CN116410480A - 一种新型磁性羧基功能化缺陷cof的制备方法及其吸附应用 - Google Patents

一种新型磁性羧基功能化缺陷cof的制备方法及其吸附应用 Download PDF

Info

Publication number
CN116410480A
CN116410480A CN202310264732.0A CN202310264732A CN116410480A CN 116410480 A CN116410480 A CN 116410480A CN 202310264732 A CN202310264732 A CN 202310264732A CN 116410480 A CN116410480 A CN 116410480A
Authority
CN
China
Prior art keywords
cof
monomer
cooh
adsorption
amino
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310264732.0A
Other languages
English (en)
Other versions
CN116410480B (zh
Inventor
陈春燕
潘紫璐
陈小迪
吴红平
孙一博
何馨玥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiangtan University
Original Assignee
Xiangtan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiangtan University filed Critical Xiangtan University
Priority to CN202310264732.0A priority Critical patent/CN116410480B/zh
Publication of CN116410480A publication Critical patent/CN116410480A/zh
Application granted granted Critical
Publication of CN116410480B publication Critical patent/CN116410480B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • B01J20/226Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28023Fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/46Materials comprising a mixture of inorganic and organic materials
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明属于环境废水处理技术领域,具体涉及一种新型磁性羧基功能化缺陷COF的制备及其对亮绿和铅离子的吸附应用。本发明具体步骤如下:首次在磁性氨基化Fe3O4上,利用席夫碱反应将醛基单体、氨基单体和氨基缺陷单体(5‑氨基间苯二甲酸)通过一锅法合成磁性羧基功能化缺陷COF,制备出的复合材料(Fe3O4@TT‑COOHCOF)用于高效吸附阳离子染料亮绿和铅离子。本发明设计制备的Fe3O4@TT‑COOHCOF比表面积高、化学稳定性好、孔道结构规整,对阳离子染料亮绿和铅离子的吸附容量高达1378.5和463.3mg/g。Fe3O4@TT‑COOHCOF在经过五次循环使用后仍保持95%以上的吸附能力,在废水处理领域具备优良的应用前景。

Description

一种新型磁性羧基功能化缺陷COF的制备方法及其吸附应用
技术领域:
本发明属于一种环境废水处理技术领域,具体涉及到一种基于磁性氨基化Fe3O4上生长羧基功能化缺陷COF的复合材料(Fe3O4@TT-COOH COF)的制备及其对于亮绿和铅离子的吸附应用。
背景技术:
重金属离子和有机染料在工业废水中大量存在。铅是污染物中毒性很大并且以神经毒性为主的一种重金属元素,铅离子(Pb2+)对许多器官***和生理功能产生不可逆的危害,最终累积后易造成人体慢性中毒。三苯基甲基染料亮绿(BG)广泛用于工业生产,这类染料易溶于水,在光照和高温下抗降解,对水生生物甚至人类造成严重威胁。因此从水溶液中去除此类污染物至关重要。
到目前为止,人们已经探索了一系列去除水中有机污染物的方法,包括化学还原、膜分离、化学沉淀以及吸附等方法。其中,由于吸附法操作简单、安全以及条件温和,被认为是去除水中污染物的有效方法[Yunzhe,Jiang,Chuanyao,et al.EDTA-FunctionalizedCovalent Organic Frameworkfor the Removal ofHeavy-Metal Ions.[J].ACSappliedmaterials&interfaces,2019,11(35):32186-32191.]。近年来,COF由于其孔径可调、孔表面易于功能化等优点,在废水处理方面引起了研究者的广泛关注。通过在COF框架上引入各种官能团(如三嗪、硫醇和羧基),能够增加与客体分子的相互作用,对目标物暴露出更多结合位点。而利用合成后修饰的方法虽然可以引入不同的官能团,但此方法步骤繁琐且影响COF结晶度[Pan F,Tong C,Wang Z,et al.Novelsulfhydrylfunctionalized covalent organic frameworksfor ultra-traceHg2+removalfrom aqueous solution[J].2021.]。通过利用晶体结构缺陷调控材料,无需后修饰即可在框架上一步合成功能化缺陷COF。该方法简易,在保持结晶度的同时,也能构建期望的特定官能团。
然而,传统COF粉末难以回收利用,在实际吸附过程中重复利用效率低。基于磁性纳米载体生长COF可有效地解决分离的问题。例如,中国专利申请号为202010628654.4申请公开的Fe3O4@COFs吸附材料用于去除废水中有机染料,该材料易于固液分离,但吸附量较低(46.72mg/g)。
本发明首次将缺陷COF应用于磁性COF领域,以磁性氨基化Fe3O4为载体,将醛基单体(TT-ald)、氨基单体(TT-am)和氨基缺陷单体(5-氨基间苯二甲酸)通过席夫碱反应一步合成新型磁性羧基功能化缺陷COF,此发明制备得到的Fe3O4@TT-COOH COF对BG和Pb2+的吸附量高达1378.5和463.3mg/g,为高效吸附、富集以及快速分离水中有机污染物带来了实际应用前景。
发明内容:
我们基于磁性氨基化Fe3O4生长羧基功能化缺陷COF制备得到一种新型复合材料(Fe3O4@TT-COOH COF)。该吸附剂具有比表面积高、稳定性好以及可重复性优良等特点,对于BG和Pb2+展示出高吸附量和快速分离的能力,证明了该复合材料具有优异的应用前景。
与现有技术相比,本发明具有的优点和积极效果在于以下:
(1)基于磁性Fe3O4合成的Fe3O4@TT-COOH COF复合材料仍然具有良好的磁响应性,该方法简易分离,为吸附剂的可重复利用性提供了更加经济的可行性。
(2)本发明制备的Fe3O4@TT-COOH COF比表面积大,热稳定性高、在酸、碱和有机溶剂中化学稳定性好以及循环重复利用性最低五次仍保持高吸附量,在吸附剂的制备合成领域具有重要的参考意义。
(3)吸附剂Fe3O4@TT-COOH COF对BG和Pb2+有很好的吸附效果。该吸附剂对于阳离子类污染物高效的去除能力,展示了实际应用价值与潜力。
本发明通过以下技术方案实现:
(1)Fe3O4@TT-COOH COF的合成
Fe3O4@TT-COOH COF的合成需要首先通过水热法合成Fe3O4·NH2。Fe3O4·NH2表面丰富的氨基有利于通过席夫碱反应将醛类单体锚定在Fe3O4·NH2的表面,用于后续的缺陷COF生长。在确保溶液混合均匀后将Schlenk反应管放入油浴锅中120℃反应72h,得到最终产物Fe3O4@TT-COOH COF。
(2)Fe3O4@TT-COOH COF吸附有机污染物的应用
Fe3O4@TT-COOH COF分散在BG和Pb2+水溶液中,初始浓度范围为100~1000mg/L。于37℃恒温振荡仪中吸附给定时间(0到180min),吸附完成后,以外部磁场进行磁分离,紫外-可见分光光度计分析测试,计算吸附量。
附图说明:
[图1]为Fe3O4@TT-COOH COF的X射线衍射图;
[图2]为Fe3O4@TT-COOH COF的红外傅里叶光谱图;
[图3]为Fe3O4@TT-COOH COF的扫描电镜图;
[图4]为溶液pH值对BG和Pb2+的吸附影响;
[图5]为溶液盐离子浓度对BG和Pb2+的吸附影响;
[图6]为Fe3O4@TT-COOH COF对BG和Pb2+的吸附等温线曲线图;
[图7]为Fe3O4@TT-COOH COF对BG和Pb2+的吸附平衡速率曲线图;
[图8]为Fe3O4@TT-COOH COF对BG和Pb2+的吸附-解吸循环使用性研究图。
具体实施方案:
结合附图及实施例,对本发明的具体实施方案展开进行详细描述。
以下实施例用于说明本发明,但不限制本发明的应用范围及扩展。
实施例1
(1)TTI-COF的制备
在50mL的Schlenk管中加入TT-ald(25.2mg,0.064mmol),TT-am(22.7mg,0.064mmol),再加入1mL均三甲苯,1mL 1,4-二氧六环和100μL 6M HAc水溶液。混合物在室温下超声30s,于120℃的油浴锅中反应3天。反应结束后用乙醇(2×9mL),氯仿(2×9mL),丙酮(2×9mL)和THF(2×9mL)洗涤并干燥得到产物TTI-COF。
(2)Fe3O4·NH2的制备
称取1g的FeCl3·6H2O和4g的醋酸钠于50mL的三口烧瓶中。再加入8mL的己二胺和30mL的乙二醇混合溶液,将溶液超声处理10min。然后在室温下磁搅拌40min,随后将溶液转移到100mL的聚四氟乙烯内衬的不锈钢高压釜中,并加热至200℃,反应6h。以外部磁场分离,以去离子水,乙醇清洗,60℃真空干燥12h,得到最终产物为黑色粉末Fe3O4·NH2
(3)吸附剂Fe3O4@TT-COOH COF的制备及表征
1.将上述制备的Fe3O4·NH2(10mg)、TT-ald(10mg)以及2.5mL 1,4-二氧六环/均三甲苯(1,1=v/v)加入到10mL三口烧瓶中,超声10min,在80℃油浴锅中搅拌预结合2h(300rpm),冷却至室温。
2.将上述溶液转移至50mL Schlenk管中,加入25mg TT-ald、13.6mg TT-am、4.6mg5-氨基间苯二甲酸以及2.5mL 1,4-二氧六环/均三甲苯(1,1=v/v),超声10min,再加入HAc(0.132mL,6M),在此过程中必须要保证在超声的环境中将溶液混合均匀,因为Fe3O4的密度比反应溶剂大,容易沉积在Schlenk管的底部造成反应产物的不均匀性。
3.最后120℃油浴加热3天,反应结束冷却后,将混合物用无水乙醇(2×9mL)、水(2×9mL)、氯仿(2×9mL)、THF(2×9mL)洗涤,50℃真空干燥12h,得到最终产物为黄棕色粉末Fe3O4@TT-COOH COF。
通过使用XRD检测产物晶体结构,结果如图1所示。TTI-COF在4.07°、6.89°、8.20°、10.74°和25.70°处的衍射峰对应于(100)、(110)、(200)、(210)和(001)反射面,证明在实验中成功合成了TTI-COF。同时Fe3O4·NH2的XRD峰出现在35°,与理论出峰位置吻合。而在复合材料Fe3O4@TT-COOH COF的XRD图谱中出峰位置主要是4.1°和35°,与单独材料的出峰位置吻合,表明了复合材料的成功合成。
通过红外光谱来进一步表征复合材料的合成,结果如图2所示。醛基单体(TT-ald)的C-H(2842cm-1)和C=O(1714cm-1)和氨基单体(TT-am)中N-H(3500-3200cm-1)特征伸缩带消失,以及在1614cm-1处亚胺键(C=N)伸缩振动带的出现,意味缩合反应的成功发生。同时在Fe3O4@TT-COOH COF的红外光谱中也观察到Fe3O4的Fe-O特征峰(588cm-1)进一步证明了复合材料的成功合成。
通过扫描电镜图分析所制备材料的形貌,结果如图3所示。TTI-COF本身为棒状纤维的形态,其大小和排布不受控制。如图3a)所示,Fe3O4@TT-COOH COF则是在Fe3O4·NH2表面上生长成较规则的球形,在表面可以明显观察到TTI-COF的纤维状结构。
实施例2
1)称取2.0mg实施例1中制得的Fe3O4@TT-COOH COF吸附剂,加入不同pH的BG和Pb2+(500mg/L)溶液8mL,分散均匀,室温下振荡4h,充分吸附,磁场分离,收集上清液,采用紫外可见分光光度计定量分析吸附前后目标物的含量,结果如图4所示。
2)从图4a)可以看出,Fe3O4@TT-COOH COF对BG的吸附能力在pH=3-5范围内逐渐增强,pH为6时趋于稳定。在pH<4时,吸附剂表面带有正电荷,与阳离子染料之间存在电荷排斥作用导致吸附量不高。而pH=4-6范围内吸附表面带有负电荷,通过静电相互作用使吸附量增加。当pH<4时Fe3O4@TT-COOH COF仍然可以有效的吸附BG,说明了静电相互作用并不是唯一的吸附机制,同时存在π-π相互作用。由图4b)可知,Pb2+在Fe3O4@TT-COOH COF上的吸附能力易受pH影响。
实施例3
1)称取2.0mg实施例1中制得的Fe3O4@TT-COOH COF吸附剂,加入8mL含不同浓度NaCl的BG和Pb2+(500mg/L)溶液,分散均匀,室温下振荡4h,充分吸附,磁场分离,收集上清液,采用紫外可见分光光度计定量分析吸附前后目标物的含量,结果如图5所示。
2)从图5a)可以看出,盐离子浓度在低于0.4mol/L时,Fe3O4@TT-COOH COF对BG的吸附影响不大,表现出十分良好的耐盐性。但是当盐离子浓度大于0.4mol/L时,高浓度的Na+会和BG形成吸附竞争,影响吸附容量。这个结果也可以从侧面证明Fe3O4@TT-COOH COF和BG之间存在静电相互作用。图5b)为盐离子浓度对Pb2+吸附容量的影响,当盐离子浓度不超过0.2mol/L时对Pb2+的吸附几乎无影响。
实施例4
1)称取2.0mg实施例1中制得的Fe3O4@TT-COOH COF吸附剂,加入8mL浓度为50~1000mg/L的BG和Pb2+溶液,分散均匀,室温下振荡4h,充分吸附,磁场分离,收集上清液,采用紫外可见分光光度计定量分析吸附前后目标物的含量,结果如图6所示。
2)通过研究在不同目标物浓度下Fe3O4@TT-COOH COF对BG和Pb2+的吸附能力,得到如图6a)和b)所示曲线图。采用朗缪尔(Langmuir)、弗罗因德利希(Freundlich)模型来模拟实验数据。它们的方程分别表示为式(1)和式(2):
Figure BDA0004132699340000061
Figure BDA0004132699340000062
其中,Qe(mg/g)和Qm(mg/g)分别表示平衡吸附量和最大吸附量,KS(mg/L)为Langmuir常数,Ce(mg/L)是平衡浓度,Kf(g/mg)和n均是与吸附容量和吸附强度有关的Freundlich常数。
3)最终拟合结果均于表1,Fe3O4@TT-COOH COF对BG吸附的Langmuir模型线性形式的相关系数(R2)低于Freundlich模型说明BG在Fe3O4@TT-COOH COF上的吸附是双分子层吸附。而Pb2+的吸附则是Langmuir模型线性形式的相关系数(R2)高于Freundlich,通过朗缪尔模型理论计算的Fe3O4@TT-COOH COF的Qm也要更加接近实验结果。其吸附行为更加符合Langmuir模型,说明该吸附过程属于单分子层吸附。
表1 Fe3O4@TT-COOH COF吸附BG和Pb2+的平衡常数
Figure BDA0004132699340000063
实施例5
1)称取2.0mg实施例1中制得的Fe3O4@TT-COOH COF吸附剂,加入8mL浓度为500mg/L的BG和Pb2+溶液,分散均匀,室温下振荡0~180min,充分吸附,磁场分离,收集上清液,采用紫外可见分光光度计定量分析吸附前后目标物的含量,结果如图7所示。
2)通过研究在不同吸附时间下Fe3O4@TT-COOH COF对BG和Pb2+的吸附能力。得到如图7a)和b)所示曲线图。为了进一步研究吸附机理,分别基于伪一级(Ho和McKay,1998)和伪二级(Lagergren,1989)模型研究吸附时间与吸附动力学的关系,如式(3)和式(4)所示:
ln(Qe-Qt)=ln Qe-k1t (3)
Figure BDA0004132699340000071
其中,Qe(mg/g)和Qt(mg/g)分别表示平衡时和时间为t(min)时的吸附量,k1(min-1)和k2(g mg-1min-1)分别为伪一级动力学和伪二级动力学速率常数,t(min)为吸附时间。
Fe3O4@TT-COOH COF对于BG和Pb2+的动力学进行线性拟合,两种不同污染物的伪一级动力学的相关系数(R2)均小于伪二级动力学相关系数。吸附更加符合伪二级动力学,属于化学吸附
实施例6
通过使用0.1%HCl的乙醇溶液处理吸附剂材料,可以很容易地洗脱下BG和Pb2+,同时结构中的羧基也可以得到很好保存。再生的Fe3O4@TT-COOH COF在连续循环5次后对BG和Pb2+都各自保持了94%和96%的去除能力,结果过如图8所示,这证实了Fe3O4@TT-COOH COF可循环重复使用性好,有利于实际应用。
实施例7
通过研究在不同洗脱剂下Fe3O4@TT-COOH COF对BG和Pb2+的解吸能力,可知0.1%HCl的乙醇溶液的洗脱效率明显高于其它两种洗脱剂。并且0.1%HCl的乙醇溶液在2-3min之内快速将吸附的BG完全洗脱下来,表明该吸附剂具有重要的应用价值。

Claims (9)

1.一种新型磁性羧基功能化缺陷COF的制备方法及其吸附应用,其特征在于:以磁性氨基化Fe3O4为载体,2,4,6-三(4-氨基苯基)-1,3,5-三嗪(TT-am)、2,4,6-三(4-醛基苯基)-1,3,5-三嗪(TT-ald)和氨基缺陷单体(5-氨基间苯二甲酸)为桥联单体,一步合成磁性羧基功能化缺陷COF(Fe3O4@TT-COOH COF)用于吸附有机污染物阳离子染料亮绿和铅离子。
2.根据权利要求1所述的吸附剂的制备,其特征在于,包括以下步骤:
1)制备磁性氨基化Fe3O4
在乙二醇溶液中加入醋酸钠,己二胺,对氯化铁进行氨基化改性,所得溶液在带有聚四氟乙烯内衬的不锈钢高压釜中200℃反应6h。反应结束后,以外部磁场分离,用去离子水,乙醇清洗并干燥得到产物Fe3O4·NH2
2)在1)的基础上,首先通过席夫碱反应将部分醛基单体锚定在Fe3O4·NH2表面进行预聚合,将所得溶液在超声的环境中进一步加入醛基单体、氨基单体和氨基缺陷单体。然后,逐步加入HAc将溶液超声均匀,反应结束,生成最终产物Fe3O4@TT-COOH COF。
3.根据权利要求2所述的吸附剂制备方法,其特征在于:步骤1)中所用醋酸钠和氯化铁的质量比为4:1。
4.根据权利要求2所述的吸附剂制备,其特征在于:步骤2)中合成的氨基缺陷单体为5-氨基间苯二甲酸,氨基单体为2,4,6-三(4-氨基苯基)-1,3,5-三嗪,醛基单体为2,4,6-三(4-醛基苯基)-1,3,5-三嗪。
5.根据权利要求2所述的吸附剂制备方法,其特征在于:步骤2)中预聚合之后加入的醛基单体(TT-ald)和总氨基单体(TT-am和5-氨基间苯二甲酸)的摩尔比为1:1,Fe3O4·NH2与反应单体(醛基单体和总氨基单体)的质量比为1:5。
6.根据权利要求2所述方法制备的Fe3O4@TT-COOH COF对于有机污染物的吸附应用,其特征在于,所述有机污染物为阳离子染料亮绿和铅离子。
7.根据权利要求6所述的Fe3O4@TT-COOH COF对于有机污染物的吸附应用,其特征在于,所述的有机污染物亮绿或者铅离子溶液浓度范围为100~1000mg/L,吸附时间为0~180min,吸附剂与有机污染物的用量比为1g:3L。
8.根据权利要求6所述的Fe3O4@TT-COOH COF对于有机污染物的吸附应用,其特征在于,所述的溶液pH范围为1~9。
9.根据权利要求6所述的Fe3O4@TT-COOH COF对于有机污染物的吸附应用,其特征在于,吸附后的洗脱剂为0.1%HCl的乙醇溶液。
CN202310264732.0A 2023-03-17 2023-03-17 一种磁性羧基功能化缺陷cof的制备方法及其吸附应用 Active CN116410480B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310264732.0A CN116410480B (zh) 2023-03-17 2023-03-17 一种磁性羧基功能化缺陷cof的制备方法及其吸附应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310264732.0A CN116410480B (zh) 2023-03-17 2023-03-17 一种磁性羧基功能化缺陷cof的制备方法及其吸附应用

Publications (2)

Publication Number Publication Date
CN116410480A true CN116410480A (zh) 2023-07-11
CN116410480B CN116410480B (zh) 2024-04-09

Family

ID=87054162

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310264732.0A Active CN116410480B (zh) 2023-03-17 2023-03-17 一种磁性羧基功能化缺陷cof的制备方法及其吸附应用

Country Status (1)

Country Link
CN (1) CN116410480B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106496483A (zh) * 2016-11-09 2017-03-15 吉林大学 一种磁性亲水分子印迹树脂、制备方法及其在水介质样品中的应用
CN109400889A (zh) * 2017-08-16 2019-03-01 中国科学院大连化学物理研究所 一种磁性修饰的金属有机多孔材料及其制备和应用
CN111269454A (zh) * 2020-01-30 2020-06-12 哈尔滨工业大学 一种分离花色苷的磁性共价有机框架分子印迹聚合物的制备方法
CN111450803A (zh) * 2020-03-16 2020-07-28 哈尔滨工业大学 一种吸附三苯甲烷类染料的磁性共价有机骨架化合物的制备方法及应用
CN111499879A (zh) * 2020-04-24 2020-08-07 苏州大学 电离辐射源在制备多孔结晶材料中的应用
CN111729650A (zh) * 2020-07-02 2020-10-02 闽江学院 四氧化三铁@共价有机框架吸附材料及其在去除废水中有机染料方面的应用
CN112126071A (zh) * 2020-09-16 2020-12-25 浙江省农业科学院 一种磁性共价有机框架材料及其制备方法和应用
US20210023533A1 (en) * 2019-07-23 2021-01-28 King Fahd University Of Petroleum And Minerals Magnetic composite containing polyethylenimine functionalized actived carbon and methods thereof
CN112898515A (zh) * 2021-01-23 2021-06-04 西安科技大学 具有三嗪结构的多孔共价有机框架材料的制备方法
CN114634604A (zh) * 2022-03-07 2022-06-17 清华大学 常压微等离子体放电在制备共价有机框架材料方面的应用

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106496483A (zh) * 2016-11-09 2017-03-15 吉林大学 一种磁性亲水分子印迹树脂、制备方法及其在水介质样品中的应用
CN109400889A (zh) * 2017-08-16 2019-03-01 中国科学院大连化学物理研究所 一种磁性修饰的金属有机多孔材料及其制备和应用
US20210023533A1 (en) * 2019-07-23 2021-01-28 King Fahd University Of Petroleum And Minerals Magnetic composite containing polyethylenimine functionalized actived carbon and methods thereof
CN111269454A (zh) * 2020-01-30 2020-06-12 哈尔滨工业大学 一种分离花色苷的磁性共价有机框架分子印迹聚合物的制备方法
CN111450803A (zh) * 2020-03-16 2020-07-28 哈尔滨工业大学 一种吸附三苯甲烷类染料的磁性共价有机骨架化合物的制备方法及应用
CN111499879A (zh) * 2020-04-24 2020-08-07 苏州大学 电离辐射源在制备多孔结晶材料中的应用
CN111729650A (zh) * 2020-07-02 2020-10-02 闽江学院 四氧化三铁@共价有机框架吸附材料及其在去除废水中有机染料方面的应用
CN112126071A (zh) * 2020-09-16 2020-12-25 浙江省农业科学院 一种磁性共价有机框架材料及其制备方法和应用
CN112898515A (zh) * 2021-01-23 2021-06-04 西安科技大学 具有三嗪结构的多孔共价有机框架材料的制备方法
CN114634604A (zh) * 2022-03-07 2022-06-17 清华大学 常压微等离子体放电在制备共价有机框架材料方面的应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
AHMED F. M. EL-MAHDY ET AL.: "Strategic design of triphenylamine- and triphenyltriazine-based two-dimensional covalent organic frameworks for CO2 uptake and energy storage", JOURNAL OF MATERIALS CHEMISTRY A, 12 September 2018 (2018-09-12), pages 19532 - 19541 *
杨层层: "共价有机骨架及其复合材料去除废水中有机污染物的研究", 中国优秀硕士学位论文全文数据库.工程科技Ⅰ辑, 15 September 2021 (2021-09-15), pages 020 - 21 *

Also Published As

Publication number Publication date
CN116410480B (zh) 2024-04-09

Similar Documents

Publication Publication Date Title
Bai et al. A novel functional porous organic polymer for the removal of uranium from wastewater
Fan et al. Fabrication of a CO2-responsive chitosan aerogel as an effective adsorbent for the adsorption and desorption of heavy metal ions
Liu et al. Covalently crosslinked zirconium-based metal-organic framework aerogel monolith with ultralow-density and highly efficient Pb (II) removal
Liu et al. Magnetic chitosan/anaerobic granular sludge composite: synthesis, characterization and application in heavy metal ions removal
Luo et al. Adsorptive removal of Lead from water by the effective and reusable magnetic cellulose nanocomposite beads entrapping activated bentonite
Monier et al. Preparation and characterization of chelating fibers based on natural wool for removal of Hg (II), Cu (II) and Co (II) metal ions from aqueous solutions
Liu et al. In situ preparation of chitosan/ZIF-8 composite beads for highly efficient removal of U (VI)
Zhang et al. Zirconium cross-linked chitosan composite: preparation, characterization and application in adsorption of Cr (VI)
Wang et al. Preparation of ethylenediamine-modified magnetic chitosan complex for adsorption of uranyl ions
Zhu et al. Highly efficient and selective removal of Cr (VI) by covalent organic frameworks: Structure, performance and mechanism
Yuan et al. Glycine derivative-functionalized metal-organic framework (MOF) materials for Co (II) removal from aqueous solution
Liu et al. N-methylene phosphonic chitosan aerogels for efficient capture of Cu2+ and Pb2+ from aqueous environment
Zhou et al. Adsorption of Hg (II) from aqueous solution by ethylenediamine-modified magnetic crosslinking chitosan microspheres
Say et al. Removal of heavy metal ions by dithiocarbamate-anchored polymer/organosmectite composites
Kang et al. A novel magnetic and hydrophilic ion-imprinted polymer as a selective sorbent for the removal of cobalt ions from industrial wastewater
Ding et al. Mechanisms and kinetics of chelating reaction between novel chitosan derivatives and Zn (II)
Altun et al. Cr (VI) removal using Fe2O3-chitosan-cherry kernel shell pyrolytic charcoal composite beads
Liu et al. Three-in-one strategy for selective adsorption and effective separation of cis-diol containing luteolin from peanut shell coarse extract using PU/GO/BA-MOF composite
Hang et al. Selective separation of lambdacyhalothrin by porous/magnetic molecularly imprinted polymers prepared by P ickering emulsion polymerization
Cheng et al. Enhanced adsorption performance of UiO-66 via modification with functional groups and integration into hydrogels
Jing et al. Free-standing large-mesoporous silica films decorated with lanthanum as new adsorbents for efficient removal of phosphate
Zhao et al. Effectively removing indole-3-butyric acid from aqueous solution with magnetic layered double hydroxide-based adsorbents
Dong et al. Tannic acid-assisted fabrication of antibacterial sodium alginate-based gel beads for the multifunctional adsorption of heavy metal ions and dyes
Zhan et al. Flexible fabrication chitosan-polyamidoamine aerogels by one-step method for efficient adsorption and separation of anionic dyes
Wu et al. Synthesis of salicylaldehyde tailored PAMAM dendrimers/chitosan for adsorption of aqueous Hg (II): Performance and mechanism

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant