CN1165562A - 自动地震图形识别方法 - Google Patents

自动地震图形识别方法 Download PDF

Info

Publication number
CN1165562A
CN1165562A CN96191086A CN96191086A CN1165562A CN 1165562 A CN1165562 A CN 1165562A CN 96191086 A CN96191086 A CN 96191086A CN 96191086 A CN96191086 A CN 96191086A CN 1165562 A CN1165562 A CN 1165562A
Authority
CN
China
Prior art keywords
seismic
neural network
cell
road
stratum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN96191086A
Other languages
English (en)
Other versions
CN1110710C (zh
Inventor
那门·克斯克斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Societe Nationale Elf Aquitaine Production SA
Original Assignee
Societe Nationale Elf Aquitaine Production SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Societe Nationale Elf Aquitaine Production SA filed Critical Societe Nationale Elf Aquitaine Production SA
Publication of CN1165562A publication Critical patent/CN1165562A/zh
Application granted granted Critical
Publication of CN1110710C publication Critical patent/CN1110710C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. for interpretation or for event detection
    • G01V1/30Analysis
    • G01V1/301Analysis for determining seismic cross-sections or geostructures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S706/00Data processing: artificial intelligence
    • Y10S706/902Application using ai with detail of the ai system
    • Y10S706/928Earth science
    • Y10S706/929Geological, e.g. seismology

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Image Processing (AREA)

Abstract

一种自动地震图形(seismic pattern)识别方法,其特征在于包括下列步骤:确定给定数量的要被识别的地震图形;提供一组所述区域的地震部分;规定对所有的道部分公用的图形识别参数,并对所述组的每个道部分确定所述参数的值;在所述组中选择道部分;选择含有和要被识别的图形数量一样多的细胞的一维神经网络,每个细胞被分配给一个识别参数值;利用选择的道部分使神经网络实现学习过程,使得在所述过程结束时,每个细胞和要被识别的一个图形(pattern)对应,并对所述图形逐次地排序;把要被处理的所述组的每个道部分提供给分类的和排序的神经网络;并对提供给网络的每个道部分赋以和其最接近的细胞号数。本发明尤其适用于识别通过取一地震剖面而确定的两个地层间的地震图形。

Description

自动地震图形识别方法
本发明涉及一种在地质区的两个地层之间或一个地层范围内的地震相(seismic facies)的自动识别方法,尤其涉及在和所述地质区有关的地震剖面上确定的两个地层之间的或一个地层范围内的地震相的自动识别方法。
现在,几乎所有的关于地震相的地质和地球物质勘探解释都在解释站进行,并且属于地震地层学的专门领域。
在地震地层学中,一般在图(图形)上识别并表示被调查地质区的给定部分中的地震相的变化,所述的部分处在或不处在两个被标志的地层之间。
地震相单位(seismic facies unit)是一组地震反射(seismicreflection),一个相单位和另一个相单位之间,即使在两个相邻的或连续的相单位之间,地震相单位的结构(configuration)、外部形状与内部参数互不相同。
通常通过分析三类参数定义地震相单位:
·反射的结构(平行的,发散的,S形的等),
·外部形状(上凸形,下凹形,有皱纹的等),
·反射的内部参数(幅值,频率等)。
在给定的地质区中地震相的识别是非常重要的,这是因为尤其对沉积层的类型和预测岩石学它能够提供有用的信息。
为了成功地识别给定的地质区的地震相,必须首先通过单独地分析至少上述定义中的三个参数,并且然后通过对所述的研究进行综合,从而收集关于在所述地质区中存在的地震相的大量数据或信息。
进行这种处理以及所用的装置,尤其是数据处理装置的花费是非常大的,并且和获得的结果根本不成比例。
实际上,如果想要识别的地震相属于地层夹断(stratigraphicpinchout)与/或混浊通道(turbiditic channel)时,当异常现象(anomaly)出现在通常的地震剖面上时,要在它们之间进行识别是非常困难的,即使这些异常现象通过在有关地区内的钻井地震调查被识别,这显然是以利用所述区域中的井为条件的,但所述异常现象并不见得如所识别的那样。
在EP-0561492中描述了一种利用神经网络改善测井的方法。所描述的具体神经网络是一种分层的网络。然而,从统计的观点看来,分层网络是一种类(class)之间的边界的通用近似器(approximator),尤其是监督网络,即,在这种神经网络的输出获得的值和由其它方法确定的已知的值进行比较,直到得到这些值之间的一致或准一致为止。
由于Kohonen使拓扑图(topological)被应用于其它领域中,尤其在医学领域中用于确定敏感的模型,以便通过再现脑的基本结构来模拟脑的大量功能,地球物理学家已试图将其应用于地球物理领域中。
一种具体的应用在US-5373486中描述了,其中涉及使用Kohonen对抗(antagonistic)网络对地震事件分类,在US 5355313中描述了空中探测地磁数据的解释,在US-5181171中描述了适用于在地震道(seismictrace)上检测初至时间(first arriral)的相互作用的神经网络。
本发明的目的在于提供一种通过无监督的神经网络自动地识别和一个地质区域有关的地震剖面中的地震相的方法。
本发明涉及用于识别一个地质区域的两个地层之间或一个地层范围内的地震相的方法,包括下列步骤:
·确定要被识别的给定数量的地震相,
·取和所述区域有关的一组地震道部分(seismic trace portion),
·确定对所有道部分(trace portion)通用的相识别参数,并对所述组的每个道部分确定所述参数的值,
·从所述组选择道部分,
·选择含有和要被识别的相数一样多的细胞的一维神经网络,每个细胞被分配一个识别参数值,
·通过所选的道部分实现神经网络的学习,使得当学习过程完成时,每个细胞相应于要被识别的一个相,并被逐次地排序,
·向分类和排序的神经网络提供要被处理的所述组的每个道部分,以及
·对提供给网络的每个道部分分配最接近的细胞号数。
本发明的一个优点在于,例如,现在能够识别相应于地层夹断或可能被解释为故障的地貌的地震相的变化。
按照另一个特点,本发明的神经网络是无监督型的,并由一维Kohonen拓扑图构成。
按照再一个特点,道部分包括相同的取样数量,并且识别参数按包括在在一个地震剖面上确定的两个地层之间或所述地层范围内的取样序列确定。
按照再一个特点,使用道部分确定对所有道部分通用的总体识别参数。
按照再一个特点,每个相被分配一个颜色代码,在给定的颜色范围内,利用所述范围的任何两个连续的颜色之间的深浅缓慢变化,不同的颜色被逐次地排序。
按照再一个特点,识别的地震相在图上用其相应的颜色表示。
本发明的另一个优点在于,按照关于被调查的地质区域的一般知识和用其它方法获得的知识,可以使用和地震道有关的特征,这些特征或者是从道元素(trace element)的顶部和底部之间的取样序列得到的,例如在所述区域的两个地层之间或一个地层范围内的情况下,或者从表示有关的地质区域的取样的分布的总体统计的参数中得到,所述这些总体参数是,例如,幅值,频率,层速度等。
本发明的上述以及其它优点与特点,结合附图阅读本发明的说明之后将更加清楚,其中:
图1是一个地震剖面,上面确定了关于被标志的地层的一个混浊通道,
图2示意地表示按照本发明获得的最后的拓扑图,
图3示意地表示和相应于一组被处理的地震道部分的地质区域有关的地震相图。
本发明的方法使用一种无监督的一维神经网络,它包括和在给定的地质区域内两个地层之间或一个地层范围内的要被识别的地震相的数量一样多的细胞,所述地层通过取一地震剖面确定,所述地震剖面含有大量的地震道,其数量范围至少为几百个道,例如图1中的地层H。在所述道上,限定一组地震道部分,它们以所述的两个地层或围绕所述的地层为界限,这些地震道部分按下述方式用于制备拓扑图。
在另一步中,确定地震相识别参数,所述参数对全部道部分是通用的。在图2的情况下,该参数由信号的形状确定。在所示的例子中,有编号为0至14的15个信号形状,每个和一个地震相相对应。显然,两个信号形状可能彼此相同:这说明相应的地震相在性质上和/或连续性上是相似的。确定识别参数的值,在信号形状的例子中,所述的值由相关的道部分上的取样序列构成。每个道部分被以相同方式取样,即,它包括相同数量的取样,但在同一序列或不同序列中一个采样和另一个采样的大小可以不同。
从一组要被处理的道部分中选择一些道部分,例如每4个道部分中选择一个,或通过随机或伪随机选择方法进行选择。
在下一步,通过选择的道部分实现神经网络的学习,使得当学习过程完成时,每个组相应于要被识别的一个相。这在图2中示出了,其中编号为0到14的15个细胞相应于给定的要被识别的15个相,每个相由和要被识别的15个相相应的15个类中的一个类所示的信号的形关确定。为实现在其中进行分类(classing)并对分类进行排序(ordering)的双重目的,进行下述的学习过程。
设E是选择的要被分类的道的集合,M拓扑图中的细胞的集合。
在第一学习阶段,以随机方式对拓扑图的细胞的加权值(weight)进行初始化。
在第二学习阶段,对拓扑图进行检索,以便找出对于集合E的每个道部分Ei为最接近的细胞Mi,并然后更新属于Mi邻近的Mj细胞的加权值。
这一阶段用下式表示:
Mj=Mj(t-1)+f[ε(t),d,σ(t)]*[Ei(t)-Mj(t-1)]其中:
[ε(t),d,σ(t)]=ε(t)*exp [(-d22(t)]d是细胞Mi和Mj之间的距离,S(t)是邻近参数,e(t)是增益系数。
按照本发明的另一个特点,e(t)小于1,在第一次迭代时最好等于0.7,在道部分的表示或迭代的每个循环之后,e(t)和s(t)减少。当达到所要求的收敛时,则认为迭代完成,即这时所选的道部分的新的表示不再修正或只稍微修正细胞的排序。
当学习过程完成时,要被处理的所有道部分都出现在拓扑图上,以便对它们进行分类,并相对于在所述拓扑图中规定的类对它的排序。
提供给拓扑图的每个道部分被分配给和其相应的细胞号数,即所述号数的细胞的信号的形状最接近于被提供的所述道的信号的形状。
在本发明的最佳实施例中,在对所有道部分进行所述表示之前,拓扑图的每个类或每个细胞被分配一个给定的颜色代替所述的号数。在图2中的拓扑图上的编号从0到14的15个细胞可以相应于15种不同颜色,其范围例如逐渐地从棕(0类)到紫(14类),任何给定颜色的不同的色调表示相应的类是互相接近的。图2的右边还表示要被分类的道部分C。如果它被提供给拓扑图,则它在细胞7中被分类,或者如果需要,在细胞6中分类,它基本上相应于和由细胞7确定的相相似的相。
图3示意地表示一个地理区域或调查的层的地震相的图,每个地震相相应于最后的拓扑图的类0到14中的一个。可以看到,不同的类呈鳞状并/或被包括在其它的类中。编号100到114分别相应于图2中的拓扑图的类0到类14。

Claims (7)

1.一种用于给定地质区域的两个地层之间或一个地层范围内的地震相的自动识别方法,其特征在于包括下列步骤:
确定要被识别的给定数量的地震相,
取一组和所述区域有关的地震道部分,
确定对所有的道部分公用的相识别参数,并对所述组的每个道部分确定所述参数的值,
从所述组中选择道部分,
选择含有和要被识别的相数一样多的细胞的一维神经网络,每个细胞被分配给识别参数的一个值,
通过选择的道部分实现神经网络的学习,使得当学习过程完成时,每个细胞相应于要被识别的一个相,并使得所述的相被逐次排序,
把要被处理的所述组的每个道部分提供给分类的和排序的神经网络,以及
对提供给网络的每个道部分分配一个最接近的细胞号数。
2.如权利要求1所述的方法,其特征在于,所述神经网络是无监督网络。
3.如权利要求2所述的方法,其特征在于,所述无监督神经网络是一维的Kohonen拓扑图。
4.如权利权利1所述的方法,其特征在于,所述道部分包括相同的取样数,并且所述识别参数通过在两个地层之间的或在所述地层范围内包括的一系列取样确定。
5.如权利要求1所述的方法,其特征在于,确定对所有的道部分公用的总体识别参数。
6.如权利要求1所述的方法,其特征在于,每个细胞相应于一个被分配给一种颜色编码的类,在给定的颜色范围内,利用在所述范围的任何两个连续的颜色之间的深浅的缓慢变化,对不同颜色进行逐次地排序。
7.如权利要求1和6中任何一个所述的方法,其特征在于对识别的地震相在图上用它们相应的颜色表示。
CN96191086A 1995-09-19 1996-09-11 自动地震图形识别方法 Expired - Lifetime CN1110710C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9510962A FR2738920B1 (fr) 1995-09-19 1995-09-19 Methode de reconnaissance automatique de facies sismiques
FR95/10962 1995-09-19

Publications (2)

Publication Number Publication Date
CN1165562A true CN1165562A (zh) 1997-11-19
CN1110710C CN1110710C (zh) 2003-06-04

Family

ID=9482695

Family Applications (1)

Application Number Title Priority Date Filing Date
CN96191086A Expired - Lifetime CN1110710C (zh) 1995-09-19 1996-09-11 自动地震图形识别方法

Country Status (11)

Country Link
US (1) US5940777A (zh)
EP (1) EP0808467B1 (zh)
CN (1) CN1110710C (zh)
AU (1) AU6991796A (zh)
CA (1) CA2205457C (zh)
FR (1) FR2738920B1 (zh)
NO (1) NO316984B1 (zh)
OA (1) OA10484A (zh)
RU (1) RU2155971C2 (zh)
WO (1) WO1997011392A1 (zh)
ZA (1) ZA967823B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101663667B (zh) * 2007-02-08 2012-07-18 雪佛龙美国公司 利用综合地层柱状图生成储层模型的方法
CN106707340A (zh) * 2016-12-13 2017-05-24 中国石油天然气股份有限公司大港油田分公司 一种火山岩岩相的预测方法

Families Citing this family (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6226601B1 (en) * 1998-05-15 2001-05-01 Trimble Navigation Limited Seismic survey system
GB9819910D0 (en) * 1998-09-11 1998-11-04 Norske Stats Oljeselskap Method of seismic signal processing
US6574565B1 (en) 1998-09-15 2003-06-03 Ronald R. Bush System and method for enhanced hydrocarbon recovery
DE19943325C2 (de) * 1999-09-10 2001-12-13 Trappe Henning Verfahren zur Bearbeitung seismischer Meßdaten mit einem neuronalen Netzwerk
US6374185B1 (en) 2000-02-18 2002-04-16 Rdsp I, L.P. Method for generating an estimate of lithological characteristics of a region of the earth's subsurface
US6591393B1 (en) 2000-02-18 2003-07-08 Hewlett-Packard Development Company, L.P. Masking error detection/correction latency in multilevel cache transfers
FR2813959B1 (fr) * 2000-09-11 2002-12-13 Inst Francais Du Petrole Methode pour faciliter la reconnaissance d'objets, notamment geologiques, par une technique d'analyse discriminante
US6438493B1 (en) * 2000-09-29 2002-08-20 Exxonmobil Upstream Research Co. Method for seismic facies interpretation using textural analysis and neural networks
US6560540B2 (en) 2000-09-29 2003-05-06 Exxonmobil Upstream Research Company Method for mapping seismic attributes using neural networks
US20030004817A1 (en) * 2001-06-27 2003-01-02 Conoco Inc Visual database for linking geography to seismic data
US6662112B2 (en) 2001-08-31 2003-12-09 Exxonmobil Upstream Research Company Method for classifying AVO data using an interpreter-trained neural network
US7991717B1 (en) 2001-09-10 2011-08-02 Bush Ronald R Optimal cessation of training and assessment of accuracy in a given class of neural networks
US6957146B1 (en) * 2001-12-24 2005-10-18 Rdsp I, L.P. System for utilizing seismic data to estimate subsurface lithology
GB2385923B (en) * 2002-05-24 2004-07-28 Statoil Asa System and method for electromagnetic wavefield resolution
US8374974B2 (en) * 2003-01-06 2013-02-12 Halliburton Energy Services, Inc. Neural network training data selection using memory reduced cluster analysis for field model development
GB2399640B (en) 2003-03-17 2007-02-21 Statoil Asa Method and apparatus for determining the nature of submarine reservoirs
US7814036B2 (en) * 2003-06-19 2010-10-12 Haliburton Energy Services, Inc. Processing well logging data with neural network
GB2409900B (en) 2004-01-09 2006-05-24 Statoil Asa Processing seismic data representing a physical system
US20050171700A1 (en) * 2004-01-30 2005-08-04 Chroma Energy, Inc. Device and system for calculating 3D seismic classification features and process for geoprospecting material seams
US7587373B2 (en) * 2005-06-24 2009-09-08 Halliburton Energy Services, Inc. Neural network based well log synthesis with reduced usage of radioisotopic sources
US7613665B2 (en) * 2005-06-24 2009-11-03 Halliburton Energy Services, Inc. Ensembles of neural networks with different input sets
GB2429278B (en) * 2005-08-15 2010-08-11 Statoil Asa Seismic exploration
GB2434868B (en) 2006-02-06 2010-05-12 Statoil Asa Method of conducting a seismic survey
GB2435693A (en) 2006-02-09 2007-09-05 Electromagnetic Geoservices As Seabed electromagnetic surveying
GB2439378B (en) 2006-06-09 2011-03-16 Electromagnetic Geoservices As Instrument for measuring electromagnetic signals
GB2442749B (en) 2006-10-12 2010-05-19 Electromagnetic Geoservices As Positioning system
GB2443843B (en) * 2006-11-14 2011-05-25 Statoil Asa Seafloor-following streamer
GB2445582A (en) 2007-01-09 2008-07-16 Statoil Asa Method for analysing data from an electromagnetic survey
WO2008112921A1 (en) * 2007-03-14 2008-09-18 Halliburton Energy Services, Inc. Neural-network based surrogate model construction methods and applications thereof
US8538702B2 (en) * 2007-07-16 2013-09-17 Exxonmobil Upstream Research Company Geologic features from curvelet based seismic attributes
FR2923312B1 (fr) 2007-11-06 2009-12-18 Total Sa Procede de traitement d'images sismiques du sous-sol
GB0722469D0 (en) 2007-11-16 2007-12-27 Statoil Asa Forming a geological model
GB0724847D0 (en) 2007-12-20 2008-01-30 Statoilhydro Method of and apparatus for exploring a region below a surface of the earth
GB0803701D0 (en) * 2008-02-28 2008-04-09 Statoilhydro Asa Improved interferometric methods and apparatus for seismic exploration
US8213261B2 (en) * 2008-05-22 2012-07-03 Exxonmobil Upstream Research Company Method for geophysical and geological interpretation of seismic volumes in the domains of depth, time, and age
NZ588826A (en) * 2008-05-22 2012-10-26 Exxonmobil Upstream Res Co Transforming seismic survey data to assess an area for hydrocarbon production potential
US9514388B2 (en) * 2008-08-12 2016-12-06 Halliburton Energy Services, Inc. Systems and methods employing cooperative optimization-based dimensionality reduction
MX2010006102A (es) * 2008-08-26 2010-07-02 Halliburton Energy Serv Inc Metodo y sistema de procesamiento de curvas de decrecimiento de velocidad de conteo gamma usando redes neuronales.
US8898045B2 (en) 2009-04-21 2014-11-25 Halliburton Energy Services, Inc. System and method of predicting gas saturation of a formation using neural networks
WO2011005353A1 (en) 2009-07-06 2011-01-13 Exxonmobil Upstream Research Company Method for seismic interpretation using seismic texture attributes
WO2011056347A1 (en) 2009-11-05 2011-05-12 Exxonmobil Upstream Research Company Method for creating a hierarchically layered earth model
GB2479200A (en) 2010-04-01 2011-10-05 Statoil Asa Interpolating pressure and/or vertical particle velocity data from multi-component marine seismic data including horizontal derivatives
US8380435B2 (en) 2010-05-06 2013-02-19 Exxonmobil Upstream Research Company Windowed statistical analysis for anomaly detection in geophysical datasets
US8757270B2 (en) 2010-05-28 2014-06-24 Statoil Petroleum As Subsea hydrocarbon production system
RU2573166C2 (ru) 2010-05-28 2016-01-20 Эксонмобил Апстрим Рисерч Компани Способ сейсмического анализа углеводородных систем
US8983141B2 (en) 2011-03-17 2015-03-17 Exxonmobile Upstream Research Company Geophysical data texture segmentation using double-windowed clustering analysis
US9176247B2 (en) 2011-10-06 2015-11-03 Exxonmobil Upstream Research Company Tensor-based method for representation, analysis, and reconstruction of seismic data
US9798027B2 (en) 2011-11-29 2017-10-24 Exxonmobil Upstream Research Company Method for quantitative definition of direct hydrocarbon indicators
EP2815255B1 (en) 2012-02-13 2017-03-01 Exxonmobil Upstream Research Company System and method for detection and classification of seismic terminations
US9014982B2 (en) 2012-05-23 2015-04-21 Exxonmobil Upstream Research Company Method for analysis of relevance and interdependencies in geoscience data
US9261615B2 (en) 2012-06-15 2016-02-16 Exxonmobil Upstream Research Company Seismic anomaly detection using double-windowed statistical analysis
AU2013338553B2 (en) 2012-11-02 2017-03-02 Exxonmobil Upstream Research Company Analyzing seismic data
WO2014099200A1 (en) 2012-12-20 2014-06-26 Exxonmobil Upstream Research Company Vector based geophysical modeling of subsurface volumes
US9348047B2 (en) 2012-12-20 2016-05-24 General Electric Company Modeling of parallel seismic textures
US9529115B2 (en) 2012-12-20 2016-12-27 Exxonmobil Upstream Research Company Geophysical modeling of subsurface volumes based on horizon extraction
US10073190B2 (en) 2012-12-20 2018-09-11 Exxonmobil Upstream Research Company Method and system for geophysical modeling of subsurface volumes based on computed vectors
US9915742B2 (en) 2012-12-20 2018-03-13 Exxonmobil Upstream Research Company Method and system for geophysical modeling of subsurface volumes based on label propagation
US9297918B2 (en) 2012-12-28 2016-03-29 General Electric Company Seismic data analysis
US9733391B2 (en) 2013-03-15 2017-08-15 Exxonmobil Upstream Research Company Method and system for geophysical modeling of subsurface volumes
US9952340B2 (en) 2013-03-15 2018-04-24 General Electric Company Context based geo-seismic object identification
WO2014150580A1 (en) 2013-03-15 2014-09-25 Exxonmobil Upstream Research Company Method for geophysical modeling of subsurface volumes
US9824135B2 (en) 2013-06-06 2017-11-21 Exxonmobil Upstream Research Company Method for decomposing complex objects into simpler components
RU2016106376A (ru) * 2013-10-08 2017-08-30 Лэндмарк Графикс Корпорейшн Автоматизированный автоматический пикинг горизонтов на множестве массивов
RU2571470C2 (ru) * 2013-10-24 2015-12-20 Общество с ограниченной ответственностью "ТатАСУ" Способ нейросетевого анализа данных телеметрии по фонду скважин
US9804282B2 (en) 2014-02-17 2017-10-31 General Electric Company Computer-assisted fault interpretation of seismic data
US10082588B2 (en) 2015-01-22 2018-09-25 Exxonmobil Upstream Research Company Adaptive structure-oriented operator
US10139507B2 (en) 2015-04-24 2018-11-27 Exxonmobil Upstream Research Company Seismic stratigraphic surface classification
CN106338763B (zh) * 2016-08-23 2019-02-15 中国石油天然气股份有限公司 一种确定地震剖面显示数据的方法及装置
CN106646606B (zh) * 2016-12-14 2018-08-10 中国石油大学(华东) 基于地震特征参数模式识别的薄砂体表征方法
WO2019040288A1 (en) 2017-08-25 2019-02-28 Exxonmobil Upstream Researchcompany AUTOMATED SEISMIC INTERPRETATION USING NEURALLY CONVOLVED NETWORKS
CN109086773B (zh) * 2018-08-29 2022-03-04 电子科技大学 基于全卷积神经网络的断层面识别方法
CA3122686C (en) 2018-12-11 2023-10-24 Exxonmobil Upstream Research Company Automated reservoir modeling using deep generative networks
US11397272B2 (en) 2018-12-11 2022-07-26 Exxonmobil Upstream Research Company Data augmentation for seismic interpretation systems and methods
BR112021011253A2 (pt) 2018-12-11 2021-08-24 Exxonmobil Upstream Research Company Treinamento de sistemas de aprendizado de máquina para interpretação sísmica
CA3122685C (en) 2018-12-11 2024-01-09 Exxonmobil Upstream Research Company Automated seismic interpretation systems and methods for continual learning and inference of geological features
US11693139B2 (en) 2018-12-11 2023-07-04 ExxonMobil Technology and Engineering Company Automated seismic interpretation-guided inversion
CN111650643B (zh) * 2020-07-03 2021-03-12 中国矿业大学(北京) 地震断层机器学习模型训练集提取方法和***

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5181171A (en) * 1990-09-20 1993-01-19 Atlantic Richfield Company Adaptive network for automated first break picking of seismic refraction events and method of operating the same
US5355313A (en) * 1991-10-25 1994-10-11 Texaco Inc. Neural network interpretation of aeromagnetic data
US5373486A (en) * 1993-02-03 1994-12-13 The United States Department Of Energy Seismic event classification system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101663667B (zh) * 2007-02-08 2012-07-18 雪佛龙美国公司 利用综合地层柱状图生成储层模型的方法
CN106707340A (zh) * 2016-12-13 2017-05-24 中国石油天然气股份有限公司大港油田分公司 一种火山岩岩相的预测方法

Also Published As

Publication number Publication date
FR2738920B1 (fr) 1997-11-14
AU6991796A (en) 1997-04-09
CN1110710C (zh) 2003-06-04
ZA967823B (en) 1997-04-07
EP0808467A1 (fr) 1997-11-26
CA2205457A1 (en) 1997-03-27
NO972234D0 (no) 1997-05-15
NO972234L (no) 1997-05-15
OA10484A (en) 2002-04-12
FR2738920A1 (fr) 1997-03-21
EP0808467B1 (fr) 2000-12-20
RU2155971C2 (ru) 2000-09-10
US5940777A (en) 1999-08-17
NO316984B1 (no) 2004-07-19
WO1997011392A1 (fr) 1997-03-27
CA2205457C (en) 2003-11-18

Similar Documents

Publication Publication Date Title
CN1110710C (zh) 自动地震图形识别方法
CN111551992B (zh) 岩石储层构造表征方法、装置、计算机可读存储介质及电子设备
Wang et al. Use of the hough transform in automated lineament
US6018498A (en) Automated seismic fault detection and picking
Saggaf et al. Seismic facies classification and identification by competitive neural networks
GB2444506A (en) Assigning geological ages to horizon surfaces
US6463387B1 (en) 3-D seismic event tracking
AU2009241409A1 (en) System and method for interpretation of well data
Mężyk et al. Structure of a diffuse suture between Fennoscandia and Sarmatia in SE Poland based on interpretation of regional reflection seismic profiles supported by unsupervised clustering
Mollajan et al. Fuzzy classifier fusion: an application to reservoir facies identification
US20020123844A1 (en) Method and system for locating mineral deposits
Guo et al. Feature recognition from potential fields using neural networks
CN110389381A (zh) 一种基于地震属性的砂体储层预测方法及装置
Keskes et al. Image analysis techniques for seismic data
CN117607956B (zh) 一种地震相识别方法、装置、电子设备及可读存储介质
Nunes et al. Describing the Porosity of Pre-Salt Carbonate Rocks Using Machine Learning
Azar Pour Application of Artificial Neural Networks to geological classification: porphyry prospectivity in British Columbia and oil reservoir properties in Iran
Markewich et al. One perspective on spatial variability in geologic mapping
Ananthkumar Using Machine Learning to Predict Lithostratigraphic Facies
Cassel Machine Learning and the Construction of a Seismic Attribute-seismic Facies Analysis Data Base
Abdelkarim et al. Using ANN Prediction in Carbonate Reservoir Properties: Implication for Large-Scale Reservoir Correlation
Hood Trilobite and lithofacies relationships in the Holm Land Dal Formation (late Middle Cambrian), central North Greenland
CN117665920A (zh) 河道砂体结构属性边界识别方法
Singh et al. Facies classification based on seismic waveform–a case study from Mumbai High North
Shahbazi et al. Presenting an integrated strategy for porosity mapping in a genetic-based seismic inversion framework in a heterogeneous reservoir

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term

Granted publication date: 20030604

EXPY Termination of patent right or utility model