CN116444284A - 基于热力学计算的抗氧化复合材料筛选制备方法 - Google Patents

基于热力学计算的抗氧化复合材料筛选制备方法 Download PDF

Info

Publication number
CN116444284A
CN116444284A CN202310399753.3A CN202310399753A CN116444284A CN 116444284 A CN116444284 A CN 116444284A CN 202310399753 A CN202310399753 A CN 202310399753A CN 116444284 A CN116444284 A CN 116444284A
Authority
CN
China
Prior art keywords
antioxidant
composite material
preparing
thermodynamic calculation
screening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310399753.3A
Other languages
English (en)
Inventor
黄志雄
邓宗义
石敏先
杨雪媛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN202310399753.3A priority Critical patent/CN116444284A/zh
Publication of CN116444284A publication Critical patent/CN116444284A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/243Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16CCOMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
    • G16C20/00Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
    • G16C20/10Analysis or design of chemical reactions, syntheses or processes
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16CCOMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
    • G16C60/00Computational materials science, i.e. ICT specially adapted for investigating the physical or chemical properties of materials or phenomena associated with their design, synthesis, processing, characterisation or utilisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2361/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • C08J2361/04Condensation polymers of aldehydes or ketones with phenols only
    • C08J2361/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • C08J2361/14Modified phenol-aldehyde condensates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • C08K3/14Carbides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Computing Systems (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Polymers & Plastics (AREA)
  • Composite Materials (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

本发明涉及一种基于热力学计算的抗氧化复合材料筛选制备方法,具体步骤如下:1)利用计算机分别计算备选抗氧化剂与1mol O2反应的吉布斯自由能变ΔG1,并与C与1mol O2反应的ΔG2进行比较,选取比ΔG2低的备选抗氧化剂作为目标抗氧化剂;2)基于步骤1)筛选出的目标抗氧化剂制备得到抗氧化复合材料。相对于现有技术中依靠试验测试的试错法,本发明所述的基于热力学计算的抗氧化复合材料筛选制备方法通过热力学计算进行材料设计与筛选,高效易行,避免了盲目试错,不仅减少了人力和物力的消耗,还大幅度缩短了材料开发周期、降低了材料开发的时间成本和经济成本,提供了一种筛选制备抗氧化复合材料的新思路。

Description

基于热力学计算的抗氧化复合材料筛选制备方法
技术领域
本发明属于有机高分子化合物技术领域,具体涉及基于热力学计算的抗氧化复合材料筛选制备方法。
背景技术
高超声速飞行器在大气层内有氧、机动飞行时,因为急剧的气动加热和气流冲刷,面临极端、恶劣的服役环境。高超声速飞行的主要问题是气动加热引起的,如何有效克服“热障”成了制约高超声速飞行器研发的瓶颈之一。热防护材料就是用以应对“热障”、保护高超声速飞行器不被烧毁的“金钟罩”。
烧蚀型热防护材料综合了热沉吸热、辐射散热和质量引射的热阻塞效应以及材料的相变和化学反应等吸热机制,可用于复杂热流和航时工况的热防护。烧蚀型热防护材料种类繁多,根据作用机理可分为:熔化型、升华型和碳化型烧蚀材料。熔化型烧蚀材料主要应用于中等焓值飞行环境的飞行器防热,烧蚀率较高,难以在更高焓值服役环境发挥防热功能,更不具备承载效果。升华型烧蚀材料的典型代表碳/碳复合材料在惰性气氛下可耐3000℃高温,但是其与生俱来地存在易高温氧化失效的致命缺点。在有氧条件下,其在400℃左右开始氧化,600℃左右即出现“断崖式”氧化,严重限制了其实际应用。同样地,碳化型烧蚀材料的典型代表碳纤维/酚醛树脂复合材料的基体树脂裂解炭和碳纤维也存在易氧化的弊端。在有氧、高热流、高剪切等复杂、极端使役环境下,传统的碳纤维/酚醛树脂复合材料存在耐温等级低、烧蚀率高、高温强度低等突出缺点,严重制约了其在航天领域的进一步应用。
因此,要想实现高超声速飞行器在极端服役环境下的抗氧化目的,对碳纤维/酚醛树脂复合材料进行抗氧化改性至关重要。传统地,碳纤维/酚醛树脂复合材料抗氧化改性的方法主要有两种。一种是对酚醛树脂基体进行杂化改性,向酚醛树脂结构中引入Si、B、Zr、Ti和Al等杂原子。但是,受到空间位阻、反应活性等诸多因素影响,接枝率较低,耐热等级和抗氧化性能提升幅度有限。另一种方法是通过物理共混的方式向酚醛树脂基体中添加氧化物、硼化物、碳化物和氮化物等陶瓷粉体。虽然该方法工艺简单,但是不同陶瓷粉体抗氧化效果差距巨大,为了制备抗氧化性较好的复合材料,必须通过试错法进行大量反复的试验探索,这无疑会消耗大量的人力和物力,效率低下,极大地增加了材料开发周期和成本。
因此,为了满足高超声速飞行器在极端服役环境下的抗氧化要求,开发一种高效易行、抗氧化性优异的抗氧化复合材料筛选制备方法变得十分必要和重要。
发明内容
本发明所要解决的技术问题是针对现有技术中存在的上述不足,提供基于热力学计算的抗氧化复合材料筛选制备方法,以解决碳纤维/酚醛树脂复合材料的基体树脂裂解炭和碳纤维易氧化、材料耐温等级低、高温强度低、必须依赖试错法,材料开发周期长和成本高的突出问题。
为解决上述技术问题,本发明提供的技术方案是:
提供基于热力学计算的抗氧化复合材料筛选制备方法,具体步骤如下:
1)利用计算机分别计算备选抗氧化剂与1mol O2反应的吉布斯自由能变Δ
G1,并与C与1mol O2反应的ΔG2进行比较,选取比ΔG2低的备选抗氧化剂作为目标抗氧化剂;
2)基于步骤1)筛选出的目标抗氧化剂制备得到抗氧化复合材料。
按上述方案,步骤1)所述备选抗氧化剂为单一种类的抗氧化剂或多种抗氧化剂的组合。
按上述方案,所述备选抗氧化剂为二元或三元硼化物陶瓷粉体,二元或三元碳化物陶瓷粉体,二元或三元氮化物陶瓷粉体,二元或三元硅化物陶瓷粉体,高熵陶瓷粉体,金属粉体,合金粉体(包括普通合金粉体和高熵合金粉体)中的一种或多种的组合。
按上述方案,步骤2)抗氧化复合材料的制备方法为:将步骤1)筛选出的目标抗氧化剂与基体树脂混合,得到抗氧化树脂胶液,将所得抗氧化树脂胶液与碳纤维复合,得到抗氧化预浸料,再将所得抗氧化预浸料成型固化,得到抗氧化复合材料。
按上述方案,所述基体树脂为酚醛树脂,环氧树脂,有机硅树脂,聚酰亚胺树脂中的一种。
按上述方案,所述目标抗氧化剂与基体树脂的质量份配比为:基体树脂50份,目标抗氧化剂1-300份。
按上述方案,所述抗氧化树脂胶液与碳纤维的质量比为0.5-6:1。
本发明根据备选抗氧化剂与O2反应的吉布斯自由能变ΔG1与C与O2反应的ΔG2进行比较,选取比ΔG2低的备选抗氧化剂作为目标抗氧化剂,并且ΔG越低的抗氧化剂,其抗氧化效果越好,此筛选过程由计算机基于热力学计算完成。在高温条件下,通过ΔG低的抗氧化剂的选择性氧化作用,牺牲ΔG低的抗氧化剂,发挥原位耗氧、固氧和阻氧机制,从而保护体系中的碳不被氧化,实现了对基体树脂裂解炭和碳纤维的高效高温氧化防护。
本发明的有益效果在于:相对于现有技术中依靠试验测试的试错法,本发明所述的基于热力学计算的抗氧化复合材料筛选制备方法通过热力学计算进行材料设计与筛选,高效易行,避免了盲目试错,不仅减少了人力和物力的消耗,还大幅度缩短了材料开发周期、降低了材料开发的时间成本和经济成本,提供了一种筛选制备抗氧化复合材料的新思路。
附图说明
图1为本发明实施例1-3中备选抗氧化剂ZrC、MoSi2和CaB6及C与1mol O2反应的ΔG-温度曲线图;
图2为实施例1制备的抗氧化复合材料经过1600℃热氧化处理20min后样品的X射线衍射图;
图3为实施例2制备的抗氧化复合材料经过1600℃热氧化处理20min后样品的扫描电子显微镜图;
图4为实施例3制备的抗氧化复合材料经过1600℃热氧化处理20min后样品的扫描电子显微镜图。
具体实施方式
为使本领域技术人员更好地理解本发明的技术方案,下面结合附图对本发明作进一步详细描述。
实施例1
基于热力学计算的抗氧化复合材料筛选制备方法,包括以下步骤:
(1)以ZrC为备选抗氧化剂,分别计算ZrC与1mol O2反应的ΔG1及1mol C与1mol O2反应的ΔG2
(2)将THC-400型硼酚醛树脂与抗氧化剂ZrC按照重量比50:25混合,得到抗氧化树脂胶液;
(3)将抗氧化树脂胶液与碳纤维复合,得到抗氧化预浸料;
(4)抗氧化预浸料经过180℃固化6h,得到抗氧化复合材料。
对本实施例制备的抗氧化复合材料在空气气氛中于1600℃下热氧化处理20min,并对热氧化处理后的复合材料进行弯曲强度测试。经测试,本实施例中制备的抗氧化复合材料经过1600℃热氧化处理20min后的弯曲强度为33MPa。
对本实施例制备的抗氧化复合材料在空气气氛中于1600℃下热氧化处理20min,并对热氧化处理后的复合材料进行X射线衍射分析,测试结果如图2所示。由图2可知,本实施例中制备的抗氧化复合材料经过1600℃热氧化处理20min后的物相主要由ZrO2组成,仅含有少量的ZrC。
对本实施例制备的抗氧化复合材料在空气气氛中以10℃/min的升温速率从25℃升温至1600℃,达到1600℃后热氧化处理10min,并对热氧化处理后的复合材料进行弯曲强度测试。经测试,本实施例中制备的抗氧化复合材料在空气气氛中以10℃/min的升温速率从25℃升温至1600℃,达到1600℃后热氧化处理10min复合材料完全氧化,无弯曲强度可言,说明以ZrC作为抗氧化剂制备的复合材料抗氧化性能差。
实施例2
基于热力学计算的抗氧化复合材料筛选制备方法,包括以下步骤:
(1)以MoSi2为备选抗氧化剂,分别计算MoSi2与1mol O2反应的ΔG1及1mol C与1mol O2反应的ΔG2
(2)将THC-400型硼酚醛树脂与抗氧化剂MoSi2按照重量比50:25混合,得到抗氧化树脂胶液;
(3)将抗氧化树脂胶液与碳纤维复合,得到抗氧化预浸料;
(4)抗氧化预浸料经过180℃固化6h,得到抗氧化复合材料。
对本实施例制备的抗氧化复合材料在空气气氛中于1600℃下热氧化处理20min,并对热氧化处理后的复合材料进行弯曲强度测试。经测试,本实施例中制备的抗氧化复合材料经过1600℃热氧化处理20min后的弯曲强度为83MPa,说明以MoSi2作为抗氧化剂制备的复合材料抗氧化性能良好。
对本实施例制备的抗氧化复合材料在空气气氛中于1600℃下热氧化处理20min,并对热氧化处理后的复合材料表面进行微观形貌表征,测试结果如图3所示。由图3可知,本实施例中制备的抗氧化复合材料经过1600℃热氧化处理20min后的表面覆盖了较多的阻氧保护层。
实施例3
基于热力学计算的抗氧化复合材料筛选制备方法,包括以下步骤:
(1)以CaB6为备选抗氧化剂,分别计算CaB6与1mol O2反应的ΔG1及1mol C与1molO2反应的ΔG2
(2)将THC-400型硼酚醛树脂与抗氧化剂CaB6按照重量比50:25混合,得到抗氧化树脂胶液;
(3)将抗氧化树脂胶液与碳纤维复合,得到抗氧化预浸料;
(4)抗氧化预浸料经过180℃固化6h,得到抗氧化复合材料。
实施例1-3中备选抗氧化剂ZrC、MoSi2和CaB6及C与1mol O2反应的ΔG-温度曲线图如图1所示,从图上可以看出,ZrC与1mol O2反应的ΔG在整个温度区域(0-2000℃)内与C与1mol O2反应的ΔG接近,而MoSi2和CaB6相应的ΔG比C小得多。
对本实施例制备的抗氧化复合材料在空气气氛中于1600℃下热氧化处理20min,并对热氧化处理后的复合材料进行弯曲强度测试。经测试,本实施例中制备的抗氧化复合材料经过1600℃热氧化处理20min后的弯曲强度为92MPa。
对本实施例制备的抗氧化复合材料在空气气氛中于1600℃下热氧化处理20min,并对热氧化处理后的复合材料表面进行微观形貌表征,测试结果如图4所示。由图4可知,本实施例中制备的抗氧化复合材料经过1600℃热氧化处理20min后的表面覆盖了大量的阻氧保护层。
对本实施例制备的抗氧化复合材料在空气气氛中以10℃/min的升温速率从25℃升温至1600℃,达到1600℃后热氧化处理10min,并对热氧化处理后的复合材料进行弯曲强度测试。经测试,本实施例中制备的抗氧化复合材料在空气气氛中以10℃/min的升温速率从25℃升温至1600℃,达到1600℃后热氧化处理10min后的弯曲强度为110MPa。说明以CaB6作为抗氧化剂制备的复合材料抗氧化性能良好。
实施例4
基于热力学计算的抗氧化复合材料筛选制备方法,步骤同实施例3相似,不同之处在于步骤(2)将THC-400型硼酚醛树脂与抗氧化剂CaB6按照重量比50:20混合,得到抗氧化树脂胶液。
对本实施例制备的抗氧化复合材料在空气气氛中于1600℃下热氧化处理20min,并对热氧化处理后的复合材料进行弯曲强度测试。经测试,本实施例中制备的抗氧化复合材料经过1600℃热氧化处理20min后的弯曲强度为89MPa。
对本实施例制备的抗氧化复合材料在空气气氛中以10℃/min的升温速率从25℃升温至1600℃,达到1600℃后热氧化处理10min,并对热氧化处理后的复合材料进行弯曲强度测试。经测试,本实施例中制备的抗氧化复合材料在空气气氛中以10℃/min的升温速率从25℃升温至1600℃,达到1600℃后热氧化处理10min后的弯曲强度为100MPa。

Claims (7)

1.一种基于热力学计算的抗氧化复合材料筛选制备方法,其特征在于,具体步骤如下:
1)利用计算机分别计算备选抗氧化剂与1mol O2反应的吉布斯自由能变ΔG1,并与C与1mol O2反应的ΔG2进行比较,选取比ΔG2低的备选抗氧化剂作为目标抗氧化剂;
2)基于步骤1)筛选出的目标抗氧化剂制备得到抗氧化复合材料。
2.根据权利要求1所述的基于热力学计算的抗氧化复合材料筛选制备方法,其特征在于,步骤1)所述备选抗氧化剂为单一种类的抗氧化剂或多种抗氧化剂的组合。
3.根据权利要求2所述的基于热力学计算的抗氧化复合材料筛选制备方法,其特征在于,所述备选抗氧化剂为二元或三元硼化物陶瓷粉体,二元或三元碳化物陶瓷粉体,二元或三元氮化物陶瓷粉体,二元或三元硅化物陶瓷粉体,高熵陶瓷粉体,金属粉体,合金粉体中的一种或多种的组合。
4.根据权利要求1所述的基于热力学计算的抗氧化复合材料筛选制备方法,其特征在于,步骤2)抗氧化复合材料的制备方法为:将步骤1)筛选出的目标抗氧化剂与基体树脂混合,得到抗氧化树脂胶液,将所得抗氧化树脂胶液与碳纤维复合,得到抗氧化预浸料,再将所得抗氧化预浸料成型固化,得到抗氧化复合材料。
5.根据权利要求4所述的基于热力学计算的抗氧化复合材料筛选制备方法,其特征在于,所述基体树脂为酚醛树脂,环氧树脂,有机硅树脂,聚酰亚胺树脂中的一种。
6.根据权利要求4所述的基于热力学计算的抗氧化复合材料筛选制备方法,其特征在于,所述目标抗氧化剂与基体树脂的质量份配比为:基体树脂50份,目标抗氧化剂1-300份。
7.根据权利要求4所述的基于热力学计算的抗氧化复合材料筛选制备方法,其特征在于,所述抗氧化树脂胶液与碳纤维的质量比为0.5-6:1。
CN202310399753.3A 2023-04-13 2023-04-13 基于热力学计算的抗氧化复合材料筛选制备方法 Pending CN116444284A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310399753.3A CN116444284A (zh) 2023-04-13 2023-04-13 基于热力学计算的抗氧化复合材料筛选制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310399753.3A CN116444284A (zh) 2023-04-13 2023-04-13 基于热力学计算的抗氧化复合材料筛选制备方法

Publications (1)

Publication Number Publication Date
CN116444284A true CN116444284A (zh) 2023-07-18

Family

ID=87131643

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310399753.3A Pending CN116444284A (zh) 2023-04-13 2023-04-13 基于热力学计算的抗氧化复合材料筛选制备方法

Country Status (1)

Country Link
CN (1) CN116444284A (zh)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6670040B1 (en) * 1999-07-14 2003-12-30 Tokai University Educational System Carbon fiber-reinforced carbon composite body and method of manufacturing the same
CN101244940A (zh) * 2008-03-20 2008-08-20 郑州大学 钢包渣线用金属复合低碳镁碳砖及其制备方法
US20100170593A1 (en) * 2007-01-15 2010-07-08 Toshio Narita Oxidation resistant alloy coating film, method of producing an oxidation resistant alloy coating film, and heat resistant metal member
CN103224688A (zh) * 2013-04-16 2013-07-31 中国兵器工业集团第五三研究所 一种耐烧蚀复合材料
CN105948775A (zh) * 2016-04-27 2016-09-21 航天材料及工艺研究所 一种耐高温抗氧化型轻质碳/碳隔热材料的制备方法
CN108911760A (zh) * 2018-08-08 2018-11-30 航天材料及工艺研究所 碳纤维增强树脂梯度碳化非烧蚀型热防护材料及制备方法
CN109536883A (zh) * 2019-01-21 2019-03-29 太原理工大学 一种提高Ti-45Al-8.5Nb合金高温抗氧化性的方法
CN109735787A (zh) * 2017-10-31 2019-05-10 中国科学院上海硅酸盐研究所 一种耐高温抗氧化烧蚀复合涂层及制备方法
CN113354423A (zh) * 2021-05-17 2021-09-07 江苏苏嘉集团新材料有限公司 一种碳复合耐火材料配方及制备方法
CN113584416A (zh) * 2021-07-21 2021-11-02 中国科学院上海硅酸盐研究所 一种用于TiAl合金表面的TiAlCr抗氧化涂层及其制备方法
CN113735629A (zh) * 2021-09-23 2021-12-03 沈阳先进涂层材料产业技术研究院有限公司 一种碳材料宽温域防氧化抗冲刷复相陶瓷涂层及其制备方法
CN113860892A (zh) * 2021-09-28 2021-12-31 赛文斯新型材料(无锡)有限公司 连铸钢包长水口用密封碗耐火材料及其制备方法
US20220161521A1 (en) * 2019-04-02 2022-05-26 Nippon Steel Corporation Metal-carbon fiber reinforced resin material composite and method for manufacturing metal-carbon fiber reinforced resin material composite

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6670040B1 (en) * 1999-07-14 2003-12-30 Tokai University Educational System Carbon fiber-reinforced carbon composite body and method of manufacturing the same
US20100170593A1 (en) * 2007-01-15 2010-07-08 Toshio Narita Oxidation resistant alloy coating film, method of producing an oxidation resistant alloy coating film, and heat resistant metal member
CN101244940A (zh) * 2008-03-20 2008-08-20 郑州大学 钢包渣线用金属复合低碳镁碳砖及其制备方法
CN103224688A (zh) * 2013-04-16 2013-07-31 中国兵器工业集团第五三研究所 一种耐烧蚀复合材料
CN105948775A (zh) * 2016-04-27 2016-09-21 航天材料及工艺研究所 一种耐高温抗氧化型轻质碳/碳隔热材料的制备方法
CN109735787A (zh) * 2017-10-31 2019-05-10 中国科学院上海硅酸盐研究所 一种耐高温抗氧化烧蚀复合涂层及制备方法
CN108911760A (zh) * 2018-08-08 2018-11-30 航天材料及工艺研究所 碳纤维增强树脂梯度碳化非烧蚀型热防护材料及制备方法
CN109536883A (zh) * 2019-01-21 2019-03-29 太原理工大学 一种提高Ti-45Al-8.5Nb合金高温抗氧化性的方法
US20220161521A1 (en) * 2019-04-02 2022-05-26 Nippon Steel Corporation Metal-carbon fiber reinforced resin material composite and method for manufacturing metal-carbon fiber reinforced resin material composite
CN113354423A (zh) * 2021-05-17 2021-09-07 江苏苏嘉集团新材料有限公司 一种碳复合耐火材料配方及制备方法
CN113584416A (zh) * 2021-07-21 2021-11-02 中国科学院上海硅酸盐研究所 一种用于TiAl合金表面的TiAlCr抗氧化涂层及其制备方法
CN113735629A (zh) * 2021-09-23 2021-12-03 沈阳先进涂层材料产业技术研究院有限公司 一种碳材料宽温域防氧化抗冲刷复相陶瓷涂层及其制备方法
CN113860892A (zh) * 2021-09-28 2021-12-31 赛文斯新型材料(无锡)有限公司 连铸钢包长水口用密封碗耐火材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
李茂源: "纤维增强酚醛防热材料改性及烧蚀机理研究", 《中国博士学位论文全文数据库(工程科技I辑)》, 30 April 2021 (2021-04-30), pages 016 - 19 *
王志强等: "B4C和Si组合抗氧化剂对低碳MgO-C砖抗氧化性能的影响", 《耐火材料》, vol. 42, no. 3, 15 June 2008 (2008-06-15), pages 161 - 164 *

Similar Documents

Publication Publication Date Title
US10865841B2 (en) Composite brake disks with an integrated heat sink, methods for manufacturing the same, and methods for producing encapsulated heat sink material
US8859037B2 (en) Method for manufacturing ceramic matrix composite structures
US11787159B2 (en) Method to process a ceramic matrix composite (CMC) with a protective ceramic coating
US5294489A (en) Protective coating with reactive interlayer on reinforcement in silicon carbide composite
US6231791B1 (en) Silicon carbide articles reinforced with short graphite fibers
CA2319702A1 (en) Fiber-bundle-reinforced composite material having a ceramic matrix
CN1718560A (zh) 碳纤维增强碳化硅复合材料防氧化涂层及其制备方法
CN110387148B (zh) 一种用于树脂基复合材料的抗烧蚀涂层材料及其制备方法
CN106554212A (zh) 多孔碳化硅预制体和Al-SiC复合材料及它们的制备方法
JP5898840B2 (ja) セラミックマトリクス複合体物品を製造する方法及びその方法により形成された物品
CN116444284A (zh) 基于热力学计算的抗氧化复合材料筛选制备方法
US6537617B2 (en) Manufacturing method of ceramic matrix composite
CN109279899A (zh) 碳/碳化硅复合陶瓷的制备方法、其制得的碳/碳化硅复合陶瓷、应用和刹车盘
EP0576626B1 (en) Coatings for composite articles
CN114409408A (zh) 一种激光3d打印用碳化硅复合粉体及其制备方法
Ogbuji A porous, oxidation‐resistant fiber coating for CMC interphase
US11845699B2 (en) Methods for manufacturing coated composite materials
CN117801466A (zh) 一种选择性陶瓷化的抗氧化、耐烧蚀复合材料及制备方法
Song et al. Processing and Characterization of Continuous Carbon Fiber Reinforced Silicon Oxycarbide Ceramic Matrix Composites
CN117819974A (zh) 一种耐烧蚀碳化铪复合陶瓷材料及其制备方法和应用
Dickinson Carbon/Carbon Composites: Fabrication and Properties and Selected Experiences
KR20240085880A (ko) 나노셀룰로스 기반 섬유강화 복합재료용 프리프레그, 이의 제조방법 및 이를 이용하여 제조된 나노셀룰로스 기반 섬유강화 복합재료
Sherwood et al. Low Cost, Near‐Net Shape Ceramic Composites Using Resin Transfer Molding and Pyrolysis (RTMP)
CN117820029A (zh) 一种碳化硅晶须增韧的陶瓷涂层及其制备方法和应用
Heo et al. Preparation and thermal properties of SiC/CF nanocomposites

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination