CN116574968A - 一种煤矿采运用耐酸性腐蚀耐磨钢及其制备方法 - Google Patents

一种煤矿采运用耐酸性腐蚀耐磨钢及其制备方法 Download PDF

Info

Publication number
CN116574968A
CN116574968A CN202310336828.3A CN202310336828A CN116574968A CN 116574968 A CN116574968 A CN 116574968A CN 202310336828 A CN202310336828 A CN 202310336828A CN 116574968 A CN116574968 A CN 116574968A
Authority
CN
China
Prior art keywords
rolling
percent
steel
resistant steel
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310336828.3A
Other languages
English (en)
Inventor
何康
张佩
麻衡
霍孝新
王月香
李艳
尹训强
张庆普
石大勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Laiwu Steel Group Yinshan Section Steel Co Ltd
Original Assignee
Laiwu Steel Group Yinshan Section Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Laiwu Steel Group Yinshan Section Steel Co Ltd filed Critical Laiwu Steel Group Yinshan Section Steel Co Ltd
Priority to CN202310336828.3A priority Critical patent/CN116574968A/zh
Publication of CN116574968A publication Critical patent/CN116574968A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B1/24Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process
    • B21B1/26Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process by hot-rolling, e.g. Steckel hot mill
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/46Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting
    • B21B1/463Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting in a continuous process, i.e. the cast not being cut before rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/58Roll-force control; Roll-gap control
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • C22C33/06Making ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

本发明公开了一种煤矿采运用耐酸性腐蚀耐磨钢及其制备方法,所述耐磨钢的成分按重量比为:C:0.10~0.20%、Si:0.05~1.0%、Mn:0.10~1.0%、Cr:3.0~5.0%、P:0.05%以下、S:0.01%以下、B:0.0008~0.0020%,还含有Ni:0.01~1.0%、Mo:0.01~0.6%中的任意一种或两种,剩余部分由Fe和不可避免杂质构成。制备方法为:1)合金选择;2)转炉冶炼和精炼;3)连铸和轧制;4)淬火和低温回火热处理。本发明耐酸性腐蚀耐磨钢的屈服强度≥1100MPa,抗拉强度≥1300MPa,在模拟高矿化度、低pH煤矿采运服役环境服役下的均匀腐蚀速率为0.055~0.070mm/a,相比于普通NM400级耐磨钢的耐腐蚀磨损性能提高了至少1.57倍。

Description

一种煤矿采运用耐酸性腐蚀耐磨钢及其制备方法
技术领域
本发明属于合金钢材料技术领域,尤其涉及一种用于煤矿采运用耐酸性腐蚀耐磨钢板及其制备方法。本发明的耐磨蚀钢特别适用于在低pH环境、高矿化度煤矿采运用耐磨损关键部件。
背景技术
耐磨钢广泛应用于矿山机械、煤炭采运、建材机械、铁路运输等易磨损关键部件,以满足恶劣工况下大型装备的使用要求。其中,我国煤炭采运消耗的耐磨钢板高达30万吨/年。目前针对采运设备磨损情况,我国研制多种新型耐磨钢材料,中高锰奥氏体系列耐磨钢利用在较大冲击载荷或接触应力作用下的表面应变诱发马氏体相变使得表面硬度急剧升高,从而提高耐磨性。但由于中高锰钢屈服强度不高,在较大作用力下易发生变形甚至开裂,难以达到预期寿命;具有易加工、可焊性的中、低合金耐磨钢以马氏体或者贝氏体组织为主,相对于传统耐磨铸钢具有较高的强韧性、硬度和一定韧性,其生产工艺较为简单,综合经济性合理,得到了广泛的生产和应用。其中,400NM级别耐磨钢应用广泛,生产制造厂家较多。
煤炭采运过程中,煤层、围岩中的硫化矿物与氧气和水接触,在微生物的催化作用下,经过一系列复杂的地球化学反应,能够产生酸性矿井水,同时酸性水可能发生脱硫酸作用产生H2S。因此,煤矿采运用刮板、中板等耐磨板处于高湿热、高酸度、高矿化度的环境介质中,除了承受运煤机的运行负荷,推、拉的应力,还要承受大块煤、岩石的挤压、冲击,以及在干湿交替环境中介质腐蚀(煤矿水中含有HCO3 -、SO4 2-、Cl-、S2-与HS-等离子)的多重耦合作用,现有耐磨钢板磨损腐蚀严重。因此,开发耐酸性腐蚀环境耐磨合金材料是保证服役寿命和安全性的有效途径。
针对这样的要求,中国发明专利CN104662193 A公开了一种“低温韧性和腐蚀磨损性能优异的耐磨损钢板”。其化学成分(按质量百分比计)为:C:0.10~0.20%、Si:0.05~1.00%、Mn:0.1~2.0%、P:0.020%以下、S:0.005%以下、Al:0.005~0.100%,进一步含有选自Cr:0.05~2.0%、Mo:0.05~1.0%中的1种或2中。它利用控制钢中固溶Cr和Mo含量(0.05wt.%≤(Cr+2.5Mo)≤2.0wt.%),结合轧制及热处理工艺,获得具有马氏体相为主相且原始奥氏体晶粒≤30μm的组织,表面硬度HBW10/3000≥360,从而达到提高耐腐蚀磨损的目的。但其主要适用于处于湿润状态的土和砂子含有腐蚀性物质环境,与高酸度和矿化度的煤矿环境不同,且磨损腐蚀机理也不相同。
文献“含锑低合金马氏体钢的耐磨蚀性能”研究了Sb元素添加对具有如下组成的低合金马氏体钢耐磨蚀性能的影响。上述钢以质量百分比及含有C:0.16-0.18%,并含有适量的Si、Mn、Al、Ti、Mo、B,还含有Cr1.5%~1.8%、Cu:0.5~0.6%及Sb0%和0.2%。分别通过热轧后在Ar3相变点以上温度淬火和低温回火处理,得到HRC>40的耐磨钢,且发现Sb元素的加入提高了钢在酸性高氯离子及高硫酸根离子环境中的耐蚀性,保证力学性能与硬度的同时提高了耐磨蚀性能。但是对于实际煤矿环境中的腐蚀未进行研究。
另外,针对耐磨蚀钢的开发,中国发明专利CN 113025888 B公开了“一种耐磨蚀性高强钢及其制备方法”的耐磨蚀性高强钢。其化学成分(按质量百分比计)为:C 0.12~0.16%,Si 0.45~0.55%,Mn 4.50~5.50%,P≤0.008%,S≤0.0008%,Alt 0.01~0.05%,余量为铁和不可避免的杂质。通过两阶段轧制工艺抑制碳化物析出,实现晶粒细化;结合特定的加热冷却工艺获得细小无碳化物板条马氏体,从而获得高强韧、低屈强、高耐磨蚀高强钢。但其主要应用于砂石、淤泥、鹅卵石等环境工况,与低pH环境下的磨蚀环境不同,耐磨蚀机理不同。
中国发明专利CN 109825774 B公开了“一种贝马复相耐磨蚀钢的制备方法”。它采用多合金元素少添加量相互制约,其主要化学成分(按质量百分比计)为,按以下主要元素质量百分比选择合金:C:0.2-0.6%、Mn:1.5-5.0%、Cr:0.1-3.0%、Al:0.1-3.0%、Si:0.1-3.0%、Mo:0.1-1.0%、Ni:0.1-2.0%、Cu:0.1-1.0%、P:0-0.2%、S:0-0.03%、余量为Fe,辅助元素可以选择一种或几种合金元素B:0-0.3%、V:0-1.0wt%、W:0-1.0wt%、Ti:0-0.3wt%、Nb:0-0.3wt%、Re:0-0.3wt%、Ca:0-0.3wt%、Sn:0-0.3wt%。通过启用上贝氏体组织加宽获取组织范围,热处理方式奥氏体到BS点采用快冷,中温采用慢冷变温获取上下贝氏体组织,低温范围内等温获马氏体组织,通过连续生产获取上下贝氏体马氏体奥氏体多项复合组织组成的耐磨钢,即抗击多种环境下的冲击和切削磨损又抗击腐蚀。但该专利未就其耐蚀性能做详细说明,故认为其无法适应低pH环境下高湿热、高矿化物的煤矿采运环境。
发明内容
鉴于上述问题,本发明的目的在于提供一种适用于煤矿环境下耐酸性腐蚀耐磨钢及其制备方法。
为了解决上述问题,本发明对耐磨损腐蚀及各重要因素对耐腐蚀、耐磨损性的影响进行了深入研究。提出一种采用少钼镍中铬低碳合金设计,利用Cr添加改变腐蚀产物膜的致密性和稳定性,且在破坏后能尽快修复,降低局部腐蚀敏感性;降低Mn含量,从而减少硫化物应力腐蚀开裂。同时以回火马氏体为基体,保证材料的耐磨性以及良好的抗SSCC断裂能力。本发明提供的耐磨蚀性NM400级钢板具有显著提高的服役寿命,可适用于煤矿等高矿化度、低pH环境输送构件。
为达到上述目的,本发明采用了如下的技术方案:
一种煤矿采运用耐酸性腐蚀耐磨钢,按质量百分比计,所述耐酸性腐蚀耐磨钢包含:C:0.14~0.18%、Si:0.05~1.0%、Mn:0.10~1.0%、Cr:3.0~5.0%、P:0.05%以下、S:0.01%以下、B 0.0008~0.0020%,还含有Ni:0.01~1.0%、Mo:0.01~0.6%中的任意一种或两种,剩余部分由Fe和不可避免杂质构成。
进一步优选地,所述耐酸性腐蚀耐磨钢还包括以下质量百分数的化学成分:Nb:0.05~0.1%、Ti:0.005~0.1%、V:0.005~0.1%中的1种或至少2种。
本发明中,所述耐酸性腐蚀耐磨钢板的屈服强度≥1100MPa,抗拉强度≥1300MPa,在模拟高矿化度、低pH煤矿采运服役环境服役下的均匀腐蚀速率为0.055~0.07mm/a。
并且,具有以回火马氏体相为主相(含量≥90%),且原奥氏体晶粒度在8级以上(GB/T6394-2017)。
并且,表面硬度以布氏硬度HBW10/3000记为370以上。
本发明能够容易且稳定的制造尤其在高矿化度、低pH、煤矿石采运环境下的耐腐蚀磨损性能优异的耐腐蚀磨损钢板。
对本发明的耐酸性腐蚀耐磨钢板的组成限定理由进行说明。在没有特殊说明的情况下,质量百分比简单计为%。
C:0.10~0.20%,C是对提高硬度和耐磨性的重要元素,随着C含量增加,材料硬度和耐磨性提高,但塑韧性和可焊性降低。当C的含碳量低于0.10%时硬度提升不足。综合考虑C含量为0.10~0.2%,优选0.14~0.18%。
Si:0.05~1.0%,Si固溶与铁素体和奥氏体中,起固溶强化作用从而提高材料硬度和强度。但Si含量过高则易降低韧性,淬火时易产生淬火裂纹。另外,Si作为钢液脱氧剂元素,其含量应在0.05%以上以保证充分的脱氧效果。因此,Si含量限定在0.05~1.0范围,其中,优选为0.2~0.5%。
Mn:对于本发明所述的耐酸性腐蚀耐磨钢板而言,Mn是钢中的强化元素,也是炼钢脱氧的必要元素。此外,Mn可以细化本发明所述的钢板显微组织,还可以起到抑制网状渗碳体的形成的作用,从而对本发明所涉及的钢种的韧性的提高较为有利。然而,另一方面,当Mn的质量百分比超过本发明所限定的上限时,则易导致回火脆性,导致中心偏析,进而恶化基体组织,并且形成较大的MnS夹杂,从而恶化本发明所涉及钢板可焊性及耐蚀性。此外,Mn含量过高会导致本发明所涉及的钢种产生硫化物应力腐蚀开裂(SSCC)。因此,所述的高耐蚀耐候钢中将Mn的质量百分比控制在0.1~1.0%,优选0.2~0.4%。
Cr:Cr是本发明所述钢板的重要元素。通过Cr添加提高钢的淬透性,且有利于钢的固溶强化,细化组织从而提高冲击韧性。此外,在干湿交替环境下的煤矿石等的接触成为腐蚀磨损环境下,Cr的含量在本发明所涉及的钢种范围内可以有效提高钢的自腐蚀电位,抑制腐蚀的发生,同时Cr可以促进表面形成致密氧化膜,使α-FeOOH锈层具有阳离子选择性,Cl-、SO4 2-向基体渗透,提高钢的钝化能力;为了达到这样的效果,Cr的含量设为3~5%,如果Cr含量超过5%时,降低材料焊接性且制造成本增加。应予说明,优选为3.5~4.5%的范围。
Mo:0.01~0.6%,Mo通过马氏体相细化从而提高韧性。同时,Mo添加可以提高Cr的合金化效果,将Cr固溶在基体内,减少Cr的碳化物析出,从而降低腐蚀速率。另外,考虑低pH值和活化状态下Mo降低腐蚀速率作用及制造成本,Mo含量限定在0.01~0.6%,优选0.01~0.3%。
Ni:0.01~1.0%,Ni有利于提高钢材的韧性,但由于会导致钢的SSCC腐蚀性能变差,同时考虑制造成本,Ni含量不大于1%。
B:0.0008~0.0020%,B以微小含量即可提高材料淬透性,且能够提高钢的抗SSCC性能,但B含量超过0.003%时易导致韧性和焊接性下降,因此优选0.0008~0.0020%范围。
P:0.01%以下,P在本发明钢中是有害杂质元素。特别是在凝固过程中,易在铸坯中心偏析导致P富集,从而成为H的聚集源,导致抗HIC和SCC性能降低。同时,P易导致回火脆性,恶化焊接性能。因此,需要严格控制P含量,优选0.005以下。
S:0.01%以下,S在本发明钢中需要严格控制,当S<0.003%时,可以显著降低HIC敏感性。而当S含量较多时,易形成MnS,导致点蚀发生,且HIC敏感性明显增加。同时,S含量增加会降低可焊性、韧性。因此S含量需要尽量降低,但应予说明的是过度减少S含量会导致精炼成本增加,因此S含量优选0.002%以上。
上述成分是本发明的基本成分。本发明在含有上述基本成分的基础上,还可以选择性含有选自Nb:0.01~0.020%、V:0.01~0.05%、Ti:0.005~0.05%中的1种或2种以上。
Nb、V、Ti可以以碳氮化合物或氮化物形式析出,有利于细化组织从而提高韧性。但从焊接性及制造成本考虑,各添加元素含量分别限定Nb:0.01~0.020%、V:0.01~0.05%、Ti:0.005~0.05%范围。
本发明还提供了一种煤矿采运用耐酸性腐蚀耐磨钢的制备方法,所述NM400级耐磨蚀钢具有上述化学成分,采用的制备方法如下:
1)合金选择:按照所述耐酸性腐蚀耐磨钢化学成分的质量百分比选择合金;
2)转炉冶炼和精炼:按照所述耐酸性腐蚀耐磨钢的化学成分要求,采用低硫铁水(含硫量≤0.015%)转炉冶炼,通过硅铁、中碳铬铁等按照合金成分中限控制进行合金化,转炉冶炼全称吹氩,终渣碱度控制在3.0~3.5范围内,转炉冶炼确保一次拉碳,渣料在终点前3min加完。LF精炼时间不低于40min,全程底吹氩搅拌,采用碳化钙、铝渣或铝粒脱氧,通过喂线调整并达到B、Ti、Al成分要求。
3)连铸和轧制:
经冶炼后,采用连铸机在1.1-1.4m/min拉速拉坯,结晶器保护渣采用包晶钢保护渣,铸坯末端采用轻压下,铸坯下线缓冷48h以上,并检查清理表面,所述铸坯厚度为200~300mm。
将铸坯在1170-1250℃加热保温,采用大压下技术进行轧制,轧后离线淬火并低温回火;在粗轧前通过上下集管除鳞。
4)淬火和低温回火热处理:
将轧制得到的钢坯进行轧后在线/离线淬火和低温回火处理
上述制备方法中,为了避免由于轧制出现的心部偏析而导致耐酸性腐蚀耐磨钢板的强韧性,采用慢速大压下粗轧及精轧两阶段轧制方法。通过高温轧制降低轧制力,且利用大压下技术充分细化钢板组织,进而提高钢板力学性能。其中,粗轧变形率≥65%,精轧变形率≥60%。同时,为了保证耐酸性腐蚀耐磨钢板的塑韧性及强度,精轧终轧温度控制在840~870℃。
所述轧制过程中,作为优选方式的慢速大压下技术为:在1170-1250℃开轧(例如1190℃、1200℃、1210℃、1230℃、1250℃),总压下率为80~90%(例如,84%、86%、88%、90%),应变速率为0.2~2.0s-1,中间坯/成品厚度在2.5~4.0之间。轧制过程中中间坯厚度控制在±3mm以内。精轧开轧温度在960~1000℃,精轧终轧温度840~870℃,精轧开轧温度控制在±15℃以内。
上述轧制过程中,板坯通过两段加热及均热,其中均热时间≥40min,优选加热一段温度区间在1050~1180℃,加热二段1180~1280℃,均热段1170~1250℃。对于厚规格冷坯加热时,加热速度≥9~10min/cm。
上述制备方法中,轧制后可以根据需要进行立即轧后在线淬火或离线淬火,淬火后进行后续的低温回火热处理。作为优选,建议在线淬火以缩短工艺流程,节约能耗。
上述制备方法中,所述的淬火和低温回火热处理步骤中,淬火是指将轧制得到钢加热至900~920℃,保温10~15min进行奥氏体化,然后水冷至室温,以获得马氏体为主相的组织结构,从而获得较高的硬度;
所述回火处理作为一种优选,是将淬火后得到的钢加热至200~220℃,保温10~15min,然后空冷至室温,获得回火马氏体,提高一定的韧性,并且提高抗SSCC和HIC性能。
所述制备方法中,所述钢坯的厚度为200~300mm。制备钢坯规格的选择根据轧机性能及压下量进行确定,只要符合冶炼、连铸和轧制条件要求,均可采用本发明所述的制备方法用于NM400级耐酸性腐蚀耐磨钢板的轧制生产。作为一种优选方式,所述耐磨蚀钢为板材,厚度为8~40mm。
本发明未详细说明的内容均可采用本领域的常规技术知识。
本发明中,在相互不冲突的情况下,上述技术特征可以任意组合形成新的技术方案。
所述耐酸性腐蚀耐磨钢的屈服强度≥1100MPa,抗拉强度≥1300MPa,在典型煤矿采运用酸性矿井环境下服役时的均匀腐蚀速率为0.055~0.070mm/a,且相比于普通NM400级耐磨钢的耐腐蚀磨损性能提高了至少1.57倍。
本发明制造一种具有能够满足低pH、高矿化度、干湿交替煤矿采运服役环境服役下的力学性能和耐磨损腐蚀性能的钢材,可有效提高酸性煤矿采运用耐磨钢的服役寿命和可靠性。其基于现有生产工艺的制备方法使其具有良好的批量化生产可行性。
与现有技术相比,本发明的有益效果是:
1.采用低碳中Cr少Mn设计,生产的耐酸性腐蚀耐磨钢兼具良好力学性能、耐磨性及耐腐蚀性,可有效减少因腐蚀磨损造成的钢材损失,提升钢材的可靠性及服役寿命,适合酸性高煤矿采运环境服役。
2.本发明制造的耐酸性腐蚀耐磨钢时基于现有生产工艺优化的制备方法,具有良好的成本优势及大规模生产的可行性。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1是本发明实施例1制备的20mm厚度耐酸性腐蚀耐磨钢的金相组织(图1a)及晶粒度(图1b);
图2是本发明实施例1制备的20mm厚度耐酸性腐蚀耐磨钢在模拟矿井水腐蚀720h后的宏观(图2a)及微观形貌图(图2b);
图3是常规NM400级耐磨钢在模拟矿井水腐蚀720h后的宏观(图3a)及微观形貌图(图3b);
图4是本发明实施例1中制备的耐酸性腐蚀耐磨钢(图4a)和常规NM400级耐磨钢在模拟矿井水混合煤矿石冲击磨损腐蚀后的微观形貌图(图4b);
图5是本发明实施例1中制备的耐酸性腐蚀耐磨钢(图5a)和常规NM400级耐磨钢在模拟矿井水混合煤矿石干湿交替冲击磨损腐蚀后的微观形貌图(图5b)。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,本说明书中公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换。除非特别叙述,每个特征只是一系列等效或者类似特征中的一个例子而已。所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明未详细说明的内容均可采用本领域的常规技术知识。
实施例1
本实施例提供的用于煤矿采运用耐酸性腐蚀耐磨钢板及其制备方法,采用4300mm双辊可机架轧机生产成品厚度规格为20mm的耐磨蚀钢,具体元素组成如表1所示,余量为Fe及不可避免的杂质。
表1成分表(wt%)
本实施例中上述化学成分的耐磨蚀钢的制备方法包括以下步骤:
(1)冶炼:
根据表1中的设计成分,通过冶炼、精炼及连铸后形成200mm断面的板坯;其中,冶炼终点温度控制在1640~1680℃。
(2)轧制:
冷坯经过两段式加热及均热40min后,利用慢速大压下技术进行轧制生产得到20mm厚度规格的钢板,总压下率90%。
在轧制过程中,采用粗轧、精轧两段式轧制。在1170℃粗轧,粗轧压下率为66%,精轧阶段中,精轧开轧温度设定980℃,终轧温度840℃,精轧总压下率71%。控轧工艺参数如表2所示:
表2制备耐酸性腐蚀耐磨钢控轧及冷却工艺参数
(3)淬火和低温回火热处理:
将轧制得到的钢加热至900℃,保温15min进行奥氏体化,然后淬火至室温,得到以马氏体为主相的组织结构,获得较高的硬度。将淬火后的钢板加热至220℃,保温20min后空冷至室温,获得回火马氏体组织。
表3实施例1得到的耐酸性腐蚀耐磨钢均匀腐蚀试验参数(参照GB/T19746-2005)
表4实施例1中热处理后煤矿采运耐酸性腐蚀耐磨钢的力学性能及腐蚀速率
现有技术中,常规NM400级耐磨钢对耐腐蚀性无明确要求,在本实施例中,以常规NM400级耐磨钢作为对比,腐蚀环境为模拟酸性煤矿水环境参照GB/T19746-2005进行的腐蚀测试。常规NM400钢成分为:C:0.24%,Si:0.39%,Mn:1.15%,P:0.007%,S:0.0001%Mo:0.12%,Ti:0.015%,V:0.25%,B:0.001%,余量为Fe和其他不可避免的杂志。经测试,常规NM400耐磨钢的腐蚀速率为0.106mm/a。相比于常规NM400级耐磨钢,本实施例得到的煤炭采用耐酸性腐蚀耐磨钢的耐蚀性提升了1.93倍。
实施例2
本实施例提供的用于煤矿采运用耐酸性腐蚀耐磨钢板及其制备方法,采用4300mm双机架轧机生产厚度规格为40mm的耐磨蚀钢,具体元素组成如表5所示,余量为Fe及不可避免的杂质。
表5成分表(wt%)
本实施例中上述化学成分的耐磨蚀钢的制备方法包括以下步骤:
(1)冶炼:
根据表1中的设计成分,通过冶炼、精炼及连铸后形成250mm断面的板坯;其中,冶炼终点温度控制在1640~1670℃。
(2)轧制:
冷坯经过两段式加热及均热45min后,利用慢速大压下技术进行轧制生产得到40mm厚度规格的钢板,总压下率84%。
在轧制过程中,采用粗轧、精轧两段式轧制。在1182℃粗轧,粗轧压下率为55%,精轧阶段中,精轧开轧温度设定960℃,终轧温度860℃,精轧总压下率64%。控轧工艺参数如表6所示:
表6制备的NM400级耐酸性腐蚀耐磨钢控轧及冷却工艺参数
(3)淬火和低温回火热处理:
将轧制得到的钢加热至900℃,保温15min进行奥氏体化然后淬火至室温,得到马氏体为主相的组织结构。将淬火后的钢板加热至220℃,保温20min后空冷至室温,获得回火马氏体组织。
表7为实施例2得到的耐酸性腐蚀耐磨钢均匀腐蚀试验参数(参照GB/T19746-2005)
表8实施例2中热处理后煤矿采运耐酸性腐蚀耐磨钢的力学性能及腐蚀速率
经测试,本实施例2腐蚀速率为0.057mm/a,相比于常规NM400级耐磨钢,本实施例2得到的耐酸性腐蚀耐磨钢的耐蚀性提升了1.57倍
以上两个实施例还对制备的煤炭采用耐酸性腐蚀耐磨钢的金相组织、腐蚀形貌进行了测试,且对比了常规NM400级耐磨钢在冲击腐蚀磨损情况下的腐蚀形貌。图1为实施例1中煤矿采运用耐酸性腐蚀耐磨钢的微观组织。图2为实施例1中煤炭采用耐酸性腐蚀NM400级耐磨钢的腐蚀后的宏观及微观形貌。图3为常规NM400级耐磨钢在模拟矿井水腐蚀720h后的宏观(图3a)及微观形貌图(图3b)。图4为本发明实施例1中制备的耐酸性腐蚀耐磨钢(图4a)和常规NM400级耐磨钢在模拟矿井水混合煤矿石冲击磨损腐蚀后的微观形貌图(图4b)。图5是本发明实施例1中制备的耐酸性腐蚀耐磨钢(图5a)和常规NM400级耐磨钢在模拟矿井水混合煤矿石干湿交替冲击磨损腐蚀后的微观形貌图(图5b)。
由图1~5分析比较可见,相较于常规NM400级耐磨钢,本发明钢种腐蚀后产物致密,且成两层产物,所形成的的腐蚀产物膜可以阻碍腐蚀的进一步发展。同时,在冲击磨损情况下,常规NM400级耐磨钢在冲击腐蚀磨损过程中(干湿交替、湿磨冲击条件)都在表面由明显的点蚀现象。而本实施例中煤炭采用耐酸性腐蚀耐磨钢在冲击腐蚀磨损条件下,材料表面无点蚀,其耐蚀能力更强。
本发明的工艺参数(如温度、时间等)区间上下限取值以及区间值都能实现本法,在此不一一列举实施例。
本发明未详细说明的内容均可采用本领域的常规技术知识。
最后所应说明的是,以上实施例仅用以说明本发明的技术方案而非限制。尽管参照实施例对本发明进行了详细说明,本领域的普通技术人员应该理解,对本发明的技术方案进行修改或者等同替换,都不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (10)

1.一种煤矿采运用耐酸性腐蚀耐磨钢,其特征在于,所述耐酸性腐蚀耐磨钢包括以下质量百分数的化学成分:C:0.10~0.20%、Si:0.05~1.0%、Mn:0.10~1.0%、Cr:3.0~5.0%、P:0.05%以下、S:0.01%以下、B:0.0008~0.0020%,还含有Ni:0.01~1.0%、Mo:0.01~0.6%中的任意一种或两种,剩余部分由Fe和不可避免杂质构成。
2.根据权利要求1所述的煤矿采运用耐酸性腐蚀耐磨钢,其特征在于,所述耐酸性腐蚀耐磨钢还包括以下质量百分数的化学成分:Nb:0.01~0.1%、Ti:0.005~0.1%、V:0.005~0.1%中的1种或至少2种。
3.根据权利要求1或2所述的煤矿采运用耐酸性腐蚀耐磨钢,其特征在于,所述耐酸性腐蚀耐磨钢的屈服强度≥1100MPa,抗拉强度≥1300MPa,在典型煤矿采运用酸性矿井环境下服役时的均匀腐蚀速率为0.055~0.070mm/a。
4.一种煤矿采运用耐酸性腐蚀耐磨钢的制备方法,所述制备方法包括以下步骤:
1)合金选择:按照权利要求1~3任一项所述耐酸性腐蚀耐磨钢化学成分的质量百分比选择合金;
2)转炉冶炼和精炼:
采用低硫铁水转炉冶炼,按照合金成分中限控制加入硅铁、中碳铬铁进行合金化,转炉冶炼全程吹氩,终渣碱度控制在3.0~3.5范围内,转炉冶炼确保一次拉碳,渣料在终点前3min内加完;LF精炼时间不低于40min,全程底吹氩搅拌,采用碳化钙、铝渣或铝粒脱氧,通过喂线调整并达到B、Ti、Al成分要求;
3)连铸和轧制:
经冶炼后,采用连铸机在1.1-1.4m/min拉速拉坯,结晶器保护渣采用包晶钢保护渣,铸坯末端采用轻压下,铸坯下线缓冷48h以上,并检查清理表面,所述铸坯厚度为200~300mm;
将铸坯在1170-1250℃加热保温,采用大压下技术进行轧制,轧后离线淬火并低温回火;在粗轧前通过上下集管除鳞;
4)淬火和低温回火热处理:
将轧制得到的钢坯进行轧后在线/离线淬火和低温回火处理。
5.根据权利要求4所述的制备方法,其特征在于,所述轧制过程中,大压下技术为:在1170-1250℃开轧,总压下率为80~90%,应变速率为0.2~2.0s-1,中间坯/成品厚度在3.5~4.0之间;粗轧过程中,粗轧压下率为65%~75%,粗轧变形率≥65%;精轧开轧温度在960~1000℃,精轧终轧温度840~870℃,精轧压下率为60~70%,精轧总变形率≥60%。
6.根据权利要求4或5所述的制备方法,其特征在于,轧制过程中,板坯通过两段加热及均热,其中均热时间≥40min,加热一段温度区间在1050~1180℃,加热二段1180~1280℃,均热段1170~1250℃。
7.根据权利要求4或5所述的制备方法,其特征在于,所述轧后在线/离线淬火,淬火步骤是指将轧制得到的钢加热至900~920℃,保温10~15min进行奥氏体化,然后水冷至室温。
8.根据权利要求4或5所述的制备方法,其特征在于,所述低温回火处理是将淬火后得到的钢加热至200~220℃,保温10~15min,然后空冷至室温。
9.根据权利要求4~6任一项所述的制备方法,其特征在于,所述耐酸性腐蚀耐磨钢为板材,厚度为8~40mm。
10.根据权利要求4~6任一项所述的制备方法,其特征在于,所述耐酸性腐蚀耐磨钢以回火马氏体相为主相,含量≥90%;且原奥氏体晶粒度在8级以上,表面硬度以布氏硬度HBW10/3000记为370以上。
CN202310336828.3A 2023-03-31 2023-03-31 一种煤矿采运用耐酸性腐蚀耐磨钢及其制备方法 Pending CN116574968A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310336828.3A CN116574968A (zh) 2023-03-31 2023-03-31 一种煤矿采运用耐酸性腐蚀耐磨钢及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310336828.3A CN116574968A (zh) 2023-03-31 2023-03-31 一种煤矿采运用耐酸性腐蚀耐磨钢及其制备方法

Publications (1)

Publication Number Publication Date
CN116574968A true CN116574968A (zh) 2023-08-11

Family

ID=87538467

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310336828.3A Pending CN116574968A (zh) 2023-03-31 2023-03-31 一种煤矿采运用耐酸性腐蚀耐磨钢及其制备方法

Country Status (1)

Country Link
CN (1) CN116574968A (zh)

Similar Documents

Publication Publication Date Title
CN107653423B (zh) 用于铁路运煤车辆的耐煤水磨损腐蚀钢板及其制造方法
CN108998615B (zh) 一种600MPa级具有优良耐磨性的海洋工程结构钢及生产方法
CN109023119B (zh) 一种具有优异塑韧性的耐磨钢及其制造方法
JP4650013B2 (ja) 低温靱性に優れた耐摩耗鋼板およびその製造方法
CN104451403B (zh) 低温用hb450级复相组织耐磨钢及其生产方法
CN103146997A (zh) 一种低合金高韧性耐磨钢板及其制造方法
CA2899570A1 (en) Thick, tough, high tensile strength steel plate and production method therefor
CN111455269A (zh) 屈服强度960MPa级甚高强度海工钢板及其制造方法
CN112251672B (zh) 焊接性能优良的低屈强比eh690钢板及其制造方法
CN111378900B (zh) 一种耐磨耐腐蚀链板用钢及其制造方法
CN114729435A (zh) 低温冲击韧性优异的高硬度耐磨钢及其制造方法
CN107937806B (zh) 服役于弱酸性环境下的高强耐磨蚀钢板及其制造方法
CN114686762B (zh) 布氏硬度500hbw高强度、高韧性热连轧薄钢板的生产方法
CN104328354A (zh) 多特性特厚高强钢板及其生产方法
CN101497965B (zh) 一种装载机和挖掘机铲刀刃用钢及其生产方法
CN114934156A (zh) 布氏硬度450hbw高强度、高韧性热连轧薄钢板的生产方法
CN112877591A (zh) 一种高强韧五金工具及链条用钢及其制造方法
CN112159934A (zh) 一种抗腐蚀磨损耐磨钢板及其制备方法
CN108950422B (zh) 硬度550hb浆体疏浚管用耐磨蚀钢板及其生产方法
CN108930001B (zh) 一种浆体疏浚用高硬度耐磨蚀钢板及其生产方法
CN113564470B (zh) 1700MPa耐热农机用钢及其制造方法
CN106957993B (zh) 一种抗氯离子腐蚀抽油杆钢及其制造方法
CN110724874A (zh) 具有抗腐蚀磨损性能的高锰奥氏体钢及热轧板制备方法
CN114134387A (zh) 一种抗拉强度1300MPa级厚规格超高强钢板及其制造方法
CN116574968A (zh) 一种煤矿采运用耐酸性腐蚀耐磨钢及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination