CN116418397B - 一种用户公平性的速率分集辅助的可见光通信方法及*** - Google Patents

一种用户公平性的速率分集辅助的可见光通信方法及*** Download PDF

Info

Publication number
CN116418397B
CN116418397B CN202310686575.2A CN202310686575A CN116418397B CN 116418397 B CN116418397 B CN 116418397B CN 202310686575 A CN202310686575 A CN 202310686575A CN 116418397 B CN116418397 B CN 116418397B
Authority
CN
China
Prior art keywords
target
rate
terminal
vector
expressed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310686575.2A
Other languages
English (en)
Other versions
CN116418397A (zh
Inventor
王玉皞
王谦
刘晓东
文泽阳
吴思祺
陈煊邦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanchang University
Original Assignee
Nanchang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanchang University filed Critical Nanchang University
Priority to CN202310686575.2A priority Critical patent/CN116418397B/zh
Publication of CN116418397A publication Critical patent/CN116418397A/zh
Application granted granted Critical
Publication of CN116418397B publication Critical patent/CN116418397B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/114Indoor or close-range type systems
    • H04B10/116Visible light communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0086Network resource allocation, dimensioning or optimisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

本发明提供了一种用户公平性的速率分集辅助的可见光通信方法及***,通过建立目标模型,并获取目标模型中的目标参数,计算信道增益矢量以及终端的最小可达速率,再获取优化参数及优化参数对应的约束条件,进行初始化处理,后将初始优化参数迭代更新,得到目标参数,并确定目标参数中的目标最小可达速率,获取相邻两次更新后的目标最小可达速率,并计算目标差值,判断目标差值是否小于预设值,若否,则循环上述迭代更新,直至目标差值小于预设值,获取当前目标参数的目标公共速率向量和目标预编码矩阵,计算各终端的可达速率并输出,以保证各终端分配资源的公平性。

Description

一种用户公平性的速率分集辅助的可见光通信方法及***
技术领域
本发明属于可见光通信的技术领域,具体涉及一种用户公平性的速率分集辅助的可见光通信方法及***。
背景技术
随着高速率通信服务应用于生活中各行各业,智慧城市、智能家居和智能交通等物联领域迅猛发展,超高清视频和增强现实等新型业务逐渐兴起,6G及未来无线通信网络必须要满足高数据速率、密集型高容量、强安全性和超低延迟通信这些基本需求,可见光通信(Visible Light Communication,VLC)作为满足上述需求的有效技术之一,可以同时提供高速通信和高效照明服务,能够有效的缓解当前传统无线电的频谱紧张问题,因此可见光通信的研究具有积极意义。
然而,由于发光二极管(Light Emitting Diode,LED)器件调制带宽有限,可见光通信的频谱利用率亟须提高。作为4G和5G技术中最为成熟的正交频分多址技术可以有效提高频谱效率,而由于可见光通信信号需要满足非负实数信号,将正交频分复用技术应用于可见光同通信需要做出适配性调整,而由此将造成正交频分复用技术的频谱增益或能量效率明显降低。同时,非正交多址技术通过在时域、码率或功率域资源的非正交叠加的方式提高***的频谱利用效率,但因为采用了非正交叠加编码方式,为此其接收端的解码复杂度相比于正交多址更加复杂,并且其复杂度随着叠加用户数的递增而指数级增长。为此,探索适合于可见光通信的新型多址调制接入技术对于提高***频谱效率和用户连接能力至关重要。
速率分集多址(Rate Splitting Multiple Access,RSMA)得益于消息的拆分设计以及用户消息的公共部分和私有部分之间的功率分配策略,相比于现有的正交频分多址和非正交多址接入机制,RSMA具有速率高、鲁棒性好、频谱效率高、计算复杂度低、适用于各种无线网络负载(欠载和过载状态)等优点。得益于此,RSMA成为学术界和工业界的研究热点,并成为未来无线通信技术的有效支撑技术。
目前国内外对RSMA技术应用于VLC的研究还处于起步阶段,大部分研究主要集中在频谱效率以及总速率的性能表征,而对通信***的另一性能指标,即速率公平性的研究较少。具体来说,当RSMA***中存在多个用户时,需要考虑***中用户之间的资源分配,也即为使每个用户能够尽可能分配到相等的资源,需要考虑***的速率公平性问题,特别是对于依赖直射链路传输的可见光通信网络,由于可见光通信的信道增益与收发间距的平方成反比,其信道衰减相对于传统射频通信更为严重。为此,可见光通信网络的增益分布方差更大。换言之,可见光通信节点的边缘用户信道质量将显著弱于中心区域用户,而由此带来的用户公平***问题更加突出。
发明内容
基于此,本发明实施例当中提供了一种用户公平性的速率分集辅助的可见光通信方法及***,旨在解决基于速率分集多址的可见光通信***的速率公平性问题,以使可见光通信节点的边缘用户和中心区域用户尽可能分配到相等的资源。
本发明实施例的第一方面提供了一种用户公平性的速率分集辅助的可见光通信方法,所述方法包括:
步骤一,建立目标模型,并获取所述目标模型中的目标参数,根据所述目标参数计算信道增益矢量,其中,所述目标模型中包括至少一个光源和多个终端,所述信道增益矢量用于计算终端的最小可达速率;
步骤二,获取优化参数及所述优化参数对应的约束条件,将所述优化参数进行初始化处理,得到初始优化参数,其中,所述优化参数包括终端的最小可达速率、预编码矩阵、公共速率向量、终端解密公共流的干扰和噪声的第一向量以及终端解密私有流的干扰和噪声的第二向量;
步骤三,将所述初始优化参数迭代更新,得到目标参数,并确定所述目标参数中的目标最小可达速率;
步骤四,获取相邻两次更新后的目标最小可达速率,并计算目标差值,判断所述目标差值是否小于预设值;
步骤五,若否,则循环步骤三至步骤四,直至所述目标差值小于预设值;
步骤六,获取当前目标参数的目标公共速率向量和目标预编码矩阵,并根据所述目标公共速率向量和所述目标预编码矩阵,计算各终端的可达速率并输出,以保证各终端分配资源的公平性。
进一步的,所述建立目标模型,并获取所述目标模型中的目标参数,根据所述目标参数计算信道增益矢量的步骤中,所述信道增益矢量的计算公式为:
其中,表示为第i个光源与第k个终端之间的信道增益,Nt表示为光源的总数量,/>表示为各光源与第k个终端之间的信道增益矢量,n表示为朗伯发射阶数,/>表示为终端PD的接收面积,/>表示为第i个光源与第k个终端之间的空间距离,/>表示为光滤波器增益,/>表示为光电转换效率常数,/>和/>分别表示为光源的出射角和终端PD接收的入射角,/>表示为光集中器的增益。
进一步的,所述信道增益矢量用于计算终端的最小可达速率,其中,终端的最小可达速率的计算公式为:
其中,表示为公共流的预编码向量,/>表示为第k个终端的噪声,/>表示为第i个终端的预编码向量,/>表示为第j个终端的预编码向量,/>表示为第k个终端的预编码向量,/>表示为各光源与第k个终端之间的信道增益矢量,/>表示为第k个终端解码公共信息流的信干噪比,/>表示为自然底数常数,/>表示为***带宽,/>表示为第k个终端解码公共流的可达速率,/>表示为解码公共流的可达速率,/>表示为第k个终端解码私有信息流的信干噪比,/>表示为终端的最小可达速率,/>表示为第k个终端的公共信息速率,/>表示为第k个终端解码私有流的可达速率,/>,Nr表示为终端的总数量。
进一步的,所述获取优化参数及所述优化参数对应的约束条件,将所述优化参数进行初始化处理,得到初始优化参数的步骤中,所述预编码矩阵进行初始化的公式为:
其中,表示为预编码矩阵P的第i行第j列元素,/>和/>分别表示为光源线性区域驱动电流的上、下界,满足/>,/>表示为光源添加的直流分量偏置;
所述公共速率向量进行初始化的公式为Rc/Nr,其中,表示为解码公共流的可达速率,Nr表示为终端的总数量;
所述第一向量进行初始化的公式为:
其中,表示为松弛变量;
所述第二向量进行初始化的公式为:
其中,表示为松弛变量。
进一步的,所述将所述初始优化参数迭代更新,得到目标参数的步骤中,迭代更新的公式为:
其中,、/>、/>、/>、/>以及/>均表示为松弛变量,/>,/>表示为第k个终端的预编码向量进行第m次迭代的变量值,/>表示为公共流的预编码向量进行第m次迭代的变量值。
进一步的,所述获取当前目标参数的目标公共速率向量和目标预编码矩阵,并根据所述目标公共速率向量和所述目标预编码矩阵,计算各终端的可达速率并输出的步骤中,可达速率的计算公式为:
其中,表示为第k个终端的可达速率,/>表示为所述目标公共速率向量中第k个终端的公共速率,/>表示为各光源与第k个终端之间的信道增益矢量,/>表示为所述目标预编码矩阵中第k个终端的预编码向量。
本发明实施例的第二方面提供了一种用户公平性的速率分集辅助的可见光通信***,所述***包括:
目标模型建立模块,用于建立目标模型,并获取所述目标模型中的目标参数,根据所述目标参数计算信道增益矢量,其中,所述目标模型中包括至少一个光源和多个终端,所述信道增益矢量用于计算终端的最小可达速率;
初始化处理模块,用于获取优化参数及所述优化参数对应的约束条件,将所述优化参数进行初始化处理,得到初始优化参数,其中,所述优化参数包括终端的最小可达速率、预编码矩阵、公共速率向量、终端解密公共流的干扰和噪声的第一向量以及终端解密私有流的干扰和噪声的第二向量;
迭代更新模块,用于将所述初始优化参数迭代更新,得到目标参数,并确定所述目标参数中的目标最小可达速率;
判断模块,用于获取相邻两次更新后的目标最小可达速率,并计算目标差值,判断所述目标差值是否小于预设值;
循环模块,用于当判断所述目标差值不小于预设值时,则循环所述迭代更新模块至所述判断模块,直至所述目标差值小于预设值;
可达速率计算模块,用于获取当前目标参数的目标公共速率向量和目标预编码矩阵,并根据所述目标公共速率向量和所述目标预编码矩阵,计算各终端的可达速率并输出,以保证各终端分配资源的公平性。
本发明实施例的第三方面提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如第一方面所述的用户公平性的速率分集辅助的可见光通信方法。
本发明实施例的第四方面提供了一种电子设备,包括存储器、处理器以及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现如第一方面所述的用户公平性的速率分集辅助的可见光通信方法。
与现有技术相比,通过建立目标模型,并获取目标模型中的目标参数,计算信道增益矢量以及终端的最小可达速率,再获取优化参数及优化参数对应的约束条件,进行初始化处理,后将初始优化参数迭代更新,得到目标参数,并确定目标参数中的目标最小可达速率,获取相邻两次更新后的目标最小可达速率,并计算目标差值,判断目标差值是否小于预设值,若否,则循环上述迭代更新,直至目标差值小于预设值,获取当前目标参数的目标公共速率向量和目标预编码矩阵,计算各终端的可达速率并输出,以解决基于速率分集多址的可见光通信***的速率公平性问题,以使可见光通信节点的边缘用户和中心区域用户尽可能分配到相等的资源。
附图说明
图1为用户公平性的速率分集辅助的可见光通信方法的实现流程图;
图2为可见光通信网络场景示意图;
图3为基于速率分集多址接入的多用户公平的可见光通信***发射端示意图;
图4为基于速率分集多址接入的多用户公平的可见光通信***接收端示意图;
图5为本发明实施例一提供的一种基于速率分集多址接入的可见光通信***的房间配置和用户场景示意图;
图6为本发明实施例二提供的一种用户公平性的速率分集辅助的可见光通信***的结构示意图;
图7为本发明实施例三当中的电子设备的结构框图。
以下具体实施方式将结合上述附图进一步说明。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的若干实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容更加透彻全面。
需要说明的是,当元件被称为“固设于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
本发明实施例提供了一种用户公平性的速率分集辅助的可见光通信方法,请参阅图1,为用户公平性的速率分集辅助的可见光通信方法的实现流程图,所述方法具体包括步骤一至步骤六。
步骤一,建立目标模型,并获取所述目标模型中的目标参数,根据所述目标参数计算信道增益矢量,其中,所述目标模型中包括至少一个光源和多个终端,所述信道增益矢量用于计算终端的最小可达速率。
具体的,首先建立目标模型,该目标模型为基于速率分集多址接入的多用户公平的可见光通信***模型,请参阅图2,为可见光通信网络场景示意图,其中,存在个LED为网络内的/>个用户提供公平的高速率通信服务,采用RSMA作为用户接入策略,可以理解的,LED为光源,用户为终端,在本实施例当中,也即光电二极管(PhotoDiode,PD)。
请参阅图3,为基于速率分集多址接入的多用户公平的可见光通信***发射端示意图,其中,发射端采用如图3所示的发射机制实现RSMA辅助的多用户可见光通信信息传输。具体来说, RSMA分别把发送给用户的消息/> 分为公共部分/>和私有部分/>。然后,所有用户的公共部分被组合并编码成一个公共流/>,并可由所有用户解码,每个用户的私有部分被分别编码到私有流/>中。
请参阅图4,为基于速率分集多址接入的多用户公平的可见光通信***接收端示意图,其中,接收端采用如图4所示的接收机制实现RSMA辅助的多用户可见光通信信息传输。具体来说,用户通过连续干扰消除(Successive Interference Cancellation,SIC)技术先解码公共信号并将其影响消除,用户 在将其他用户的私有消息视为噪声的情况下解码属于自身私有消息/>,最后将解码出来的私有消息/>和解码出来的属于用户/>的公共消息/>合并,即可恢复出原信号。
定义信号流并假设/>,/>表示数学期望,T表示转置,/>表示单位矩阵,预编码矩阵/>,/> 表示终端(用户)/>的预编码向量。为了保证LED传输信号非负,还需要在预编码流中添加直流偏置/>,传输信号可表示为:
(1)
在VLC***中,为了保证LED工作在线性工作区域内,避免信号失真,预编码矩阵应该满足下面要求:
(2)
其中,表示/>的第/>行,/>表示预编码矩阵/>的第/>行向量的/>范数,即对预编码矩阵/>的第/>行向量元素的绝对值求和,/>和/>分别表示LED线性区域驱动电流的上、下界且满足/>,/>表示为光源添加的直流分量偏置。
在接收器处,各用户所接收的光信号被其自身的PD检测并由PD将光信号转化为电信号。因此,第个用户的接收信号表示为:
(3)
其中,表示叠加在第/>个用户的均值为零,方差为/>的高斯白噪声(AdditiveWhite Gaussian Noise,AWGN)。/>为发射LED阵列与第/>个用户之间的信道增益矢量,即各光源与第k个终端之间的信道增益矢量,第/> 个LED与第/>个用户之间视距链路的可见光信道增益/>可由下式计算:
(4a)
(4b)
(4c)
其中,n表示为朗伯发射阶数,表示为终端PD的接收面积,/>表示为接收用户与光辐射源LED之间的空间距离,也即第i个光源与第k个终端之间的空间距离,/>表示为光滤波器增益,/>表示为光电转换效率常数,/>和/>分别表示为光源的出射角和终端PD接收的入射角,/>表示为半功率角,/>表示为折射系数,/>表示为接收视场角(Field ofView,FoV),Nt表示为光源的总数量,/>表示为光集中器的增益。
进一步的,可以通过下述方法计算终端的最小可达速率,可以理解为用户的最小可达速率:
在可见光通信***中,直流偏置不携带任何数据,可以通过交流(AC)耦合移除。因此,第个用户解码公共信息流/>的信干噪比(SINR)表示为:
(5)
表示为公共流的预编码向量,/>表示为第k个终端的噪声,/>表示为第i个终端的预编码向量,由于可见光通信的信号受平均功率约束,而传统的香农定理是针对受峰值功率约束。因此,可见光通信的信道容量不同于传统射频通信。在本实施例当中,第/>个用户解码公共流/>的可达速率给定为:
(6)
其中,表示为自然底数常数,/>表示为***带宽,为了确保公共流/>能被所有用户成功解码,解码公共流的可达速率可以表示为:
(7)
根据RSMA的解码原理,被区域范围内的所有用户共享,定义/>表示为第/>个用户公共信息速率,可以得到:
(8)
解码完公共流之后,利用SIC技术消除公共数据流,由此可知,第个用户解码私有流的信干噪比计算表达式给定为:
(9)
其中,表示为第j个终端的预编码向量,/>表示为第k个终端的预编码向量,则第个终端(用户)解码私有流/>的可达速率可表示为:
(10)
即终端(用户)的最小可达速率可表示为:
(11)
步骤二,获取优化参数及所述优化参数对应的约束条件,将所述优化参数进行初始化处理,得到初始优化参数,其中,所述优化参数包括终端的最小可达速率、预编码矩阵、公共速率向量、终端解密公共流的干扰和噪声的第一向量以及终端解密私有流的干扰和噪声的第二向量。
需要说明的是,预编码矩阵进行初始化的公式为:
其中,表示为预编码矩阵P的第i行第j列元素,/>和/>分别表示为光源线性区域驱动电流的上、下界,满足/>,/>表示为光源添加的直流分量偏置;
公共速率向量进行初始化的公式为Rc/Nr,其中,表示为解码公共流的可达速率,Nr表示为终端的总数量;
所述第一向量进行初始化的公式为:
其中,表示为松弛变量;
所述第二向量进行初始化的公式为:
其中,表示为松弛变量。
步骤三,将所述初始优化参数迭代更新,得到目标参数,并确定所述目标参数中的目标最小可达速率。
具体的,迭代更新的数学模型的推导过程为:
通过最大化最小用户可达速率来解决速率分集辅助的可见光通信***中的速率公平性问题,构建的优化问题如下:
首先设定信号流,预编码矩阵/>,LED与第/>个用户之间的信道增益矢量/>以及第/>个用户的接收信号/>。然后考虑可见光通信***的LED线性工作区域和用户公共信息速率联合约束,最后通过优化预编码矩阵和用户公共速率,建立最大化用户最小可达速率问题模型,其数学模型建模给定为:
(12a)
(12b)
(12c)
(12d)
其中,表示为第/>个终端(用户)的公共信息速率,/>表示为第/>个终端(用户)的解码私有流/>的可达速率,/>表示为第/>个终端(用户)解码公共流/>的可达速率,/>和/>分别表示为光源(LED)线性区域驱动电流的上、下界,满足/>
从问题重构的角度出发,为了能够有效地处理最大最小公平性问题,首先引入辅助变量来作为所有用户中最小可达速率的下界,那么最大最小公平优化问题可以重构为:
(13a)
(13b)
(13c)
(13d)
(13e)
由于该问题仍然是非凸问题,难以直接求解,接下来使用基于松弛变量和连续凸逼近求解优化问题,最终近似为凸问题。
优化问题(13),即(13a)至(13e),的非凸性来源于约束(13b)和(13c),为了处理约束(13b)的非凸性,首先引入松弛变量,/>,/>(/>),将约束(13b)转化为:
同理,为了处理(13c)的非凸性,我们引入松弛变量,/>,/>(/>),将约束(13c)转化为:
至此,除了约束(14c)和约束(15c),其余约束条件均为凸约束。更进一步的,为了处理(14c)和(15c)的非凸性,本申请采用线性近似的方法将非凸约束转化为凸约束,进而通过迭代算法得到渐进最优解。对于(14c)和(15c),分别在点,/>和/>进行一阶泰勒展开的算式近似,其中,上标(m)表示为第m次迭代的变量值。因此,约束条件(14c)和(15c)可重新写为:
(16a)
(16b)
综上所述,问题(12),即(12a)至(12d),最终可以转化为如下给定的数学模型,即迭代更新的数学模型:
(17a)
(17b)
(17c)
(17d)
(17e)
(17f)
(17g)
(17h)
(17i)
(17j)
(17k)
从上述模型可知,优化问题为凸优化问题,也即原始优化问题(12),即(12a)至(12d) 的近似凸问题,进而利用凸优化工具箱求解问题(17),即(17a)至(17k),即可获得原非凸优化问题的近似解。
在本实施例当中,记,/>,其中,/>表示为终端(用户)解码公共流的干扰和噪声的第一向量,/>表示终端(用户)解码私有流的干扰和噪声的第二向量,公共速率向量/>
步骤四,获取相邻两次更新后的目标最小可达速率,并计算目标差值,判断所述目标差值是否小于预设值,若否,则执行步骤五。
可以理解的,每次经过迭代更新后,都会生成新的目标参数,获取目标参数中的目标最小可达速率,并将相邻两次更新后的目标最小可达速率作差,差值即为目标差值。
步骤五,则循环步骤三至步骤四,直至所述目标差值小于预设值。
步骤六,获取当前目标参数的目标公共速率向量和目标预编码矩阵,并根据所述目标公共速率向量和所述目标预编码矩阵,计算各终端的可达速率并输出,以保证各终端分配资源的公平性。
在已知当前目标参数的目标公共速率向量和目标预编码矩阵的情况下,可以根据可达速率的计算公式计算各终端的可达速率,具体的,可达速率的计算公式为:
其中,表示为第k个终端的可达速率,/>表示为目标公共速率向量中第k个终端的公共速率,/>表示为各光源与第k个终端之间的信道增益矢量,/>表示为目标预编码矩阵中第k个终端的预编码向量。
本发明的有益效果为:
1)首先建立了适配于可见光通信***的速率分集多址接入,以此缓解调制带宽限制,进而提高可见光通信的频谱效率。
2)通过优化预编码矩阵和公共速率向量来最大化速率分集多址辅助的可见光通信***中用户的最小可达速率,进而提高速率分集多址辅助的可见光通信***的多用户公平***能力。
3)提出基于松弛变量和连续凸逼近的方法来求解该优化问题,从而使得原非凸问题可以通过凸优化工具箱快速求解并获得可行的优化解。
综上,本发明实施例提出的一种用户公平性的速率分集辅助的可见光通信方法,通过建立目标模型,并获取目标模型中的目标参数,计算信道增益矢量以及终端的最小可达速率,再获取优化参数及优化参数对应的约束条件,进行初始化处理,后将初始优化参数迭代更新,得到目标参数,并确定目标参数中的目标最小可达速率,获取相邻两次更新后的目标最小可达速率,并计算目标差值,判断目标差值是否小于预设值,若否,则循环上述迭代更新,直至目标差值小于预设值,获取当前目标参数的目标公共速率向量和目标预编码矩阵,计算各终端的可达速率并输出,以解决基于速率分集多址的可见光通信***的速率公平性问题,以使可见光通信节点的边缘用户和中心区域用户尽可能分配到相等的资源。
下面以具体实施例对本发明进行进一步说明:
实施例一
请参阅图5,图5为本发明实施例一提供的一种基于速率分集多址接入的可见光通信***的房间配置和用户场景示意图,其中,两个LED灯具在的房间中为两个单PD用户提供照明和通信服务,即/>
假定两个LED灯具位于天花板上,坐标分别为(2,2,3)和(3,2,3);PD1表示为中心区域用户,PD2表示可见光通信节点边缘用户,两个单PD用户分别位于(2.5,2,1)和(4,3,1),即可通过坐标计算出接收用户与光辐射源LED之间的空间距离;假定PD的接收面积;光滤波器增益/>;光电转换效率常数/>; 半功率角/>;接收视场角/>,因此通过式(4)即可计算得到两个用户的信道增益矢量
初始化步骤:将优化参数初始化,得到初始优化参数,该优化参数包括终端的最小可达速率、预编码矩阵、公共速率向量、终端解密公共流的干扰和噪声的第一向量以及终端解密私有流的干扰和噪声的第二向量。具体的,基于问题(17),即(17a)至(17k),的约束条件生成初始优化参数,预编码矩阵/>可通过寻找满足约束(17j)的预编码矩阵来对其进行初始化;公共速率向量/>可通过假设最小公共速率/>被均匀分配给两个用户来进行初始化,即/>,/>和/>可分别通过对不等式约束(17i)和(17e)取等来进行初始化。
迭代更新步骤:将生成的初始值代入到问题(17),即(17a)至(17k),进行求解更新得到/>,/>分别表示为最小可达速率、预编码矩阵、公共速率向量、第一向量以及第二向量的初始值,/>分别表示为最小可达速率、预编码矩阵、公共速率向量、第一向量以及第二向量的优化值。
判断步骤:判断目标差值是否小于预设值。
重复步骤:重复迭代更新步骤和判断步骤,直至满足目标差值小于预设值时,循环结束。
计算步骤:输出目标参数中公共速率向量和预编码矩阵,并计算用户1和用户2的可达速率。因此,用户1和用户2的可达速率和/>可给定为:
(18a)
(18b)
其中,和/>分别表示用户1和用户2的信道增益矢量,/>和/>分别表示用户1和用户2的噪声。
实施例二
请参阅图6,为本发明实施例二提供了一种用户公平性的速率分集辅助的可见光通信***的结构示意图,所述用户公平性的速率分集辅助的可见光通信***200具体包括:
目标模型建立模块21,用于建立目标模型,并获取所述目标模型中的目标参数,根据所述目标参数计算信道增益矢量,其中,所述目标模型中包括至少一个光源和多个终端,所述信道增益矢量用于计算终端的最小可达速率,其中,所述信道增益矢量的计算公式为:
其中,表示为第i个光源与第k个终端之间的信道增益,Nt表示为光源的总数量,/>表示为各光源与第k个终端之间的信道增益矢量,n表示为朗伯发射阶数,/>表示为终端PD的接收面积,/>表示为第i个光源与第k个终端之间的空间距离,/>表示为光滤波器增益,/>表示为光电转换效率常数,/>和/>分别表示为光源的出射角和终端PD接收的入射角,/>表示为光集中器的增益,另外,终端的最小可达速率的计算公式为:
其中,表示为公共流的预编码向量,/>表示为第k个终端的噪声,/>表示为第i个终端的预编码向量,/>表示为第j个终端的预编码向量,/>表示为第k个终端的预编码向量,/>表示为各光源与第k个终端之间的信道增益矢量,/>表示为第k个终端解码公共信息流的信干噪比,/>表示为自然底数常数,/>表示为***带宽,/>表示为第k个终端解码公共流的可达速率,/>表示为解码公共流的可达速率,/>表示为第k个终端解码私有信息流的信干噪比,/>表示为终端的最小可达速率,/>表示为第k个终端的公共信息速率,/>表示为第k个终端解码私有流的可达速率,/>,Nr表示为终端的总数量;
初始化处理模块22,用于获取优化参数及所述优化参数对应的约束条件,将所述优化参数进行初始化处理,得到初始优化参数,其中,所述优化参数包括终端的最小可达速率、预编码矩阵、公共速率向量、终端解密公共流的干扰和噪声的第一向量以及终端解密私有流的干扰和噪声的第二向量,其中,所述预编码矩阵进行初始化的公式为:
其中,表示为预编码矩阵P的第i行第j列元素,/>和/>分别表示为光源线性区域驱动电流的上、下界,满足/>,/>表示为光源添加的直流分量偏置;
所述公共速率向量进行初始化的公式为Rc/Nr,其中,表示为解码公共流的可达速率,Nr表示为终端的总数量;
所述第一向量进行初始化的公式为:
其中,表示为松弛变量;
所述第二向量进行初始化的公式为:
其中,表示为松弛变量;
迭代更新模块23,用于将所述初始优化参数迭代更新,得到目标参数,并确定所述目标参数中的目标最小可达速率,其中,迭代更新的公式为:
其中,、/>、/>、/>、/>以及/>均表示为松弛变量,/>,/>表示为第k个终端的预编码向量进行第m次迭代的变量值,/>表示为公共流的预编码向量进行第m次迭代的变量值;
判断模块24,用于获取相邻两次更新后的目标最小可达速率,并计算目标差值,判断所述目标差值是否小于预设值;
循环模块25,用于当判断所述目标差值不小于预设值时,则循环所述迭代更新模块23至所述判断模块24,直至所述目标差值小于预设值;
可达速率计算模块26,用于获取当前目标参数的目标公共速率向量和目标预编码矩阵,并根据所述目标公共速率向量和所述目标预编码矩阵,计算各终端的可达速率并输出,以保证各终端分配资源的公平性,其中,可达速率的计算公式为:
其中,表示为第k个终端的可达速率,/>表示为所述目标公共速率向量中第k个终端的公共速率,/>表示为各光源与第k个终端之间的信道增益矢量,/>表示为所述目标预编码矩阵中第k个终端的预编码向量。
实施例三
本发明另一方面还提出一种电子设备,请参阅图7,所示为本发明实施例三当中的电子设备的结构框图,包括存储器20、处理器10以及存储在存储器上并可在处理器上运行的计算机程序30,所述处理器10执行所述计算机程序30时实现如上述的用户公平性的速率分集辅助的可见光通信方法。
其中,处理器10在一些实施例中可以是中央处理器(Central Processing Unit,CPU)、控制器、微控制器、微处理器或其他数据处理芯片,用于运行存储器20中存储的程序代码或处理数据,例如执行访问限制程序等。
其中,存储器20至少包括一种类型的可读存储介质,所述可读存储介质包括闪存、硬盘、多媒体卡、卡型存储器(例如,SD或DX存储器等)、磁性存储器、磁盘、光盘等。存储器20在一些实施例中可以是电子设备的内部存储单元,例如该电子设备的硬盘。存储器20在另一些实施例中也可以是电子设备的外部存储装置,例如电子设备上配备的插接式硬盘,智能存储卡(Smart Media Card, SMC),安全数字(Secure Digital, SD)卡,闪存卡(FlashCard)等。进一步地,存储器20还可以既包括电子设备的内部存储单元也包括外部存储装置。存储器20不仅可以用于存储电子设备的应用软件及各类数据,还可以用于暂时地存储已经输出或者将要输出的数据。
需要指出的是,图7示出的结构并不构成对电子设备的限定,在其它实施例当中,该电子设备可以包括比图示更少或者更多的部件,或者组合某些部件,或者不同的部件布置。
本发明实施例还提出一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如上述的用户公平性的速率分集辅助的可见光通信方法。
本领域技术人员可以理解,在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行***、装置或设备(如基于计算机的***、包括处理器的***或其他可以从指令执行***、装置或设备取指令并执行指令的***)使用,或结合这些指令执行***、装置或设备而使用。就本说明书而言,“计算机可读介质”可以是任何可以包含、存储、通信、传播或传输程序以供指令执行***、装置或设备或结合这些指令执行***、装置或设备而使用的装置。
计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本发明的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行***执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或它们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。

Claims (8)

1.一种用户公平性的速率分集辅助的可见光通信方法,其特征在于,所述方法包括:
步骤一,建立目标模型,并获取所述目标模型中的目标参数,根据所述目标参数计算信道增益矢量,其中,所述目标模型中包括至少一个光源和多个终端,所述信道增益矢量用于计算终端的最小可达速率;
步骤二,获取优化参数及所述优化参数对应的约束条件,将所述优化参数进行初始化处理,得到初始优化参数,其中,所述优化参数包括终端的最小可达速率、预编码矩阵、公共速率向量、终端解密公共流的干扰和噪声的第一向量以及终端解密私有流的干扰和噪声的第二向量;
步骤三,将所述初始优化参数迭代更新,得到目标参数,并确定所述目标参数中的目标最小可达速率;
步骤四,获取相邻两次更新后的目标最小可达速率,并计算目标差值,判断所述目标差值是否小于预设值;
步骤五,若否,则循环步骤三至步骤四,直至所述目标差值小于预设值;
步骤六,获取当前目标参数的目标公共速率向量和目标预编码矩阵,并根据所述目标公共速率向量和所述目标预编码矩阵,计算各终端的可达速率并输出,以保证各终端分配资源的公平性;
所述将所述初始优化参数迭代更新,得到目标参数的步骤中,迭代更新的公式为:
其中,、/>、/>、/>、/>以及/>均表示为松弛变量,/>,/>表示为第k个终端的预编码向量进行第m次迭代的变量值,/>表示为公共流的预编码向量进行第m次迭代的变量值。
2.根据权利要求1所述的用户公平性的速率分集辅助的可见光通信方法,其特征在于,所述建立目标模型,并获取所述目标模型中的目标参数,根据所述目标参数计算信道增益矢量的步骤中,所述信道增益矢量的计算公式为:
其中,表示为第i个光源与第k个终端之间的信道增益,Nt表示为光源的总数量,/>表示为各光源与第k个终端之间的信道增益矢量,n表示为朗伯发射阶数,/>表示为终端PD的接收面积,/>表示为第i个光源与第k个终端之间的空间距离,/>表示为光滤波器增益,/>表示为光电转换效率常数,/>和/>分别表示为光源的出射角和终端PD接收的入射角,/>表示为光集中器的增益。
3.根据权利要求2所述的用户公平性的速率分集辅助的可见光通信方法,其特征在于,所述信道增益矢量用于计算终端的最小可达速率,其中,终端的最小可达速率的计算公式为:
其中,表示为公共流的预编码向量,/>表示为第k个终端的噪声,/>表示为第i个终端的预编码向量,/>表示为第j个终端的预编码向量,/>表示为第k个终端的预编码向量,/>表示为各光源与第k个终端之间的信道增益矢量,/>表示为第k个终端解码公共信息流的信干噪比,/>表示为自然底数常数,/>表示为***带宽,/>表示为第k个终端解码公共流的可达速率,/>表示为解码公共流的可达速率,/>表示为第k个终端解码私有信息流的信干噪比,/>表示为终端的最小可达速率,/>表示为第k个终端的公共信息速率,/>表示为第k个终端解码私有流的可达速率,/>,Nr表示为终端的总数量。
4.根据权利要求3所述的用户公平性的速率分集辅助的可见光通信方法,其特征在于,所述获取优化参数及所述优化参数对应的约束条件,将所述优化参数进行初始化处理,得到初始优化参数的步骤中,所述预编码矩阵进行初始化的公式为:
其中,表示为预编码矩阵P的第i行第j列元素,/>和/>分别表示为光源线性区域驱动电流的上、下界,满足/>,/>表示为光源添加的直流分量偏置;
所述公共速率向量进行初始化的公式为Rc/Nr,其中,表示为解码公共流的可达速率,Nr表示为终端的总数量;
所述第一向量进行初始化的公式为:
其中,表示为松弛变量;
所述第二向量进行初始化的公式为:
其中,表示为松弛变量。
5.根据权利要求4所述的用户公平性的速率分集辅助的可见光通信方法,其特征在于,所述获取当前目标参数的目标公共速率向量和目标预编码矩阵,并根据所述目标公共速率向量和所述目标预编码矩阵,计算各终端的可达速率并输出的步骤中,可达速率的计算公式为:
其中,表示为第k个终端的可达速率,/>表示为所述目标公共速率向量中第k个终端的公共速率,/>表示为各光源与第k个终端之间的信道增益矢量,/>表示为所述目标预编码矩阵中第k个终端的预编码向量。
6.一种用户公平性的速率分集辅助的可见光通信***,其特征在于,所述***包括:
目标模型建立模块,用于建立目标模型,并获取所述目标模型中的目标参数,根据所述目标参数计算信道增益矢量,其中,所述目标模型中包括至少一个光源和多个终端,所述信道增益矢量用于计算终端的最小可达速率;
初始化处理模块,用于获取优化参数及所述优化参数对应的约束条件,将所述优化参数进行初始化处理,得到初始优化参数,其中,所述优化参数包括终端的最小可达速率、预编码矩阵、公共速率向量、终端解密公共流的干扰和噪声的第一向量以及终端解密私有流的干扰和噪声的第二向量;
迭代更新模块,用于将所述初始优化参数迭代更新,得到目标参数,并确定所述目标参数中的目标最小可达速率,其中,迭代更新的公式为:
其中,、/>、/>、/>、/>以及/>均表示为松弛变量,/>,/>表示为第k个终端的预编码向量进行第m次迭代的变量值,/>表示为公共流的预编码向量进行第m次迭代的变量值;
判断模块,用于获取相邻两次更新后的目标最小可达速率,并计算目标差值,判断所述目标差值是否小于预设值;
循环模块,用于当判断所述目标差值不小于预设值时,则循环所述迭代更新模块至所述判断模块,直至所述目标差值小于预设值;
可达速率计算模块,用于获取当前目标参数的目标公共速率向量和目标预编码矩阵,并根据所述目标公共速率向量和所述目标预编码矩阵,计算各终端的可达速率并输出,以保证各终端分配资源的公平性。
7.一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现如权利要求1-5任一项所述的用户公平性的速率分集辅助的可见光通信方法。
8.一种电子设备,其特征在于,包括存储器、处理器以及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现如权利要求1-5任一项所述的用户公平性的速率分集辅助的可见光通信方法。
CN202310686575.2A 2023-06-12 2023-06-12 一种用户公平性的速率分集辅助的可见光通信方法及*** Active CN116418397B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310686575.2A CN116418397B (zh) 2023-06-12 2023-06-12 一种用户公平性的速率分集辅助的可见光通信方法及***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310686575.2A CN116418397B (zh) 2023-06-12 2023-06-12 一种用户公平性的速率分集辅助的可见光通信方法及***

Publications (2)

Publication Number Publication Date
CN116418397A CN116418397A (zh) 2023-07-11
CN116418397B true CN116418397B (zh) 2023-09-05

Family

ID=87059705

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310686575.2A Active CN116418397B (zh) 2023-06-12 2023-06-12 一种用户公平性的速率分集辅助的可见光通信方法及***

Country Status (1)

Country Link
CN (1) CN116418397B (zh)

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011147350A1 (zh) * 2010-08-13 2011-12-01 华为技术有限公司 多天线分集调度方法和装置
JP2013055525A (ja) * 2011-09-05 2013-03-21 Nec Commun Syst Ltd 可視光通信システム、可視光通信方法、送信装置、送信方法、送信プログラム、受信装置、受信方法、及び、受信プログラム
CN105721028A (zh) * 2016-04-18 2016-06-29 东南大学 Vlc mu-miso***下行波束成型方法、装置及vlc mu-miso***
CN106851833A (zh) * 2016-12-28 2017-06-13 北京邮电大学 基于最大比传输预编码的mimo功率分配方法及***
CN107070517A (zh) * 2017-04-13 2017-08-18 东南大学 一种可见光通信非正交多址***预编码矩阵优化方法
WO2017190998A1 (en) * 2016-05-04 2017-11-09 Philips Lighting Holding B.V. Controlling a light source
CN107425900A (zh) * 2017-06-19 2017-12-01 东南大学 一种vlc、noma***最大最小公平波束成形优化方法
CN110190881A (zh) * 2019-05-27 2019-08-30 南京邮电大学 权重速率最优的下行mimo-noma功率分配方法
CN111510926A (zh) * 2020-04-08 2020-08-07 中国农业大学 可见光通信与WiFi异构融合网络及资源调度方法
CN112543056A (zh) * 2020-12-04 2021-03-23 东南大学 Pd-noma-vlc***功率和分组联合优化方法
WO2021238634A1 (zh) * 2020-05-27 2021-12-02 华为技术有限公司 一种下行预编码方法、装置及基站
CN113810908A (zh) * 2021-08-24 2021-12-17 华北电力大学(保定) Mec***安全卸载方法、设备及mec***
CN114172547A (zh) * 2021-12-16 2022-03-11 华南理工大学 基于智能反射面的无线携能通信混合预编码设计方法
CN115173891A (zh) * 2022-06-08 2022-10-11 国网北京市电力公司 协作速率分割多址***最大和速率的确定方法和确定装置
WO2022228130A1 (zh) * 2021-04-26 2022-11-03 东南大学 一种多输入多输出可见光通信特征信道功率分配方法
WO2023039827A1 (zh) * 2021-09-17 2023-03-23 深圳大学 一种基于融合可见光通信和可见光定位的优化方法
CN115865197A (zh) * 2023-02-20 2023-03-28 南昌大学 散粒噪声下可见光通信scma实数码本优化方法及***
CN116112076A (zh) * 2023-02-16 2023-05-12 重庆邮电大学 室内可见光通信***随机led分布的信号均匀性优化方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100943894B1 (ko) * 2002-12-26 2010-02-24 엘지전자 주식회사 이동 통신 시스템에서의 전송 다이버시티 방법
US20110286750A1 (en) * 2010-05-18 2011-11-24 Soo-Young Chang Optimal Method for Visible Light Communications
GB2496379A (en) * 2011-11-04 2013-05-15 Univ Edinburgh A freespace optical communication system which exploits the rolling shutter mechanism of a CMOS camera
US10027412B2 (en) * 2016-05-26 2018-07-17 The Florida International University Board Of Trustees System and method for visible light communications with multi-element transmitters and receivers
CN106961309B (zh) * 2017-05-31 2019-06-21 中国科学技术大学 一种可见光通信收发器与可见光通信***
US20200128442A1 (en) * 2018-10-18 2020-04-23 King Fahd University Of Petroleum And Minerals Joint optimization for power allocation and load balancing for hybrid vlc/rf networks

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011147350A1 (zh) * 2010-08-13 2011-12-01 华为技术有限公司 多天线分集调度方法和装置
JP2013055525A (ja) * 2011-09-05 2013-03-21 Nec Commun Syst Ltd 可視光通信システム、可視光通信方法、送信装置、送信方法、送信プログラム、受信装置、受信方法、及び、受信プログラム
CN105721028A (zh) * 2016-04-18 2016-06-29 东南大学 Vlc mu-miso***下行波束成型方法、装置及vlc mu-miso***
WO2017190998A1 (en) * 2016-05-04 2017-11-09 Philips Lighting Holding B.V. Controlling a light source
CN106851833A (zh) * 2016-12-28 2017-06-13 北京邮电大学 基于最大比传输预编码的mimo功率分配方法及***
CN107070517A (zh) * 2017-04-13 2017-08-18 东南大学 一种可见光通信非正交多址***预编码矩阵优化方法
CN107425900A (zh) * 2017-06-19 2017-12-01 东南大学 一种vlc、noma***最大最小公平波束成形优化方法
CN110190881A (zh) * 2019-05-27 2019-08-30 南京邮电大学 权重速率最优的下行mimo-noma功率分配方法
CN111510926A (zh) * 2020-04-08 2020-08-07 中国农业大学 可见光通信与WiFi异构融合网络及资源调度方法
WO2021238634A1 (zh) * 2020-05-27 2021-12-02 华为技术有限公司 一种下行预编码方法、装置及基站
CN112543056A (zh) * 2020-12-04 2021-03-23 东南大学 Pd-noma-vlc***功率和分组联合优化方法
WO2022228130A1 (zh) * 2021-04-26 2022-11-03 东南大学 一种多输入多输出可见光通信特征信道功率分配方法
CN113810908A (zh) * 2021-08-24 2021-12-17 华北电力大学(保定) Mec***安全卸载方法、设备及mec***
WO2023039827A1 (zh) * 2021-09-17 2023-03-23 深圳大学 一种基于融合可见光通信和可见光定位的优化方法
CN114172547A (zh) * 2021-12-16 2022-03-11 华南理工大学 基于智能反射面的无线携能通信混合预编码设计方法
CN115173891A (zh) * 2022-06-08 2022-10-11 国网北京市电力公司 协作速率分割多址***最大和速率的确定方法和确定装置
CN116112076A (zh) * 2023-02-16 2023-05-12 重庆邮电大学 室内可见光通信***随机led分布的信号均匀性优化方法
CN115865197A (zh) * 2023-02-20 2023-03-28 南昌大学 散粒噪声下可见光通信scma实数码本优化方法及***

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
统一框架下协作MIMO***预编码方案;张红;郝东来;;计算机工程与应用(14);正文全文 *

Also Published As

Publication number Publication date
CN116418397A (zh) 2023-07-11

Similar Documents

Publication Publication Date Title
Chen et al. On the performance of MIMO-NOMA-based visible light communication systems
Zeng et al. Delay minimization for NOMA-assisted MEC under power and energy constraints
Ti et al. Computation offloading leveraging computing resources from edge cloud and mobile peers
Butala et al. Performance of optical spatial modulation and spatial multiplexing with imaging receiver
CN112533274B (zh) 一种室内太赫兹bwp和功率调度方法及装置
Haghifam et al. Joint sum rate and error probability optimization: Finite blocklength analysis
Sun et al. Coverage optimization of VLC in smart homes based on improved cuckoo search algorithm
Shi et al. Computational EE fairness in backscatter-assisted wireless powered MEC networks
Wang et al. Enhancing power allocation efficiency of NOMA aided-MIMO downlink VLC networks
Wang et al. Joint illumination and communication optimization in indoor VLC for IoT applications
CN112822703A (zh) 智能反射面辅助的非正交多址接入***性能增益优化方法
CN114554527B (zh) 联合irs技术和sr技术的物联网链路优化方法及***
CN116418397B (zh) 一种用户公平性的速率分集辅助的可见光通信方法及***
Gao et al. Rate-splitting multiple access-based cognitive radio network with ipSIC and CEEs
Mushfique et al. MirrorVLC: Optimal mirror placement for multielement VLC networks
Fang et al. Optimal task assignment and power allocation for downlink NOMA MEC networks
Aletri et al. Optimum resource allocation in 6G optical wireless communication systems
Elgamal et al. Q-learning algorithm for resource allocation in WDMA-based optical wireless communication networks
Eldeeb et al. Efficient resource allocation scheme for multi-user hybrid VLC/IR networks
Ma et al. Power minimization transmission design for IRS-assisted uplink NOMA systems
Rallis et al. Energy efficiency maximization in cooperative hybrid VLC/RF networks with NOMA
Murugaveni et al. Optimal frequency reuse scheme based on cuckoo search algorithm in Li‐Fi fifth‐generation bidirectional communication
CN114363834B (zh) 一种室内vlc网络的联合用户分组和功率分配方法
CN112615672A (zh) 一种基于slipt的混合vlc/rf协作通信***和方法
CN117202171A (zh) 一种ris辅助rsma***最小安全速率资源分配方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant