CN116413404A - 试验***和试验方法 - Google Patents

试验***和试验方法 Download PDF

Info

Publication number
CN116413404A
CN116413404A CN202211555902.2A CN202211555902A CN116413404A CN 116413404 A CN116413404 A CN 116413404A CN 202211555902 A CN202211555902 A CN 202211555902A CN 116413404 A CN116413404 A CN 116413404A
Authority
CN
China
Prior art keywords
hydrogen
sample chamber
sample
drying
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211555902.2A
Other languages
English (en)
Other versions
CN116413404B (zh
Inventor
胡勇
李燊
涂蒙河
刘鑫
李靖国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Institute of Atomic of Energy
Original Assignee
China Institute of Atomic of Energy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Institute of Atomic of Energy filed Critical China Institute of Atomic of Energy
Priority to CN202211555902.2A priority Critical patent/CN116413404B/zh
Publication of CN116413404A publication Critical patent/CN116413404A/zh
Application granted granted Critical
Publication of CN116413404B publication Critical patent/CN116413404B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/20Metals
    • G01N33/202Constituents thereof
    • G01N33/2022Non-metallic constituents
    • G01N33/2025Gaseous constituents

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

本申请实施例提供一种试验***和试验方法,试验***和试验方法可以用于试验样品的吸氢性能。试验***包括:样品室,用于容纳样品;干燥装置,设置于样品室外,干燥装置与样品室连接,用于接收氢气并对氢气进行干燥,以将干燥后的氢气供应至样品室,或者对样品室的氢气进行干燥;以及检测部,与样品室连接,用于对样品室内的气体进行检测,以确定样品的吸氢情况。本申请实施例提供的试验***和试验方法,能够通过对氢气进行干燥的方式减少氢气中的水汽含量,以此来获得所需的水汽浓度,从而能够获得具有较低水含量的氢气。

Description

试验***和试验方法
技术领域
本申请实施例涉及借助于测定材料的化学或物理性质来测试或分析材料技术领域,具体涉及一种试验***和试验方法。
背景技术
金属吸氢是工程上普遍存在需要研究的问题。氢气往往与水汽共存,而水汽对金属表面的氧化又能阻止氢气进入金属中。因此,研究金属吸氢问题时,需要考虑氢气中的水汽含量。
相关技术中,一般采用水浴或鼓泡器的方式调节吸氢试验中氢气的含水量,这种调节方式决定了试验中的氢气具有较高的水含量。然而,在吸氢试验中,氢气中具有较低的水含量的试验更值得关注。
发明内容
鉴于上述问题,本申请实施例提供一种试验***和试验方法,试验***和试验方法可以用于试验样品的吸氢性能。
根据本申请实施例的一个方面,试验***包括:样品室,用于容纳样品;干燥装置,设置于样品室外,干燥装置与样品室连接,用于接收氢气并对氢气进行干燥,以将干燥后的氢气供应至样品室,或者对样品室的氢气进行干燥;以及检测部,与样品室连接,用于对样品室内的气体进行检测,以确定样品的吸氢情况。
根据本申请实施例的另一个方面,试验方法包括:对氢气进行干燥,以降低氢气中的水含量;将干燥后的氢气供应至放置有样品的样品室内;检测样品室内的气压和/或水汽浓度,根据气压和/或水汽浓度的变化判断样品是否吸氢。
根据本申请实施例的又一个方面,试验方法包括:对氢气进行加湿,以增加氢气中的水含量;将加湿后的氢气供应至放置有样品的样品室内;连通样品室与干燥室,利用干燥室内的干燥剂吸附样品室中的水分,以降低氢气中的水含量;封闭样品室,检测样品室内的气压和/或水汽浓度,根据气压和/或水汽浓度的变化判断样品是否吸氢。
本申请实施例提供的试验***和试验方法,通过对氢气进行干燥的方式减少氢气中的水汽含量,以此来获得所需的水汽浓度,从而能够获得具有较低水含量的氢气。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1为本申请实施例的容纳有样品的试验***的原理示意图;
图2为本申请另一实施例的容纳有样品的试验***的原理示意图;
图3为本申请实施例的试验方法的流程示意图;
图4为本申请另一实施例的试验方法的流程示意图。
需要说明的是,附图不一定按比例绘制,其仅以不影响本领域技术人员理解的示意性方式示出。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。对于本申请的实施例,还需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合以得到新的实施例。
本申请实施例提供一种试验***,其可以用于试验样品的吸氢性能。在一些实施例中,样品可以为金属材质。示例性地,样品可以为锆合金管。金属吸氢后会产生氢脆或氢致开裂现象,影响金属的性能。例如,用于容纳反应堆燃料棒的锆合金管吸氢后,性能会下降,甚至可能会危及反应堆的运行安全。当然,本申请实施例提供的试验***也可以对其他任何能够吸氢的样品进行试验,本申请对此不做限定,例如,在本申请的其他实施例中,样品可以为非金属材质。
图1为本申请实施例的容纳有样品的试验***的结构示意图。如图1所示,试验***1可以包括样品室10、干燥装置20以及检测部30。样品室10用于容纳样品2。干燥装置20设置于样品室10外,干燥装置20与样品室10连接。干燥装置20配置成接收氢气并对氢气进行干燥,以将干燥后的氢气供应至样品室10,或者对样品室10的氢气进行干燥。检测部30与样品室10连接,用于对样品室10内的气体进行检测,以确定样品2的吸氢情况。
本申请实施例提供的试验***1,通过对氢气进行干燥的方式减少氢气中的水汽含量(即,氢气中的水汽浓度,可以用H2/H2O的比值来表示),以此来获得所需水汽浓度的氢气气氛,从而能够获得具有较低水含量的氢气。
样品室10可以为密封结构,以防止空气中的水蒸汽等对样品室10内水汽浓度的控制造成干扰,还可以便于控制样品室10内的气压。
在一些实施例中,干燥装置20接收的氢气来自氢气源(如氢气罐)。容易理解,工业上使用的氢气源本身通常具有一定的含量水,本申请实施例的干燥装置20通过减少工业氢气源中的水分,能够获得H2/H2O大于5×103的氢气(或者说氢气气氛),拓展了吸氢试验的氢气中H2/H2O的比例范围。容易理解,本文中氢气指H2、H2O混合气体,即带有水汽的氢气。
在干燥装置20接收的氢气来自氢气源(如氢气罐)的实施例中,可以通过调节气体流经干燥装置20的流速,控制干燥装置20对氢气的干燥效果,进而调节氢气中的水汽浓度,从而能够获得具有预定水汽浓度的氢气。
在一些实施例中,干燥装置20与样品室10连通。此时,样品室10中已经存在试验用氢气,可以利用干燥装置20降低样品室10中氢气的含水量。
如图2所示,在一些实施例中,干燥装置20可以包括干燥室21和干燥剂(图2中未示出)。干燥室21能够与样品室10连通。干燥剂设置于干燥室21内,用于吸附流入干燥室21内的水分。
当氢气进入干燥室21时,氢气中的水汽可以被干燥室21内的干燥剂吸附。在一些实施例中,干燥剂可以为固体干燥剂,固体干燥剂具有更大的吸附面积,可以更好地对氢气中的水汽进行干燥。干燥剂在使用一段时间后,其干燥性能下降,此时可以更换新的干燥剂。
本申请实施例利用干燥室21内的干燥剂对氢气进行干燥,当氢气来自工业氢气源时,能够获得H2/H2O大于5×105的氢气,大大拓展了吸氢试验的氢气中H2/H2O的比例范围。
在一些实施例中,干燥装置20还包括干燥进气管路22、干燥出气管路23、第一阀门24以及第二阀门25。干燥进气管路22与干燥室21连接,用于向干燥室21供应氢气。干燥出气管路23连接在干燥室21和样品室10之间,以使干燥室21能够和样品室10连通。第一阀门24设置于干燥进气管路22上,用于控制干燥进气管路22的通断。第二阀门25设置于干燥出气管路23上,用于控制干燥出气管路23的通断。
在本实施例中,干燥进气管路22可以与氢气源连接。当干燥装置20接收的氢气来自氢气源时,打开第一阀门24和第二阀门25,来自氢气源的氢气流入干燥室21内干燥后流入样品室10中。
干燥装置20还可以包括流量调节阀,用于调节来自氢气源的氢气的流量,即,调节氢气在干燥室21内的流速。流量调节阀可以设置于干燥进气管路22上,通过调节氢气的流量,能够调节对氢气的干燥程度(即调节氢气中含水量)。
当干燥装置20接收的氢气来自样品室10时,关闭第一阀门24打开第二阀门25,此时,由于样品室10与干燥室21连通,样品室10内的氢气会在干燥室21和样品室10之间流动,从而在干燥室21内被干燥。可以通过控制第二阀门25打开的时长,调节对氢气的干燥程度。
检测部30可以对样品室10内的气体进行检测来确定样品2的吸氢情况。不做限定地,检测部30可以检测样品室10内的水汽浓度、压力和/或温度等。
如图2所示,在一些实施例中,检测部30可以包括水汽浓度检测部31。水汽浓度检测部31用于检测样品室10内的水汽浓度,以根据水汽浓度的变化确定样品2的吸氢情况。当样品2开始吸氢时,由于氢气含量降低,样品室10内的水汽浓度会升高,因此,可以通过水汽浓度的变化来确定样品2的吸氢情况。水汽浓度检测部31可以与样品室10连接,以检测样品室10内的水汽浓度。
此外,在利用干燥装置20对氢气进行干燥时,也可以根据水汽浓度检测部31检测的样品室10内的水汽浓度,调节干燥装置20对氢气的干燥程度。
在干燥装置20接收的氢气来自氢气源(如氢气罐)的实施例中,当水汽浓度检测部31检测的样品室10内的水汽浓度较高时,可以调慢氢气在干燥室21内的流速,提高干燥效果;反之,当水汽浓度检测部31检测的样品室10内的水汽浓度较低时,可以调快氢气在干燥室21内的流速,较低干燥效果;当水汽浓度检测部31检测的样品室10内的水汽浓度达到所需浓度范围时,可以保持氢气在干燥室21内的流速不变,直至样品室10内的氢气气压达到预设范围时,关闭第一阀门24和第二阀门25。
例如,在干燥装置20接收的氢气来自样品室10的实施例中,当水汽浓度检测部31检测的样品室10内的水汽浓度较高时,打开第二阀门25(第一阀门24保持关闭),保持干燥室21和样品室10之间连通,当水汽浓度检测部31检测的样品室10内的水汽浓度达到所需浓度范围时,关闭第二阀门25。
在一些实施例中,水汽浓度检测部31可以为露点仪,露点仪能够检测样品室10内的气体的露点,通过露点可以计算出水汽浓度。可以使用带有多个传感器的露点仪,以获得更大的量程,示例性地,露点仪的量程可以为-110℃~200℃。当然,水汽浓度检测部31也可以是其他能够检测水汽浓度的装置,如质谱仪、色谱仪等,本申请对此不做限定。
如图2所示,在一些实施例中,检测部30可以包括气压检测部32。气压检测部32用于检测样品室10内的气压,以根据气压的变化确定样品2的吸氢情况。可以理解,样品室10的密封结构可以使样品室10内保持一定的气压,而当样品2吸氢时,样品室10内的气体的量会减少,进而导致样品室10内气压降低。通过记录压力随时间的变化,可以获得样品2开始吸氢的时间点,以及样品室10内气压下降的速率,进而可以获得样品2的吸氢速率。气压检测部32可以与样品室10连接,以检测样品室10内的气压。示例性地,气压检测部32可以为压力传感器,可以指示氢气压力。
在一些实施例中,试验***1还包括加湿装置40。加湿装置40设置于样品室10外,加湿装置40用于接收氢气并对氢气进行加湿,以向样品室10供应加湿后的氢气。在本实施例中,通过设置加湿装置40,可以获得水汽浓度更高的氢气(如H2/H2O低于5×103),以使样品2能够在相对较高的水汽浓度下试验其吸氢性能。
在一些实施例中,加湿装置40包括鼓泡器41、加湿进气管路42、加湿出气管路43、第三阀门44以及第四阀门45。加湿进气管路42与鼓泡器41连接,用于向鼓泡器41供应氢气。加湿出气管路43连接在鼓泡器41和样品室10之间,用于向样品室10供应加湿后的氢气。第三阀门44设置于加湿进气管路42上,用于控制加湿进气管路42的通断。第四阀门45设置于加湿出气管路43上,用于控制加湿出气管路43的通断。
在本实施例中,鼓泡器41可以是能够让氢气通过室温下的水的装置。通过设置鼓泡器41的功率、氢气流速等,可以调节氢气中的水汽浓度。例如,可以通过鼓泡器获得具有约3%水汽浓度的氢气。
当使用加湿装置40对氢气进行加湿时,第三阀门44和第四阀门45可以同时打开,氢气经过加湿进气管路42进入鼓泡器41中,并被鼓泡器41加湿。被加湿后的氢气通过加湿出气管路43可以从鼓泡器41进入样品室10,以用于对样品2的吸氢性能进行试验。
进一步地,在本实施例中,被加湿后的氢气进入样品室10后,当需要降低水汽浓度时,可以使用干燥装置20对氢气进行干燥。此时,第一阀门24关闭,第二阀门25打开,样品室10中水汽浓度较高的氢气可以通过干燥出气管路23进入干燥室21中,并被干燥室21中干燥剂干燥。单独利用加湿装置40对氢气进行加湿时,加湿后氢气的水汽浓度通常较高,本申请实施例通过联合使用加湿装置40和干燥装置20,能够对加湿后的氢气进行干燥,从而能够获得较大水汽浓度范围的氢气,氢气中的H2/H2O可以为102~105
此外,在利用干燥室21内的干燥剂对来自样品室10内的水汽进行吸附时,可以根据露点仪的读数判断是否停止对氢气进行干燥(即是否关闭第二阀门25)。由于样品室10内的空间相对较大,氢气混合相对均匀,由此使得露点仪的读数相对较为准确,从而使得样品室10内的氢气的水汽浓度更加准确。换言之,通过连通样品室10和干燥室21的方式,利用干燥剂对氢气中的水分进行静态吸附,能够对氢气中的水汽浓度进行更加准确的调节。
在一些实施例中,试验***1还可包括气路通道50,气路通道50与样品室10连通。即,气路通道50与样品室10之间保持连通。气路通道50选择性地与干燥装置20或加湿装置40连通。加湿装置40和干燥装置20可以同时与气路通道50相接,由第二阀门25和第四阀门45决定气路通道50与干燥装置20或加湿装置40连通。例如,当第二阀门25关闭,第四阀门45打开时,气路通道50与加湿装置40连通;当第二阀门25打开,第四阀门45关闭时,气路通道50与干燥装置20连通。
如图2所示,在一些实施例中,试验***1还包括抽真空部60。抽真空部60用于对样品室10抽真空。抽真空部60可以与气路通道50连接,以实现对样品室10抽真空。抽真空部60可以在试验开始时对样品室10以及气路通道等管路除气,以防止试验***1内残留的气体对试验结果产生干扰。在一些实施例中,抽真空部60可以为真空泵。在一些实施例中,真空泵可以包括机械泵和分子泵,机械泵和分子泵可以串联设置,以获得更好的抽真空效果。示例性地,抽真空部60能够使样品室10内达到10-6Pa的真空度。
在一些实施例中,试验***1还包括加热部70。加热部70用于对样品2进行加热。加热部70可以设置在样品室10外,并能够对样品室10加热。通过设置加热部70,可以在除气时对样品室10内加热,以获得更好的除气效果。加热部70还可以为样品室10提供不同的温度,以实现样品2实际工况的模拟,或者获得样品2在不同温度下的吸氢性能。加热部70可以为电加热丝、马弗炉等结构,本申请对此不做限定。
在一些实施例中,试验***1还包括氢气供应部80。氢气供应部80用于向干燥装置20或加湿装置40提供氢气。氢气供应部80可以与干燥装置20的干燥进气管路22连接以及与加湿装置40的加湿进气管路42连接,以实现为干燥装置20和加湿装置40供应氢气。氢气供应部80中的氢气可以含有一定浓度的水汽,以用于低水汽浓度的试验。氢气供应部80可以为储存有氢气的气瓶,或者氢气发生装置,本申请对此不做限定。
图3为本申请实施例的试验方法的流程示意图。如图3所示,本申请实施例还提供一种试验方法,用于试验样品2的吸氢性能。在本实施例中,试验方法可以包括步骤S11-S13。具体地,步骤S11,对氢气进行干燥,以降低氢气中的水含量。步骤S12,将干燥后的氢气供应至放置有样品2的样品室10内。步骤S13,检测样品室10内的气压和/或水汽浓度,根据气压和/或水汽浓度的变化判断样品2是否吸氢。
本实施例提供的试验方法,可以适用于进行低水汽浓度的试验。在进行低水汽浓度的试验时,工业上使用的氢气的水汽浓度通常高于低水汽浓度试验的浓度值,此时,可以通过对氢气进行干燥的方式减少氢气中的水汽含量,以此来获得所需的水汽浓度。
可以单独通过气压的变化或单独通过水汽浓度的变化判断样品2是否吸氢。在优选的实施例中,可以同时通过气压和水汽浓度的变化判断样品2是否吸氢,以更容易检测出样品2发生吸氢。
在一些实施例中,对氢气进行干燥的步骤可以包括:将氢气引入干燥室21内,以利用干燥室21内的干燥剂吸附氢气中的水分。本申请实施例利用干燥室21内的干燥剂对氢气进行干燥,能够获得H2/H2O大于5×105的氢气,大大拓展了吸氢试验的氢气中H2/H2O的比例范围。
在利用干燥室21内的干燥剂对氢气进行干燥时,可以根据样品室10内的水汽浓度,调节氢气在干燥室21内的流速(或者说氢气流经干燥室21的流速),使样品室10内的水汽浓度达到预设水汽浓度范围。换言之,根据样品室10内的水汽浓度,调节氢气在干燥室21内的流速,可以获得具有预定水汽浓度的氢气。
例如,当样品室10内的水汽浓度较高时,可以调慢氢气的流速,使吸附剂多吸附水分,提高干燥效果。当样品室10内的水汽浓度较低时,可以调快氢气的流速,使吸附剂少吸附水分,较低干燥效果。当样品室10内的水汽浓度达到所需浓度范围时,可以保持氢气的流速不变;直至样品室10内的氢气气压达到预设范围时,停止向样品室10内提供干燥后的氢气。
在本实施例中,氢气可以通过干燥进气管路22引入干燥室21中,并被干燥室21中的干燥剂干燥。通过调节氢气在干燥进气管路22的流速,可以改变氢气中的水汽被干燥剂吸收的量,进而实现对水汽浓度的调节。
在一些实施例中,当干燥后的氢气进入样品室10内的气压达到预设值(该预设值应满足样品室10内的氢气在发生吸氢后的气压变化能够被检测出)后,可以封闭样品室10。容易理解,当样品室10与气路通道50连通时,断开气路通道50与干燥室21的连通,即封闭样品室10。
在一些实施例中,当封闭样品室10后,还可以根据样品室10内水汽浓度的判断是否需要进一步干燥。由于氢气在样品室10内混合的更加均匀,当封闭样品室10后,检测的水汽浓度更加准确。此时,如果发现水汽浓度偏高,可以再连通样品室10与干燥室21,利用干燥室21内的干燥剂吸附样品室10中的水分,以降低氢气中的水含量。
本申请实施例还提供一种试验方法,用于试验样品2的吸氢性能。图4为本申请另一实施例的试验方法的流程示意图。如图4所示,在本实施例中,试验方法可以包括步骤S21-S24。具体地,步骤S21,对氢气进行加湿,以增加氢气中的水含量。步骤S22,将加湿后的氢气供应至放置有样品2的样品室10内。步骤S23,连通样品室10与干燥室21,利用干燥室21内的干燥剂吸附样品室10中的水分,以降低氢气中的水含量。步骤S24,封闭样品室10(即,断开样品室10与干燥室21之间的连通),检测样品室10内的气压和/或水汽浓度,根据气压和/或水汽浓度的变化判断样品是否吸氢。
本实施例提供的试验方法,可以适用于进行高水汽浓度的试验。由于在进行高水汽浓度的试验时,工业用氢气的水汽浓度通常低于高水汽浓度试验的浓度值,因此,在本实施例中,通过对氢气加湿,来获得高水汽浓度的氢气。对氢气加湿后,氢气中的水汽浓度通常较高(如H2/H2O低于5×103),为了使水汽浓度处在高于工业用氢气的水汽浓度且低于加湿后氢气的水汽浓度的范围,本申请实施例还特别地对加湿后的氢气进行干燥。本申请实施例通过对加湿后的氢气进行干燥,从而能够获得较大水汽浓度范围的氢气,氢气中的H2/H2O可以为102~105
特别是,本申请实施例在干燥时,连通样品室10与干燥室21,利用干燥室21内的干燥剂吸附样品室10中的水分。这样的干燥方式相比将氢气加湿后先流经干燥室21干燥再进入样品室10,由于样品室10内的空间相对较大,氢气混合相对均匀,由此使得露点仪的读数相对较为准确,从而使得样品室10内的氢气的水汽浓度更加准确。换言之,通过连通样品室10和干燥室21的方式,利用干燥剂对氢气中的水分进行静态吸附,能够对氢气中的水汽浓度进行更加准确的调节。
本申请实施例可以根据样品室10内的水汽浓度,判断是否封闭样品室10。当样品室10内的水汽浓度较高时,保持干燥室21和样品室10之间连通,当水汽浓度检测部31检测的样品室10内的水汽浓度达到所需浓度范围时,断开干燥室21和样品室10之间的连通。
在一些实施例中,在检测样品室10内的气压和/或水汽浓度之前,试验方法还包括:加热样品室10,以使样品室10内的温度达到并保持在试验温度。
不同的温度下,样品2的吸氢性能可能会不同。因此,在本实施例中,通过使样品室10内的温度达到并保持在试验温度,可以进行预定温度下的样品2吸氢性能试验。在一些实施例中,预定温度可以是样品2在其实际工况下的温度,以确定样品2在实际工况下的吸氢性能。
在一些实施例中,在向样品室10内供应氢气之前,试验方法还包括:将样品2放置于样品室10内;对样品室10抽真空,同时加热样品室10,以使样品室10的温度达到并维持在预热温度,预热温度低于试验温度。
在本实施例中,在抽真空的同时加热样品室10,可以便于气体排出,从而获得更高的真空度。预热温度低于试验温度,可以在抽真空完毕后,更容易地加热到试验温度。
在一些实施例中,为了确定样品发生吸氢的更准确的边界,可以进行多组不同温度以及不同水汽浓度的试验。
具体地,以锆合金包壳管为例,详细说明本申请的试验方法。
高水汽浓度试验:样品室10中装入锆合金包壳管样品,密闭后用分子泵抽真空,同时样品室10升温至150℃烘烤,真空度达10-4Pa时停止抽气。
让氢气通过鼓泡器进入样品室10,当样品室10内的气压达到100kPa左右后,断开鼓泡器与样品室10之间的连通。导通样品室10与干燥室21,利用干燥剂吸附水分以降低氢气中的水汽浓度,当露点仪读数为5℃时(对应H2/H2O=1.1×102),断开干燥室21与样品室10之间的连通。继续升温,直至温度上升并保持在所模拟的最高实际工况400℃,检测样品室10气压变化和水汽浓度变化,根据压力变化判断未发现样品吸氢,因此在试验温度400℃与水汽浓度条件下,该锆合金包壳管不发生吸氢。
低水汽浓度试验:样品室10重新抽真空后,让氢气通过干燥室21进入样品室10,当样品室10内的气压达到100kPa左右后,断开干燥室21与样品室10之间的连通。这时露点仪读数为-50℃,继续升温,在升温过程中,露点仪读数也发生变化,当温度上升并保持在360℃,露点仪读数-37℃,对应H2/H2O=3.3×103,检测样品室10气压变化和水汽浓度变化,判断样品吸氢,试验结果:温度为360℃,水汽浓度为H2/H2O>3.3×103是锆合金包壳管发生吸氢的一种条件。
以上仅为本申请的实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (16)

1.一种试验***,用于试验样品的吸氢性能,所述试验***包括:
样品室,用于容纳所述样品;
干燥装置,设置于所述样品室外,所述干燥装置与所述样品室连接,配置成接收氢气并对氢气进行干燥,以将干燥后的氢气供应至所述样品室,或者对所述样品室的氢气进行干燥;以及
检测部,与所述样品室连接,用于对所述样品室内的气体进行检测,以确定所述样品的吸氢情况。
2.根据权利要求1所述的试验***,其中,所述干燥装置包括:
干燥室,所述干燥室能够与所述样品室连通;和
干燥剂,设置于所述干燥室内,用于吸附流入所述干燥室内的水分。
3.根据权利要求2所述的试验***,其中,所述干燥装置还包括:
干燥进气管路,与所述干燥室连接,用于向所述干燥室供应氢气;
干燥出气管路,连接在所述干燥室和所述样品室之间,以使所述干燥室和所述样品室连通;
第一阀门,设置于所述干燥进气管路上,用于控制所述干燥进气管路的通断;以及
第二阀门,设置于所述干燥出气管路上,用于控制所述干燥出气管路的通断。
4.根据权利要求1所述的试验***,还包括:
加湿装置,设置于所述样品室外,所述加湿装置用于接收氢气并对氢气进行加湿,以向所述样品室供应加湿后的氢气。
5.根据权利要求4所述的试验***,其中,所述加湿装置包括:
鼓泡器;
加湿进气管路,与所述鼓泡器连接,用于向所述鼓泡器供应氢气;
加湿出气管路,连接在所述鼓泡器和所述样品室之间,用于向所述样品室供应加湿后的氢气;
第三阀门,设置于所述加湿进气管路上,用于控制所述加湿进气管路的通断;以及
第四阀门,设置于所述加湿出气管路上,用于控制所述加湿出气管路的通断。
6.根据权利要求4所述的试验***,还包括:
气路通道,与所述样品室连通,所述气路通道选择性地与所述干燥装置或所述加湿装置连通。
7.根据权利要求4所述的试验***,还包括:
抽真空部,用于对所述样品室抽真空;
加热部,用于对所述样品进行加热;和/或
氢气供应部,用于向所述干燥装置或所述加湿装置提供氢气。
8.根据权利要求1所述的试验***,其中,所述检测部包括:
水汽浓度检测部,用于检测所述样品室内的水汽浓度,以根据所述水汽浓度的变化确定所述样品的吸氢情况。
9.根据权利要求1所述的试验***,其中,所述检测部包括:
气压检测部,用于检测所述样品室内的气压,以根据所述气压的变化确定所述样品的吸氢情况。
10.一种试验方法,用于试验样品的吸氢性能,所述试验方法包括:
对氢气进行干燥,以降低氢气中的水含量;
将干燥后的氢气供应至放置有样品的样品室内;
检测所述样品室内的气压和/或水汽浓度,根据所述气压和/或水汽浓度的变化判断所述样品是否吸氢。
11.根据权利要求10所述的试验方法,其中,对氢气进行干燥,包括:
将氢气引入干燥室内,以利用所述干燥室内的干燥剂吸附所述氢气中的水分。
12.根据权利要求11所述的试验方法,还包括:
根据所述样品室内的水汽浓度,调节氢气在所述干燥室内的流速。
13.一种试验方法,用于试验样品的吸氢性能,所述试验方法包括:
对氢气进行加湿,以增加氢气中的水含量;
将加湿后的氢气供应至放置有样品的样品室内;
连通所述样品室与干燥室,利用所述干燥室内的干燥剂吸附所述样品室中的水分,以降低所述氢气中的水含量;
封闭所述样品室,检测所述样品室内的气压和/或水汽浓度,根据所述气压和/或水汽浓度的变化判断所述样品是否吸氢。
14.根据权利要求13所述的试验方法,还包括:
根据所述样品室内的水汽浓度,判断是否封闭所述样品室。
15.根据权利要求10或13所述的试验方法,其中,在检测所述样品室内的气压和/或水汽浓度之前,还包括:
加热所述样品室,以使所述样品室内的温度达到并保持在试验温度。
16.根据权利要求15所述的试验方法,其中,在向所述样品室内供应氢气之前,还包括:
将样品放置于所述样品室内;
对所述样品室抽真空,同时加热所述样品室,以使所述样品室的温度达到并维持在预热温度,所述预热温度低于所述试验温度。
CN202211555902.2A 2022-12-06 2022-12-06 试验***和试验方法 Active CN116413404B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211555902.2A CN116413404B (zh) 2022-12-06 2022-12-06 试验***和试验方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211555902.2A CN116413404B (zh) 2022-12-06 2022-12-06 试验***和试验方法

Publications (2)

Publication Number Publication Date
CN116413404A true CN116413404A (zh) 2023-07-11
CN116413404B CN116413404B (zh) 2024-05-14

Family

ID=87057072

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211555902.2A Active CN116413404B (zh) 2022-12-06 2022-12-06 试验***和试验方法

Country Status (1)

Country Link
CN (1) CN116413404B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4444727A (en) * 1979-12-18 1984-04-24 Matsushita Electric Industrial Co. Ltd. Hydrogen gas purification apparatus
CN101460829A (zh) * 2006-04-19 2009-06-17 光学传感公司 测量碳氢化合物中的水蒸汽
CN102928315A (zh) * 2012-11-16 2013-02-13 扬州大学 表征储氢材料吸放氢pct曲线的新方法及其测试装置
CN110595939A (zh) * 2019-10-30 2019-12-20 山东京博装备制造安装有限公司 一种储氢合金pct曲线测试装置及方法
CN111879793A (zh) * 2020-06-15 2020-11-03 中国原子能科学研究院 一种氚气吸附性能实验装置及其方法
CN214252183U (zh) * 2020-11-23 2021-09-21 中国科学院广州地球化学研究所 一种蜂窝体材料的有机气体吸/脱附性能测试装置
CN114034604A (zh) * 2021-11-25 2022-02-11 中国工程物理研究院材料研究所 一种涉氢材料综合反应***及其测试方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4444727A (en) * 1979-12-18 1984-04-24 Matsushita Electric Industrial Co. Ltd. Hydrogen gas purification apparatus
CN101460829A (zh) * 2006-04-19 2009-06-17 光学传感公司 测量碳氢化合物中的水蒸汽
CN102928315A (zh) * 2012-11-16 2013-02-13 扬州大学 表征储氢材料吸放氢pct曲线的新方法及其测试装置
CN110595939A (zh) * 2019-10-30 2019-12-20 山东京博装备制造安装有限公司 一种储氢合金pct曲线测试装置及方法
CN111879793A (zh) * 2020-06-15 2020-11-03 中国原子能科学研究院 一种氚气吸附性能实验装置及其方法
CN214252183U (zh) * 2020-11-23 2021-09-21 中国科学院广州地球化学研究所 一种蜂窝体材料的有机气体吸/脱附性能测试装置
CN114034604A (zh) * 2021-11-25 2022-02-11 中国工程物理研究院材料研究所 一种涉氢材料综合反应***及其测试方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
莫畏主编: "《钛》", 冶金工业出版社, pages: 895 *

Also Published As

Publication number Publication date
CN116413404B (zh) 2024-05-14

Similar Documents

Publication Publication Date Title
CN107064420B (zh) 一种大气中中等挥发性有机物的在线监测***及监测方法
JP4431144B2 (ja) 密封品における大規模漏れの検出方法および装置
CN106501125B (zh) 气体吸附脱附测试装置及测试方法
KR100731146B1 (ko) 수소 저장체의 수소 저장 성능 평가 장치
CN107884306B (zh) 一种吸附测试方法和装置
JP2013515252A (ja) 漏れを測定する方法および装置
CN102169113A (zh) 六氟化硫在线湿度仪校验装置及其校验方法
JPWO2011132391A1 (ja) 透湿度測定装置及び透湿度測定方法
CN103454125A (zh) 测量样品中氢含量的***和方法
CN111781251A (zh) 一种烟气中低浓度气体含量测量装置
CN107490526B (zh) 高分子材料老化效应无损检测装置及其检测方法
JP6002404B2 (ja) 質量分析装置及びその使用方法、並びにガス透過特性測定方法
JP5648992B2 (ja) 高感度ガス分析装置、ガス定量方法及び分析装置システム
CN111175430A (zh) 静态容量法多组分竞争性吸附分析仪
CN116413404B (zh) 试验***和试验方法
CN111638263B (zh) 一种气体采样分析装置和方法
CN107449847A (zh) 煤层自然发火标志气体色谱分析及指标优选的测定装置
CN203785981U (zh) 一种静态容量法自动吸附测量装置
CN104181014B (zh) 一种大气气态汞采样装置
KR100752364B1 (ko) 저농도의 수분을 함유하는 가스를 발생시키는 장치 및 방법
TWI477777B (zh) Positive pressure can control the temperature and humidity of the gas supply device
CN202033344U (zh) 六氟化硫在线湿度仪校验装置
KR101063089B1 (ko) 탈기체 측정 장치 및 그 측정 방법
JP7470624B2 (ja) 気体捕集装置および気体捕集方法
CN112945689A (zh) 一种热脱附装置及其控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant