CN116536557A - 一种抗高温二氧化碳腐蚀的合金及其制备方法和应用 - Google Patents

一种抗高温二氧化碳腐蚀的合金及其制备方法和应用 Download PDF

Info

Publication number
CN116536557A
CN116536557A CN202310492194.0A CN202310492194A CN116536557A CN 116536557 A CN116536557 A CN 116536557A CN 202310492194 A CN202310492194 A CN 202310492194A CN 116536557 A CN116536557 A CN 116536557A
Authority
CN
China
Prior art keywords
equal
alloy
less
carbon dioxide
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310492194.0A
Other languages
English (en)
Inventor
周永莉
李沛
鲁金涛
李力敏
党莹樱
杨珍
黄锦阳
刘鹏
张鹏
袁勇
严靖博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Thermal Power Research Institute Co Ltd
Huaneng Power International Inc
Original Assignee
Xian Thermal Power Research Institute Co Ltd
Huaneng Power International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Thermal Power Research Institute Co Ltd, Huaneng Power International Inc filed Critical Xian Thermal Power Research Institute Co Ltd
Priority to CN202310492194.0A priority Critical patent/CN116536557A/zh
Publication of CN116536557A publication Critical patent/CN116536557A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/007Heat treatment of ferrous alloys containing Co
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/002Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/16Oxidising using oxygen-containing compounds, e.g. water, carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/16Oxidising using oxygen-containing compounds, e.g. water, carbon dioxide
    • C23C8/18Oxidising of ferrous surfaces

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

本发明公开了一种抗高温二氧化碳腐蚀的合金及其制备方法和应用,其中,一种抗高温二氧化碳腐蚀的合金,按质量分数计,原料中包括以下化学成分:0.02≤C≤0.1%、35%≤Fe≤52%、Mn≤1.0%、12%≤Cr≤16%、0.5≤Mo+W≤2.5%、0.1%≤Si≤0.5%、1.0%≤Al≤2.5%、1.5%≤Ti≤2.5%、Co≤1%、RE≤0.1%,余量为Ni;当12%≤Cr≤14%时,2.0%≤Al≤2.5%,0.3%≤Si≤0.5%;当14%<Cr≤16%时,Mo+W≤1.2%。本发明具有低成本、高强、抗高温二氧化碳腐蚀的效果。

Description

一种抗高温二氧化碳腐蚀的合金及其制备方法和应用
技术领域
本发明涉及高铁镍基合金领域,具体涉及一种抗高温二氧化碳腐蚀的合金及其制备方法和应用。
背景技术
由于对电力的需求将愈来愈大,同时对环保和控制污染排放的要求也愈来愈高;因此,发展高效、节能、环保的高参数超超临界火力发电机组势在必行。其中,采用布雷顿循环***进行发电,其发电效率显著优于传统的蒸汽朗肯循环发电***,同时,其设备尺寸规模相对于传统发电***减小,初投资降低。另外,二氧化碳临界温度和压力远低于水的临界点,容易达到超临界状态,且超临界二氧化碳是一种兼具气体特性的稠密流体,具有密度大、粘性小、流动性强、传热效率高,因此,目前火电、核电、太阳能、余热发电、地热发电等领域均推荐采用S-CO2布雷顿循环***,有望突破传统的蒸汽轮机发电和燃气轮机发电的技术瓶颈。
过/再热器部件是超超临界机组锅炉中负责回收燃煤烟气能量、加热CO2、实现能量转化的关键部件,是锅炉中承受压力最大、温度最高、服役环境罪苛刻的部分。采用超临界CO2进行发电时,当温度在500-800度时,CO2分解形成的氧分压与同压力蒸汽分解形成的氧分压接近,均高于大部分金属氧化物的平衡氧分压,Fe、Cr、Mn、Al、Si、Ti、Ni等金属都可以氧化。而火力发电厂机组的高参数、高效率化发展,使得锅炉管服役工况更加复杂、苛刻,其使用材料在更高要求下的使用性能也需要进一步改进。
S-CO2循环***的关键热端部件主要分为:过热器、再热器、管道、集箱以及S-CO2透平转子等。针对火力发电和聚光型太阳能发电用材,目前给出的选材原则是将650℃级火电站用铁素体耐热钢、奥氏体耐热钢性能用足,在高温段使用700℃级火电站用新型镍基、镍铁基高温合金,如Ni基合金Haynes230、Inconel740H等,合金中Cr含量高达25wt.%,以合金中的Cr含量来保证合金在高温环境中有效形成保护性Cr2O3氧化膜,进而具有良好抗氧化腐蚀性能。这些合金抗蚀性强,但难以加工、焊接性能差、成本高。如果降低合金中Cr含量提高其加工、焊接性能,其抗氧化腐蚀性能也会相应降低,尤其是当Cr含量低于18%时,合金表面很难形成保护性Cr2O3氧化膜,往往形成保护性较差的外层氧化铁+内层Fe-Cr尖晶石,极大影响抗腐蚀性能。
除此之外,一些元素在提高合金强度及力学性能上有利,但是对合金的抗腐蚀性不利,容易导致氧化膜剥落的情况,尤其是在温度高达600℃以上的高温CO2环境下,现有技术中公开的低Cr含量的合金并不能达到良好的抗高温二氧化碳性能。尤其是在高温CO2环境下,难以阻止合金渗碳,显著影响合金的力学性能。
发明内容
因此,本发明要解决的技术问题在于克服现有技术中的合金无法达到良好的抗高温二氧化碳性能和抗渗碳能力的缺陷,从而提供解决上述问题的一种抗高温二氧化碳腐蚀的合金及其制备方法和应用。
一种抗高温二氧化碳腐蚀的合金,按质量分数计,包括以下化学成分:0.02≤C≤0.1%、35%≤Fe≤52%、Mn≤1.0%、12%≤Cr≤16%、0.5≤Mo+W≤2.5%、0.1%≤Si≤0.5%、1.0%≤Al≤2.5%、1.5%≤Ti≤2.5%、Co≤1%、RE(稀土元素)≤0.1%,余量为Ni;
当12%≤Cr≤14%时,2.0%≤Al≤2.5%,0.3%≤Si≤0.4%;
当14%<Cr≤16%时,Mo+W≤1.2%。
进一步,当14%<Cr≤16%时,Mo+W≤0.7%。
进一步,当35%≤Fe≤45%时,0.7%<W+Mo≤2.5%。
进一步,当45%<Fe≤52%时,0.5≤W+Mo≤0.7%。
一种抗高温二氧化碳腐蚀的合金的制备方法,按照上述的化学成分组成进行混合,进行真空熔炼。
所述真空熔炼过程包括依次进行的均匀化、热轧、热处理;
优选的,所述均匀化的条件为:1200℃,24h;
和/或,所述均匀化后先加热至1100℃保温10min,然后再进行多道次的热轧,优选为5道次,最后一个道次的轧制变形量不低于20%;
和/或,所述热处理的条件为:在1120℃处理45min,水冷淬火(WQ),再加热至650℃处理16h,最后升温至820℃处理8h。
合金的晶粒度为70-120μm。
上述的一种抗高温二氧化碳腐蚀的合金,或上述制备方法获得的一种抗高温二氧化碳腐蚀的合金在高温CO2环境下获得保护性氧化层的应用,该保护性氧化层为氧化铬单层结构。
所述高温CO2环境为温度650-750℃的CO2环境,该环境下有效阻止合金渗碳,保证力学性能。
所述高温CO2环境下腐蚀1000h后的氧化铬单层结构的厚度不超过10μm。
本发明技术方案,具有如下优点:
1.本发明提供的一种抗高温二氧化碳腐蚀的合金,通过合金中各个成分的相互配合,可以在Cr含量不高于16%的情况下获得在650-750℃范围内的CO2环境下有效形成氧化铬单层结构的保护性氧化层的合金材料,有效克服现有技术公开的Cr含量低于18%时合金表面很难形成保护性Cr2O3氧化膜,而容易形成外层氧化铁+内层Fe-Cr尖晶石结构,进而导致的保护性较差的问题;本发明通过各个成分之间的相互配合,协同提高合金的高温二氧化碳腐蚀性能;同时,本发明提供的合金,其在高温二氧化碳环境中具有较高的抗渗碳能力,可有效避免超临界二氧化碳服役环境中因渗碳行为带来的力学性能下降问题。
2.本发明提供的一种抗高温二氧化碳腐蚀的合金,在低Cr含量的同时,还能进一步降低Mo+W的总量,可以将Mo+W的总量降低到1.2%以下,甚至可以降低到0.7%以下,进而达到进一步降低成本的效果;因此,本发明具有低成本、高强、抗高温二氧化碳腐蚀的效果。
附图说明
图1为本发明实施例1制备得到的合金的金相组织图;
图2为本发明实施例2制备得到的合金的金相组织图;
图3为本发明实施例3制备得到的合金的金相组织图;
图4为本发明实施例4制备得到的合金的金相组织图;
图5为本发明实施例5制备得到的合金的金相组织图;
图6为本发明实施例6制备得到的合金的金相组织图;
图7为本发明实施例1制备得到的合金在700℃超临界CO2中腐蚀1000h后的氧化膜截面形貌图;
图8为本发明实施例2制备得到的合金在700℃超临界CO2中腐蚀1000h后的氧化膜截面形貌图;
图9为本发明实施例3制备得到的合金在700℃超临界CO2中腐蚀1000h后的氧化膜截面形貌图;
图10为本发明实施例4制备得到的合金在700℃超临界CO2中腐蚀1000h后的氧化膜截面形貌图;
图11为本发明实施例5制备得到的合金在700℃超临界CO2中腐蚀1000h后的氧化膜截面形貌图;
图12为本发明实施例6制备得到的合金在700℃超临界CO2中腐蚀1000h后的氧化膜截面形貌图。
具体实施方式
提供下述实施例是为了更好地进一步理解本发明,并不局限于所述最佳实施方式,不对本发明的内容和保护范围构成限制,任何人在本发明的启示下或是将本发明与其他现有技术的特征进行组合而得出的任何与本发明相同或相近似的产品,均落在本发明的保护范围之内。
实施例中未注明具体实验步骤或条件者,按照本领域内的文献所描述的常规实验步骤的操作或条件即可进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规试剂产品。
实施例:
按照表1中各个实施例合金的化学成分组成(化学成分组成以质量百分数计),以单质颗粒形式采用真空感应炉进行熔炼。具体熔炼过程为:采取1200℃/24h进行均匀化,均匀化后加热至1100℃保温10min进行热轧5道次,每道次变形量均在15-20%的范围内,同时保证最后一个道次的轧制变形量不低于20%;随后进行1120℃/45min/WQ+650℃/16h+820℃/8h的热处理。
表1
合金 Cr Al Ti Si Mo W Fe Mn Co C RE Ni
实施例1 16 1.8 2.0 0.25 0.5 0 45 0.5 0 0.03 0 Bal.
实施例2 15.5 2.0 1.8 0.25 0.5 0.2 40 0.5 0.5 0.04 0 Bal.
实施例3 16 1.5 1.5 0.30 0.3 0.2 35 0.5 0 0.10 0.01 Bal.
实施例4 14 2.5 1.5 0.35 2.5 0 52 0.5 0 0.08 0 Bal.
实施例5 12 2.0 2.5 0.40 0.5 0.2 35 0.3 1 0.02 0.1 Bal.
实施例6 14.5 2.5 2.5 0.50 0.8 0.4 52 0.9 0.8 0.01 0.08 Bal.
通过制备上述表1中各个实施例的组成的合金,对其金相组织进行观察,获取各个实施例制备得到的合金的金相组织图,如图1-图6所示。
同时,将各个实施例和对比例制备得到的合金在超临界CO2环境下开展高温二氧化碳试验,具体试验过程为:将合金放入到650-750℃范围内的CO2环境下进行处理,处理1000h后获得处理后合金的组织结构图,如图7-图12所示。
通过图1-图6可知,本发明制备的合金的晶粒度大部分为70-120μm。通过图7-图12可知,本发明合金成分在650-750℃范围内的CO2环境下,可获得氧化铬单层结构的保护性氧化层,有效阻碍了合金的渗碳,因无渗碳发生,因此不会影响基体力学性能,很好的克服了现有技术中以合金中的Cr含量来保证合金在高温环境中具有良好抗氧化腐蚀性能作为指标所带来的问题,有效显著提高高温CO2环境下抗氧化性能。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (10)

1.一种抗高温二氧化碳腐蚀的合金,其特征在于,按质量分数计,原料中包括以下化学成分:0.02≤C≤0.1%、35%≤Fe≤52%、Mn≤1.0%、12%≤Cr≤16%、0.5≤Mo+W≤2.5%、0.1%≤Si≤0.5%、1.0%≤Al≤2.5%、1.5%≤Ti≤2.5%、Co≤1%、RE≤0.1%,余量为Ni;
当12%≤Cr≤14%时,2.0%≤Al≤2.5%,0.3%≤Si≤0.5%;
当14%<Cr≤16%时,Mo+W≤1.2%。
2.根据权利要求1所述的一种抗高温二氧化碳腐蚀的合金,其特征在于,当14%<Cr≤16%时,Mo+W≤0.7%。
3.根据权利要求1或2所述的一种抗高温二氧化碳腐蚀的合金,其特征在于:当35%≤Fe≤45%时,0.5≤W+Mo≤0.7%。
4.根据权利要求1或2所述的一种抗高温二氧化碳腐蚀的合金,其特征在于:当45%<Fe≤52%时,0.5%<W+Mo≤2.5%。
5.一种抗高温二氧化碳腐蚀的合金的制备方法,其特征在于,按照权利要求1-4任意一项所述化学成分组成进行混合,进行真空熔炼。
6.根据权利要求5所述的制备方法,其特征在于,所述真空熔炼过程包括依次进行的均匀化、热轧、热处理;
优选的,所述均匀化的条件为:1200℃,24h;和/或,所述均匀化后先加热至1100℃保温10min,然后再进行多道次的热轧,最后一个道次的轧制变形量不低于20%;和/或,所述热处理的条件为:在1120℃处理45min,水冷淬火,再加热至650℃处理16h,最后升温至820℃处理8h。
7.根据权利要求5或6所述的制备方法,其特征在于,合金的晶粒度为70-120μm。
8.权利要求1-4任一项所述的一种抗高温二氧化碳腐蚀的合金,或权利要求5-7任一项制备方法获得的一种抗高温二氧化碳腐蚀的合金在高温CO2环境下获得保护性氧化层的应用,该保护性氧化层为氧化铬单层结构。
9.根据权利要求8所述的应用,其特征在于,所述高温CO2环境为温度650-750℃的CO2环境。
10.根据权利要求8或9所述的应用,其特征在于,所述高温CO2环境下腐蚀1000h后的氧化铬单层结构的厚度不超过10μm。
CN202310492194.0A 2023-05-04 2023-05-04 一种抗高温二氧化碳腐蚀的合金及其制备方法和应用 Pending CN116536557A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310492194.0A CN116536557A (zh) 2023-05-04 2023-05-04 一种抗高温二氧化碳腐蚀的合金及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310492194.0A CN116536557A (zh) 2023-05-04 2023-05-04 一种抗高温二氧化碳腐蚀的合金及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN116536557A true CN116536557A (zh) 2023-08-04

Family

ID=87457172

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310492194.0A Pending CN116536557A (zh) 2023-05-04 2023-05-04 一种抗高温二氧化碳腐蚀的合金及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN116536557A (zh)

Similar Documents

Publication Publication Date Title
WO2021121185A1 (zh) 一种高强高韧抗氧化铁镍基高温合金及其制备方法
CN111636013A (zh) 一种新型电站用镍铬钴钼高温合金无缝管及制造方法
WO1997039153A1 (fr) Alliage presentant une resistance elevee a la corrosion dans un milieu extremement corrosif, conduit en acier fabrique avec cet alliage et procede de fabrication de ce conduit
CN107042370A (zh) 一种高Cr含量Ni基耐高温合金焊丝及制备工艺
CN105624469A (zh) 超超临界锅炉用镍基高温合金及其制备方法和应用
JPS6123850B2 (zh)
CN113088762A (zh) 一种高强高韧耐蚀铁镍基高温合金及其制备方法
CN111471897A (zh) 一种高强镍基高温合金制备成型工艺
CN112458369B (zh) 一种析出强化型铁素体耐热钢及其制备方法
JPS5940219B2 (ja) 表面にAl↓2O↓3皮膜を生成するオ−ステナイト系耐酸化耐熱鋳造合金
CN112359296B (zh) 一种析出强化铁基高温合金及其制备方法
CN109536841A (zh) 一种耐腐蚀的奥氏体-铁素体双相耐热钢及其制备方法
CN116536557A (zh) 一种抗高温二氧化碳腐蚀的合金及其制备方法和应用
CN109022926B (zh) 一种抗高温耐腐蚀热喷涂丝材及其制备方法
CN111705195B (zh) 一种含Nb奥氏体耐热钢沉淀强化热处理工艺
JP2006265580A (ja) 高耐食性耐熱合金
CN106917053A (zh) 一种高铌含量奥氏体耐热钢及其制备方法
CN108220833B (zh) 一种碳纤维增强合金复合材料及其制备方法
Fujita MATERIALS for Future Power Plants.
CN108441767A (zh) 一种火力发电用铁素体耐热钢及其制备工艺
CN113684424B (zh) 一种nial强化型铁素体耐热钢及制备方法
KR102596942B1 (ko) 크리프 특성 향상을 위한 니켈기 초내열합금 열처리 방법 및 이에 의해 열처리된 니켈기 초내열합금
CN108220832B (zh) 一种碳纤维增强合金复合材料及其制备方法
CN108220834B (zh) 一种碳纤维增强合金复合材料及其制备方法
CN118028810A (zh) 用于超临界sCO2机组透平高温耐腐蚀的带涂层材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination