CN116426025A - 一种耐水的高强度高阻隔纳米甲壳素复合薄膜的制备方法 - Google Patents

一种耐水的高强度高阻隔纳米甲壳素复合薄膜的制备方法 Download PDF

Info

Publication number
CN116426025A
CN116426025A CN202310360885.5A CN202310360885A CN116426025A CN 116426025 A CN116426025 A CN 116426025A CN 202310360885 A CN202310360885 A CN 202310360885A CN 116426025 A CN116426025 A CN 116426025A
Authority
CN
China
Prior art keywords
composite film
nano chitin
chitin
polyvinyl alcohol
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310360885.5A
Other languages
English (en)
Inventor
吴子良
焦德金
胡佳妤
郑强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN202310360885.5A priority Critical patent/CN116426025A/zh
Publication of CN116426025A publication Critical patent/CN116426025A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/14Chemical modification with acids, their salts or anhydrides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2405/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2401/00 or C08J2403/00
    • C08J2405/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2429/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2429/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2429/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种耐水的高强度高阻隔纳米甲壳素复合薄膜的制备方法:(1)将纳米甲壳素分散液与聚乙烯醇溶液混合,得到核壳结构纳米纤维分散液;(2)将核壳结构纳米纤维分散液进行脱泡处理,室温下干燥,得到纳米甲壳素/聚乙烯醇复合薄膜;(3)将纳米甲壳素/聚乙烯醇复合薄膜浸泡在单宁酸溶液中,干燥得到纳米甲壳素复合薄膜。本发明提供的制备方法简单,所制备的复合薄膜在高湿度及水中仍具有较高强度和气体阻隔性能,具有广泛的适用性和推广价值。

Description

一种耐水的高强度高阻隔纳米甲壳素复合薄膜的制备方法
技术领域
本发明属于高性能及功能性纳米复合材料领域,具体涉及一种耐水的高强度高阻隔纳米甲壳素复合薄膜的制备方法。
背景技术
甲壳素是一种天然多聚糖分子,广泛的存在于甲壳纲动物(如虾、蟹等)外骨骼中。地球上甲壳素每年的生物合成量高达数百亿吨,仅次于纤维素,是第二丰富的天然高分子。甲壳素在自然界中通常以有序排列的高结晶度纳米纤维形式存在,直接分离该纳米纤维,不仅能够保留甲壳素的高生物相容、可降解性等特点,同时具有高长径比,高比表面积、高模量等性质。由纳米甲壳素制备得到的复合薄膜具有优异的力学性能、阻隔性能等,在食品、能源、材料、化工等领域具有重要应用价值。
然而,与其他的多聚糖纳米纤维类似,纳米甲壳素复合薄膜在实际应用中面临的一个重要挑战是较差的耐水性。由于甲壳素纳米纤维固有的亲水性,在高湿度或水化的情况下,甲壳素纳米纤维材料会吸水溶胀,导致力学性能及阻隔性能的严重下降。为了解决这一问题,科学家们采用了不同的方法在来增强复合薄膜的耐水性,例如,将疏水性聚合物引入纳米纤维素复合薄膜(Biomacromolecules 2019,20,2,1045-1055),复合薄膜的表面修饰(CN111849002B),以及纳米纤维网络的交联(CN110551301A;J.Membr.Sci.2016,500,1-7;Biomacromolecules 2020,21,1720-1728)。上述方法能够一定程度提高复合薄膜的耐水性,但工艺复杂;同时,上述方法仅适用于纳米纤维素复合薄膜的耐水性提升,而纳米甲壳素复合薄膜并未受到重视。因此亟需开发一种提升纳米甲壳素薄膜耐水性的方法,实现其力学性能、阻隔性能在高湿度环境下的适用性。
发明内容
本发明的目的在于提供一种耐水的高强度高阻隔纳米甲壳素薄膜的制备方法,该方法简单易行,所制备的甲壳素复合薄膜在高湿度下仍具有较高的强度和阻隔性能。
本发明提供如下技术方案:
一种耐水的高强度高阻隔纳米甲壳素复合薄膜的制备方法,所述制备方法包括如下步骤:
(1)将纳米甲壳素分散液与聚乙烯醇溶液混合,得到核壳结构纳米纤维分散液;
(2)将核壳结构纳米纤维分散液进行脱泡处理,室温下干燥,得到纳米甲壳素/聚乙烯醇复合薄膜;
(3)将纳米甲壳素/聚乙烯醇复合薄膜浸泡在单宁酸溶液中,干燥得到纳米甲壳素复合薄膜。
本发明首先在室温条件下通过溶液浇筑制备纳米甲壳素/聚乙烯醇复合薄膜,纳米甲壳素与聚乙烯醇在水中混合,发生氢键相互作用,得到核壳结构的胶体纳米纤维,从而保证干燥之后得到复合薄膜的均匀性。然后,采用单宁酸将复合薄膜进一步交联,所形成的交联结构能够抵抗高湿度环境下薄膜溶胀,大大改善薄膜耐水性。
优选地,在步骤(1)中,所述纳米甲壳素分散液的制备方法为:将甲壳素原料粉末与浓度为20~40wt%的NaOH溶液混合,在80~95℃下搅拌5~8小时;洗涤后重新分散于pH为3.5~4的醋酸溶液中,经高速均质、超声处理,得到纳米甲壳素分散液。
所述的甲壳素原料为去除矿物质之后的虾壳粉、蟹壳粉或鱿鱼顶骨中的任意一种。
优选地,在步骤(1)中,所述的聚乙烯醇的分子量为9000~500000,醇解度为80~100mol%。
优选地,在步骤(1)中,所述的稀释的纳米甲壳素分散液浓度为0.01~0.25wt%。
优选地,在步骤(1)中,所述的聚乙烯醇溶液浓度为0.01~0.25wt%。
优选地,在步骤(2)中,所述的复合薄膜中纳米甲壳素与聚乙烯醇的质量比为1:9~9:1。
优选地,在步骤(3)中,所述的单宁酸溶液浓度为1~100mM。
进一步优选地,所述的复合薄膜中纳米甲壳素与聚乙烯醇的质量比为1~2:1,单宁酸溶液浓度为5~10mM。使制备得到的复合薄膜具有更好的力学性能和阻隔性能。
与现有技术相比,本发明的有益效果具体体现在:
1.制备工艺简单易行,原料来源广泛,以水为介质,绿色环保。
2.本发明制备的复合薄膜具有优异的力学性能及气体阻隔性能。
3.本发明制备复合薄膜在高湿度及水下环境仍保持形状稳定及优异性能,具有广泛的适用性和推广价值。
附图说明
图1为实施例1中得到的样品的原子力显微镜图像:其中,(a)为甲壳素纳米纤维的原子力显微镜图像,(b)为纳米甲壳素/聚乙烯醇核壳结构的原子力显微镜图像。
图2为实施例2中得到的交联复合薄膜在不同湿度及浸泡在水中后的应力-应变曲线。
具体实施方式
下面结合附图与具体实施方法对本发明作进一步详细描述。下面的实施例可以使本专业的技术人员更全面地理解本发明,但不以任何方式限制本发明。
实施例1
本实施例提供的纳米甲壳素复合薄膜的制备方法包括以下步骤:
(1)取蟹壳粉(200目)加入到浓度为5wt%盐酸中,固液比为1:20,常温下搅拌2天,以去除碳酸钙等矿物质;将产物反复洗涤至中性并干燥。
(2)将上述去除矿物质的蟹壳粉末与浓度为20wt%的NaOH溶液混合,在90℃下搅拌6小时。将产物离心洗涤至中性,并重新分散于pH为4的醋酸溶液中,经高速均质(10000rpm)、超声处理,得到浓度为0.25wt%的纳米甲壳素分散液。制得的甲壳素纳米纤维的形貌见图1,其直径为3.7±1nm,长度超过1μm。
(3)将浓度为0.25wt%的纳米甲壳素分散液缓慢滴加到浓度为0.25wt%的聚乙烯醇(分子量为67000,醇解度为99mol%)溶液中,两种溶液的体积比为1:1。在混合溶液中,聚乙烯醇吸附在纳米甲壳素表面,形成核壳结构的纳米纤维,其形貌如图1所示,直径为5±0.8nm。
实施例2
本实施例提供的纳米甲壳素复合薄膜的制备方法包括以下步骤:
(1)将实施例1中得到的浓度为0.25wt%的纳米甲壳素分散液缓慢滴加到浓度为0.25wt%的聚乙烯醇(分子量为67000,醇解度为99mol%)溶液中,纳米甲壳素分散液与聚乙烯醇溶液的最终体积比分别为1:1。
(2)将混合分散液搅拌过夜,离心脱泡,然后转移到塑料培养皿中,室温下干燥7天,得到纳米甲壳素/聚乙烯醇复合薄膜。
(3)复合薄膜浸泡在浓度为10mM的单宁酸溶液中2天,经过洗涤、干燥得到超分子交联的复合薄膜。
本实施例测试了单宁酸交联后的纳米甲壳素/聚乙烯醇复合薄膜在不同湿度或水中的力学性能,见图2。由图2可知:随湿度增加,复合薄膜的模量和拉伸强度稍有下降,但是整体上仍具有较好的性能,即使浸泡在水中之后其拉伸强度和模量仍分别高达90MPa和6GPa,表现出较高的耐水性。同时,在90%的湿度下,交联的复合薄膜的氧气透过率为0.06cm3 mm m-2 day-1,具有非常优异的阻隔性能。
实施例3
本实施例提供的纳米甲壳素复合薄膜的制备方法包括以下步骤:
(1)将实施例1中得到的浓度为0.25wt%的纳米甲壳素分散液缓慢滴加到浓度为0.25wt%的聚乙烯醇(分子量为195000,醇解度为99mol%)溶液中,纳米甲壳素分散液与聚乙烯醇溶液的最终体积比分别为2∶1。
(2)将混合分散液搅拌过夜,离心脱泡,然后转移到塑料培养皿中,室温下干燥7天,得到纳米甲壳素/聚乙烯醇复合薄膜。
(3)复合薄膜浸泡在浓度为10mM的单宁酸溶液中2天,经过洗涤、干燥得到超分子交联的复合薄膜。
本实施例测试了单宁酸交联后的甲壳素/聚乙烯醇复合薄膜在水中的拉伸性能,复合薄膜浸泡在水中之后其拉伸强度和模量分别高达120MPa和8GPa,氧气透过率为0.1cm3mm m-2 day-1,具有较高的耐水性和阻隔性能。
实施例4
本实施例提供的纳米甲壳素复合薄膜的制备方法包括以下步骤:
(1)将实施例1中得到的浓度为0.25wt%的纳米甲壳素分散液缓慢滴加到浓度为0.25wt%的聚乙烯醇(分子量为67000,醇解度为99mol%)溶液中,纳米甲壳素分散液与聚乙烯醇溶液的最终体积比分别为1∶1。
(2)将混合分散液搅拌过夜,离心脱泡,然后转移到塑料培养皿中,室温下干燥7天,得到纳米甲壳素/聚乙烯醇复合薄膜。
(3)复合薄膜浸泡在浓度为5mM的单宁酸溶液中2天,经过洗涤、干燥得到超分子交联的复合薄膜。
本实施例测试了单宁酸交联后的甲壳素/聚乙烯醇复合薄膜在水中的拉伸性能,复合薄膜浸泡在水中之后其拉伸强度和模量分别高达60MPa和3GPa,氧气透过率为0.08cm3mm m-2 day-1,具有较高的耐水性和阻隔性能。

Claims (8)

1.一种耐水的高强度高阻隔纳米甲壳素复合薄膜的制备方法,其特征在于,所述制备方法包括如下步骤:
(1)将纳米甲壳素分散液与聚乙烯醇溶液混合,得到核壳结构纳米纤维分散液;
(2)将核壳结构纳米纤维分散液进行脱泡处理,室温下干燥,得到纳米甲壳素/聚乙烯醇复合薄膜;
(3)将纳米甲壳素/聚乙烯醇复合薄膜浸泡在单宁酸溶液中,干燥得到纳米甲壳素复合薄膜。
2.根据权利要求1所述的耐水的高强度高阻隔纳米甲壳素复合薄膜的制备方法,其特征在于,在步骤(1)中,所述纳米甲壳素分散液的制备方法为:将甲壳素原料粉末与浓度为20~40wt%的NaOH溶液混合,在80~95℃下搅拌5~8小时;洗涤后重新分散于pH为3.5~4的醋酸溶液中,经高速均质、超声处理,得到纳米甲壳素分散液。
3.根据权利要求2所述的耐水的高强度高阻隔纳米甲壳素复合薄膜的制备方法,其特征在于,所述的甲壳素原料为去除矿物质之后的虾壳粉、蟹壳粉或鱿鱼顶骨中的任意一种。
4.根据权利要求1所述的耐水的高强度高阻隔纳米甲壳素复合薄膜的制备方法,其特征在于,在步骤(1)中,所述的聚乙烯醇的分子量为9000~500000,醇解度为80~100mol%。
5.根据权利要求1所述的耐水的高强度高阻隔纳米甲壳素复合薄膜的制备方法,其特征在于,在步骤(1)中,所述的纳米甲壳素分散液的浓度为0.01~0.25wt%。
6.根据权利要求1所述的耐水的高强度高阻隔纳米甲壳素复合薄膜的制备方法,其特征在于,在步骤(1)中,所述的聚乙烯醇溶液的浓度为0.01~0.25wt%。
7.根据权利要求1所述的耐水的高强度高阻隔纳米甲壳素复合薄膜的制备方法,其特征在于,在步骤(2)中,所述的复合薄膜中纳米甲壳素与聚乙烯醇的质量比为1:9~9:1。
8.根据权利要求1所述的耐水的高强度高阻隔纳米甲壳素复合薄膜的制备方法,其特征在于,在步骤(3)中,所述的单宁酸溶液浓度为1~100mM。
CN202310360885.5A 2023-04-04 2023-04-04 一种耐水的高强度高阻隔纳米甲壳素复合薄膜的制备方法 Pending CN116426025A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310360885.5A CN116426025A (zh) 2023-04-04 2023-04-04 一种耐水的高强度高阻隔纳米甲壳素复合薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310360885.5A CN116426025A (zh) 2023-04-04 2023-04-04 一种耐水的高强度高阻隔纳米甲壳素复合薄膜的制备方法

Publications (1)

Publication Number Publication Date
CN116426025A true CN116426025A (zh) 2023-07-14

Family

ID=87093834

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310360885.5A Pending CN116426025A (zh) 2023-04-04 2023-04-04 一种耐水的高强度高阻隔纳米甲壳素复合薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN116426025A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103342825A (zh) * 2013-07-10 2013-10-09 南京林业大学 一种甲壳素纳米纤维/聚乙烯醇复合膜的制备方法
CN109134897A (zh) * 2018-08-29 2019-01-04 华南理工大学 纳米甲壳素/聚乙烯醇复合薄膜的制备方法及其制得的复合薄膜和应用
CN109651624A (zh) * 2018-12-13 2019-04-19 福建农林大学 一种高韧性抗冻/抗热/抗菌植物多酚纳米纤维素导电水凝胶的制备方法
KR20190103559A (ko) * 2018-02-27 2019-09-05 서울대학교산학협력단 생체안정성과 기계적 물성이 향상된 생분해성 고분자 하이드로겔 복합체 및 이의 제조방법
CN113072719A (zh) * 2021-03-30 2021-07-06 武汉纺织大学 高强度多元交联水凝胶及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103342825A (zh) * 2013-07-10 2013-10-09 南京林业大学 一种甲壳素纳米纤维/聚乙烯醇复合膜的制备方法
KR20190103559A (ko) * 2018-02-27 2019-09-05 서울대학교산학협력단 생체안정성과 기계적 물성이 향상된 생분해성 고분자 하이드로겔 복합체 및 이의 제조방법
CN109134897A (zh) * 2018-08-29 2019-01-04 华南理工大学 纳米甲壳素/聚乙烯醇复合薄膜的制备方法及其制得的复合薄膜和应用
CN109651624A (zh) * 2018-12-13 2019-04-19 福建农林大学 一种高韧性抗冻/抗热/抗菌植物多酚纳米纤维素导电水凝胶的制备方法
CN113072719A (zh) * 2021-03-30 2021-07-06 武汉纺织大学 高强度多元交联水凝胶及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DAIHEON LEE ET AL.: "VATA: A Poly(vinyl alcohol)- and Tannic Acid-Based Nontoxic Underwater Adhesive", 《APPLIED MATERIALS & INTERFACES》, no. 12, pages 20933 - 20941 *

Similar Documents

Publication Publication Date Title
Wahid et al. Bacterial cellulose and its potential for biomedical applications
Huang et al. Introduction to nanocellulose
Menon et al. Extraction and modification of cellulose nanofibers derived from biomass for environmental application
Oksman et al. Review of the recent developments in cellulose nanocomposite processing
Ray et al. In situ processing of cellulose nanocomposites
Miao et al. Cellulose reinforced polymer composites and nanocomposites: a critical review
Kamel Nanotechnology and its applications in lignocellulosic composites, a mini review
Klemm et al. Nanocelluloses: a new family of nature‐based materials
Feng et al. Rice straw cellulose microfiber reinforcing PVA composite film of ultraviolet blocking through pre-cross-linking
Oksman et al. Novel bionanocomposites: processing, properties and potential applications
Niroomand et al. Fabrication and properties of cellulose-nanochitosan biocomposite film using ionic liquid
Barhoum et al. Nanocelluloses as new generation materials: Natural resources, structure-related properties, engineering nanostructures, and technical challenges
Yang et al. Fabrication of a highly elastic nanocomposite hydrogel by surface modification of cellulose nanocrystals
CN112175232A (zh) 一种基于纳米纤维素-石墨烯-聚乙烯醇-聚乙二胺的导电水凝胶的制备方法
Lv et al. Overview of preparation, modification, and application of tunicate-derived nanocellulose
Zhang et al. Recent developments of nanocellulose and its applications in polymeric composites
Ruka et al. Bacterial cellulose and its use in renewable composites
CN115044106B (zh) 一种抗紫外高强度淀粉纳米复合膜的制备方法
Boujemaoui et al. Nanostructural effects in high cellulose content thermoplastic nanocomposites with a covalently grafted cellulose–poly (methyl methacrylate) interface
Zuber et al. Chitin and chitosan based blends, composites and nanocomposites
Ofem et al. Properties of chitin reinforces composites: a review
Chen et al. Natural polysaccharide: Modification and application
CN101747443A (zh) 用于细菌纤维素表面改性的大分子偶联剂及其制备方法和用途
CN112898601B (zh) 一种具有高强度和优良生物相容性的无机纳米粒子增强壳聚糖基水凝胶及其制备方法
Yu et al. Mechanical Properties of Cellulose Nanofibril (CNF)‐and Cellulose Nanocrystal (CNC)‐Based Nanocomposites

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination