比样品,分别按照如下方法组装成纽扣电池。
以上述沉积的硅基薄膜为工作电极,锂片为对电极,采用聚丙烯膜(Celgard2400)为电池的隔膜,电解液以1 mol/L的LiPF6溶解于碳酸乙烯/碳酸二乙酯(体积比EC/DEC=1:1)中,并添加5 wt%氟碳酸乙烯(FEC),在充满氩气的手套箱中组装为CR2032型电池。将上述电池于室温下在电池测试仪器(Neware CT4008A)上进行电化学测试,充放电电压为0.01V~3V。以恒电流0.2C进行恒流充放电测试。比容量是根据电极的总质量计算的。
实施例1、实施例3、实施例4和对比例1的电化学性能如图4和图5所示,并将主要数据总结对比如表1所示。
比较表1的数据与图4、图5可知,本发明以二维铜箔为基底制备的复合硅材料,充电比容量和库伦效率均优于二维铜箔纯硅材料。以三维泡沫铜为基底制备的复合硅+包覆层复合材料,充电比容量和库伦效率均优于三维泡沫铜纯硅和三维泡沫铜复合硅材料。
以上所述仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种硅基复合材料,其特征在于,以硅、LiF、Li2CO3为原料,其中所述LiF和Li2CO3分散在硅的体相中,经体相复合形成具有网络结构的复合硅材料;所述硅与LiF及Li2CO3的总和的摩尔质量比为60:40~99:1。
2.根据权利要求1所述硅基复合材料,其特征在于,所述硅基复合材料中LiF与Li2CO3的摩尔质量比为95:5。
3.根据权利要求1所述硅基复合材料,其特征在于,通过磁控溅射、原子层沉积、脉冲激光沉积、化学气相沉积、热蒸发其中一种真空沉积方法形成。
4.一种硅基复合材料的制备方法,其特征在于,包括以下步骤:将硅靶材和锂化合物靶材作为双溅射源,在0.1~1 Pa的惰性气体气氛中,采用直流或射频磁控溅射;其中硅靶材的工作功率为10~200 W,锂化合物靶材的工作功率为10~200 W,沉积期间将基底保持在室温并旋转。
5.根据权利要求4所述硅基复合材料的制备方法,其特征在于,还包括以下步骤:以权利要求3制备附着有硅基复合材料为基底,将基底固定在样品台上,以高纯LiF、高纯Li2CO3为靶材或二者的复合靶材,抽真空,通入惰性气体,进行真空沉积,得到附有LiF/Li2CO3包覆层的硅基复合材料。
6.根据权利要求4所述硅基复合材料的制备方法,其特征在于,所述锂化合物靶材是LiF与Li2CO3的复合靶材,或者分开的LiF靶材、Li2CO3靶材。
7.一种薄膜,其特征在于,包括基底和生长在所述基底表面的硅基复合材料层,且所述硅基复合材料层为权利要求1所述硅基复合材料。
8.根据权利要求7所述一种薄膜,其特征在于,所述基底连续的材料片材,包括金属箔、片或板,或三维多孔形状。
9.根据权利要求7所述一种薄膜,其特征在于,所述基底是含有碳、铁、钴、铜、镍的单质或合金。
10.如权利要求7-9任一项所述的薄膜在锂离子电池或超级电容器中的应用。
CN202211650815.5A 2022-12-21 2022-12-21 一种硅基复合材料的制备方法和应用 Pending CN116666575A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211650815.5A CN116666575A (zh) 2022-12-21 2022-12-21 一种硅基复合材料的制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211650815.5A CN116666575A (zh) 2022-12-21 2022-12-21 一种硅基复合材料的制备方法和应用

Publications (1)

Publication Number Publication Date
CN116666575A true CN116666575A (zh) 2023-08-29

Family

ID=87719473

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211650815.5A Pending CN116666575A (zh) 2022-12-21 2022-12-21 一种硅基复合材料的制备方法和应用

Country Status (1)

Country Link
CN (1) CN116666575A (zh)

Similar Documents

Publication Publication Date Title
Adair et al. Towards high performance Li metal batteries: Nanoscale surface modification of 3D metal hosts for pre-stored Li metal anodes
Xie et al. Spatial confinement of vertical arrays of lithiophilic SnS2 nanosheets enables conformal Li nucleation/growth towards dendrite-free Li metal anode
JP7148150B2 (ja) 再充電可能なバッテリのための2次元物質によるリチウム金属のパッシベーション
JP5015173B2 (ja) リチウム電池の陰極に利用可能なカーボンナノチューブ及びシリコンベースの材料
KR101201807B1 (ko) 리튬 이차 전지
CN110676420A (zh) 一种锂离子电池的补锂隔膜
KR101147243B1 (ko) 리튬 이차 전지용 음극 활물질 및 이를 포함하는 리튬 이차 전지
US11245109B2 (en) Composite electrode material and method for manufacturing the same, composite electrode containing said composite electrode material, and Li-based battery comprising said composite electrode
KR20120010211A (ko) 다공성 실리콘계 화합물 또는 다공성 실리콘, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지용 음극 활물질 및 리튬 이차 전지
Zhong et al. An artificial Li-Al interphase layer on Li-B alloy for stable lithium-metal anode
KR101233341B1 (ko) 리튬 이차 전지용 음극 활물질 및 이를 포함하는 리튬 이차 전지
KR101576276B1 (ko) 음극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차전지
JP2021530847A (ja) 金属発泡体のアノードおよびカソードを有するリチウムイオン蓄電池
Wu et al. A novel battery scheme: Coupling nanostructured phosphorus anodes with lithium sulfide cathodes
US11005091B2 (en) Composite electrode material and method for manufacturing the same
Guan et al. Lithiophilic liquid metal layer induced lithium plating/stripping in a 3D Cu matrix to mitigate lithium dendrites and volume expansion
JP3920597B2 (ja) リチウム二次電池及びリチウム二次電池用正極
KR101284025B1 (ko) 리튬이차전지용 음극소재 및 이의 제조방법
CN110854359B (zh) 硅/碳复合材料及其制备方法
US20120225354A1 (en) Positive electrode active material for lithium secondary battery, method of preparing same and lithium secondary battery including same
CN116666575A (zh) 一种硅基复合材料的制备方法和应用
KR102249754B1 (ko) 전위보호막을 포함하는 이차전지용 전극 구조 및 이의 제조방법
CN113690402B (zh) 一种锂离子电池、锂离子电池负极及其制备方法
KR102597205B1 (ko) 리튬 이차 전지용 음극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차 전지
US11848446B2 (en) Anode-free rechargeable lithium battery including transition metal dichalcogenide layer and method of manufacturing same

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination