CN116371393A - 一种高效杀菌降解有机污染物的方法 - Google Patents

一种高效杀菌降解有机污染物的方法 Download PDF

Info

Publication number
CN116371393A
CN116371393A CN202310424724.8A CN202310424724A CN116371393A CN 116371393 A CN116371393 A CN 116371393A CN 202310424724 A CN202310424724 A CN 202310424724A CN 116371393 A CN116371393 A CN 116371393A
Authority
CN
China
Prior art keywords
photocatalytic
mesoporous
graphene
composite material
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310424724.8A
Other languages
English (en)
Inventor
曾和平
胡梦云
黎伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Huapu Environmental Protection Technology Co ltd
Chongqing Huapu Quantum Technology Co ltd
Chongqing Menghe Biotechnology Co ltd
Guangdong Langyan Technology Co ltd
Chongqing Huapu Information Technology Co ltd
East China Normal University
Chongqing Institute of East China Normal University
Shanghai Langyan Optoelectronics Technology Co Ltd
Yunnan Huapu Quantum Material Co Ltd
Original Assignee
Chongqing Huapu Environmental Protection Technology Co ltd
Chongqing Huapu Quantum Technology Co ltd
Chongqing Menghe Biotechnology Co ltd
Guangdong Langyan Technology Co ltd
Chongqing Huapu Information Technology Co ltd
East China Normal University
Chongqing Institute of East China Normal University
Shanghai Langyan Optoelectronics Technology Co Ltd
Yunnan Huapu Quantum Material Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Huapu Environmental Protection Technology Co ltd, Chongqing Huapu Quantum Technology Co ltd, Chongqing Menghe Biotechnology Co ltd, Guangdong Langyan Technology Co ltd, Chongqing Huapu Information Technology Co ltd, East China Normal University, Chongqing Institute of East China Normal University, Shanghai Langyan Optoelectronics Technology Co Ltd, Yunnan Huapu Quantum Material Co Ltd filed Critical Chongqing Huapu Environmental Protection Technology Co ltd
Priority to CN202310424724.8A priority Critical patent/CN116371393A/zh
Publication of CN116371393A publication Critical patent/CN116371393A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/26Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests in coated particulate form
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01PBIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
    • A01P1/00Disinfectants; Antimicrobial compounds or mixtures thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01PBIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
    • A01P3/00Fungicides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/638Pore volume more than 1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/653500-1000 nm
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/76Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Environmental Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Wood Science & Technology (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Dentistry (AREA)
  • Toxicology (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Catalysts (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

本发明涉及光催化材料技术领域,具体涉及一种高效杀菌降解有机污染物的方法,包括:获得光催化介孔材料;获得石墨烯包覆的光催化介孔复合材料;使用石墨烯包覆的光催化介孔复合材料和次氯酸盐处理水体,所述石墨烯包覆的光催化介孔复合材料在自然光照下生成电子空穴,电子空穴激发吸附于石墨烯包覆的光催化介孔复合材料上的ClO产生ClO自由基,ClO自由基在石墨烯包覆的光催化介孔复合材料上形成限域反应以增强其氧化能力,通过石墨烯包覆的光催化介孔复合材料光催化成产生的电子空穴和羟基自由基协同ClO自由基,能够实现高效、快速、长期和稳定的杀菌并降解有机污染物。

Description

一种高效杀菌降解有机污染物的方法
技术领域
本发明涉及光催化材料技术领域,具体涉及一种协高效杀菌降解有机污染物的方法。
背景技术
作为一种高效的杀毒剂和氧化剂,次氯酸及次氯酸盐类自20世纪八十年代起至今在国内广泛用于水处理、医疗卫生、食品加工等领域。与传统消毒剂相比,次氯酸及次氯酸盐类在消毒过程中效率更高,产生的副产物更少,并且价格低廉。其中,次氯酸钠是废水处理和饮用水消毒中最常用的试剂。由于其极强的氧化性,除了具有强效的杀菌效果,次氯酸钠被认为可以有效去除水环境中的各类难降解有机污染物。已有大量文献报道次氯酸钠可以与多种有机污染物特别是酚类化合物发生反应。次氯酸钠降解各类有机物的具体路径由具体有机物的化学结构与性质决定。通常在氯化处理废水的过程中,次氯酸钠投加量为1-4mg/L,最短接触时间为15min。
对于水体中有机物,特别是对于难降解有机污染物高效、迅速处理的方法一直是值得研究的方向。但是,直接使用次氯酸及次氯酸盐类进行难降解有机污染物的处理,还是存在处理效率低,有机污染物清除效果不理想的问题。中国专利CN114477418A公开了一种零价铁强化次氯酸盐去除水中有机污染物的方法,通过零价铁与次氯酸盐发生的多相微界面区域内的氧化还原反应,体系中产生多种类高赋存量的活性氧化物种,使水中污染物的去除效率增加。但是采用上述操作手段存在材料不能再生、有机污染物清除效率仍然不能满足应用需求的问题。亟需对新型的利用次氯酸及次氯酸盐类清除难降解有机污染物的手段进行探索,为更有效地治理有机污染以及节约处理成本创造条件。
发明内容
本发明意在提供一种高效杀菌降解有机污染物的方法,以解决现有技术中使用次氯酸及次氯酸盐类进行难降解有机污染物处理时效率不理想的技术问题。
为达到上述目的,本发明采用如下技术方案:
一种高效杀菌降解有机污染物的方法,包括以下步骤:
S1:将介孔材料与光催化材料进行搅拌研磨复合,获得光催化介孔材料;
S2:将所述光催化介孔材料与石墨烯搅拌研磨复合,获得石墨烯包覆的光催化介孔复合材料;
S3:使用石墨烯包覆的光催化介孔复合材料和次氯酸盐处理水体,所述石墨烯包覆的光催化介孔复合材料在自然光照下生成电子空穴,电子空穴激发吸附于石墨烯包覆的光催化介孔复合材料上的ClO-产生ClO自由基,ClO自由基在石墨烯包覆的光催化介孔复合材料上形成限域反应以增强其氧化能力,通过石墨烯包覆的光催化介孔复合材料光催化成产生的电子空穴和羟基自由基协同ClO自由基实现高效杀菌降解有机污染物;其中,生成ClO自由基的反应过程可以包括:
ClO-@光催化介孔复合材料+电子空穴→ClO自由基;
杀菌及降解有机物包括:
ClO自由基+光催化介孔复合材料+细菌/有机物→CO2+H2O+Cl-/ClO-
所述ClO-@光催化介孔复合材料是指ClO-附着在石墨烯包覆的光催化介孔复合材料上。这里,需要说明的是上述列举的反应过程是示意性过程,并不是实际的化学反应公式。
本技术方案的原理以及有益效果在于:
光催化技术是一种高效、经济和省时的杀菌以及去除有机污染物的方法,因其在处理过程中不产生二次污染物而在各种高级氧化工艺技术中脱颖而出,被认为是降解工业废水的重要技术。本技术方案首次利用介孔光催化技术生成次氯酸自由基,进一步通过吸附和限域反应加强次氯酸盐氧化降解有机物,进一步提升了次氯酸及次氯酸盐类在清除水体有机物污染的效果。并且本方案制备的石墨烯包覆的光催化介孔复合材料可回收再利用,大大节约了成本,为更有效地治理有机污染以及节约处理成本创造条件。针对现有水处理技术中还未见联合光催化介孔材料和次氯酸盐构成双催化体系,也未见利用光催化电子空穴生成次氯酸自由基以加强次氯酸盐降解有机物能力的报道。
更具体地,本技术方案结合石墨烯包覆的光催化介孔复合材料和次氯酸及次氯酸盐类进行水体有机物清除的原理以及过程为:石墨烯包覆的光催化介孔复合材料在光照射下(自然光照环境),生成电子空穴对,会激发次氯酸根产生ClO自由基,ClO自由基在墨烯包覆的光催化介孔复合材料上形成限域反应,会进一步增强ClO自由基的氧化能力,协同介孔复合材料的光催化过程中产生的空穴对以及羟基自由基,能够加快细菌及有机物的氧化过程,实现高效、快速、长期和稳定的杀菌及降解有机污染物。通过石墨烯包覆的光催化介孔复合材料和次氯酸及次氯酸盐类的协同,在清除水体有机物及杀菌上产生了协同增效的效果。
与现有技术相比,本发明提供的一种高效杀菌降解有机污染物的方法,利用介孔材料上进行的光催化及限域反应进一步加强次氯酸盐的强氧化性,由此结合了介孔光催化技术与次氯酸盐处理污水的工艺,可得到超快速降解水体有机物的效果。
进一步,所述介孔材料与光催化材料的质量比为1:(0.1~0.8),优选地,介孔材料与光催化材料的质量比可以为1:0.6。所述光催化介孔材料与石墨烯的质量比为1:(0.01-2),优选地,光催化介孔材料与石墨烯的质量比为1:1.6。
采用上述技术方案,介孔材料与光催化材料的质量比设置为1:(0.1~0.8),在确保光催化材料有好的催化效率的同时有较好的利用率,光催化材料的用量需在上述范围内,若量太少,催化效率低;若量太多,会在介孔材料中堆积,利用效率低。
石墨烯能够进一步为光催化材料提供结合位点,能够进一步加大光催化材料使用量的同时确保有好的分散性以提高光催化材料的利用效率。本申请质量石墨烯的加入,配合介孔光催化材料,协同在可见光照条件下即可触发产生具有强氧化活性的次氯酸根自由基。石墨烯能够加大比表面积形成限域反应,从而利用多孔光催化技术对次氯酸盐的氧化性能进一步加强。
进一步,次氯酸盐在水体中的质量百分比浓度为0.1~20%;石墨烯包覆的光催化介孔复合材料在水体中的质量百分比浓度为0.001~1%。
随着石墨烯包覆的光催化介孔复合材料与次氯酸盐使用量的增加,其褪色时间没有大幅度的缩短,结合使用成本考虑,石墨烯包覆的光催化介孔复合材料的质量百分浓度在1%以下(0.001~1%),次氯酸盐的质量百分浓度在20%以下(0.1~20%)。
进一步,所述介孔材料的比表面积≥150m2/g,孔径为0.1~10nm,孔容≥0.1cm3/g,所述介孔材料具有表面亲水性,接触角≤30°。
进一步,所述在S1和S2中,搅拌研磨复合为物理搅拌研磨复合;物理搅拌研磨复合的方法为:使用球磨、砂磨或气流磨,通过高速剪切的方式进行至少两种原料的混合。
通过物理搅拌研磨复合,多孔材料与光催化材料、石墨烯通过物理吸附与静电力吸附的方式进行复合。
进一步,使用球磨进行物理搅拌研磨复合,球磨转速为100~1500r/min,球磨时间为2~4h。
转速和球磨时间能够影响光催化材料、石墨烯以及介孔材料的结合性能。在本申请的转速和球磨时间下,能够使光催化材料更好均匀的分散;石墨烯能够更高的包覆在介孔材料的表面,石墨烯更好的包覆也能增加光催化材料的结合位点。
进一步,所述介孔材料包括介孔氧化硅、介孔碳、介孔硅、炭黑、凹凸棒、膨润土、硅藻土、三维石墨烯、金属有机物框架材料、共价有机框架材料、二维的金属碳化物和氮化物中的至少一种。
进一步,所述光催化材料包括氧化钛、氧化锌、氧化钨、氮化碳、卤素银系光催化材料、磷酸银、三氧化二铟、钛酸锶、钒酸铋、硫化锌、硫化铜和氧化亚铜中的至少一种。
进一步,所述光催化材料的粒径为1-10nm。
光催化材料的粒径为1-10nm,会使禁带变宽,从而使电子-空穴对具有更强的氧化-还原能力,催化活性将随尺寸量子化程度的提高而增加。尺寸的量子化也使半导体获得更大的电荷迁移速率,空穴与电子复合的几率大大减小,也有利于提高光催化反应的效率。
进一步,所述光催化介孔材料的比表面积≥50m2/g,孔径为0.1-3nm,孔容≥0.1cm3/g,光吸收波段为200-1200nm。
进一步,所述S3中还可以施加电压以进行电催化,加快降解速度。电催化的电流密度可以为0.1A/cm2~0.4A/cm2,例如,电流密度可以为0.15A/cm2、0.2A/cm2、0.25A/cm2或者0.3A/cm2
附图说明
图1为本方案的石墨烯包覆的光催化介孔复合材料的工作原理示意图。
图2为实验例的原始茶叶水和褪色后的茶叶水的典型图片。
具体实施方式
下面结合实施例对本发明做进一步详细的说明,但本发明的实施方式不限于此。若未特别指明,下述实施例以及实验例所用的技术手段为本领域技术人员所熟知的常规手段,且所用的材料、试剂等,均可从商业途径得到。
实施例1
本方案制备的一种降解水体有机物的原理如图1所示。图1中的石墨烯/光催化介孔复合材料即为石墨烯包覆的光催化介孔复合材料。石墨烯包覆的光催化介孔复合材料由如下方法制备而成:
本实施例具体使用的介孔材料为介孔碳,比表面积为200m2/g,孔径为1nm,孔容为0.5cm/g,接触角为10°;使用的光催化材料为ZnO,粒径为5nm(要求为纳米级别,优选范围为1-10nm);本技术方案可以使用任意型号的石墨烯,在本实施例中具体使用的石墨烯规格为GHP-20(青岛岩海谈碳材料有限公司,粉末状,粒径18μm,片径厚度1-15nm)。
质量比具体如下:ZnO:介孔材料=0.2:1;ZnO-介孔材料:石墨烯=1:1。
先将ZnO和介孔材料以规定比例加入球磨机,以800r/min的转速进行物理搅拌研磨3h,制得ZnO-介孔材料。然后,将ZnO-介孔材料和石墨烯以规定比例加入球磨机,以1000r/min的转速进行物理搅拌研磨3h,制得石墨烯包覆的光催化介孔复合材料。
获得的石墨烯包覆的光催化介孔复合材料的比表面积为700m2/g,孔容≥0.8cm3/g,光吸收波段为200-1200nm。
将上述获得的石墨烯包覆的光催化介孔复合材料与次氯酸钠加入茶叶水中,然后,置于自然光下,记录其褪色时间。其中,石墨烯包覆的光催化介孔复合材料在水体中的质量百分浓度0.1%,次氯酸钠在水体中的质量百分浓度为1%,茶叶水的浓度为100mg/mL(酚类物质,图2左),完全褪色的茶叶水呈无色透明状(图2右)。本实验例使用茶叶水模拟含有机物的污水,在实际应用时,对水体进行有机物处理,可以将次氯酸盐在水体中的质量百分比浓度维持在0.1~20%,将石墨烯包覆的光催化介孔复合材料在水体中的质量百分比浓度维持在0.001~1%。
对比例1
与实施例1获得的石墨烯包覆的光催化介孔复合材料相同。将获得的石墨烯包覆的光催化介孔复合材料加入浓度为100mg/ml的茶叶水,其中,石墨烯包覆的光催化介孔复合材料在水体中的质量百分浓度0.1%。
表1:实施例1与对比例1降解有机物的效果数据
Figure BDA0004188541800000051
Figure BDA0004188541800000061
从表1中的实施例1可以看出,通过石墨烯包覆的光催化介孔复合材料与次氯酸钠的协同作用,可以快速降解有机物。对比例1没有使用次氯酸钠,褪色时间是使用次氯酸钠的1000多倍,这说明石墨烯包覆的光催化介孔复合材料和次氯酸盐共同使用,在有机物清除上具有协同增效的效果。
实施例2
相比于实施例1而言,其ZnO与介孔材料的质量比为0.4:1,其他不变。
实施例3
相比于实施例1而言,其ZnO与介孔材料的质量比为0.6:1,其他不变。
实施例4
相比于实施例1而言,其ZnO与介孔材料的质量比为0.8:1,其他不变。
表2:实施例1~4降解有机物的效果数据
Figure BDA0004188541800000062
对比实施例1~实施例4可以看出,随着ZnO光催化材料含量的增加,有助于提升降解速度,但ZnO含量占比达到ZnO-介孔材料质量的80%后,降解速度反而有所下降,降解所需时间有所增加。因此,优选地,ZnO等光催化材料与介孔材料的质量比为0.6:1,此时的有机物的降解效率最高。
实施例5
本实施例基本同实施例1,不同点在于ZnO-介孔材料与石墨烯的质量比,详见表3。
实施例6
本实施例基本同实施例1,不同点在于ZnO-介孔材料与石墨烯的质量比,详见表3。
实施例7
本实施例基本同实施例1,不同点在于ZnO-介孔材料与石墨烯的质量比,详见表3。
实施例8
本实施例基本同实施例1,不同点在于ZnO-介孔材料与石墨烯的质量比,详见表3。
表3:实施例1、5-8的参数设置以及有机物降解效果数据
Figure BDA0004188541800000071
对比是实施例1、实施例5-8可以看出,随着石墨烯含量的提高,有利于有机物的降解。当ZnO-介孔材料与石墨烯的质量比在1:1.6时,此时的有机物降解效率最高,因此,优选地,ZnO-介孔材料与石墨烯的质量比为1:1.6;此后,随着石墨烯含量的继续增加,降解效率不再增加,降解时间开始变长。
发明人也尝试将实施例1-8中的石墨烯包覆的光催化介孔复合材料用于实际有机废水(污水)的处理中,发现:实施例3与实施例1、2、4的石墨烯包覆的光催化介孔复合材料的作用效果差异更加明显(相对于处理对象是茶水);实施例7与实施例1、5、6、8的石墨烯包覆的光催化介孔复合材料的作用效果差异更加明显(相对于处理对象是茶水)。实施例3和实施例7的材料对于复杂成分的污水(相对于成分相对单一的茶水)的作用效果更为显著和优异。这说明,采用如下的参数设置:“ZnO等光催化材料与介孔材料质量比为0.6:1”,“ZnO-介孔材料与石墨烯质量比为1:1.6”,可保证复合材料具有理想的实际应用价值。
对比例2
本对比例基本同实施例1,不同点在于,在制备石墨烯包覆的光催化介孔复合材料时,两次球磨得转速和时间为2000r/min和5h。使用本方案的石墨烯包覆的光催化介孔复合材料和次氯酸钠进行水体有机物清除实验,物料的用量参见实施例1,测得平均褪色时间为7s(n=10)。本对比例的产品在有机物清楚效率上比较不理想,发明人分析原因在于:由于球磨时间过长,转速过大,较为严重地影响了光催化材料、石墨烯以及介孔材料的结合性能。所以将球磨时间和转速控制在本方案规定的范围内(100~1500r/min、2~4h),是保证石墨烯包覆的光催化介孔复合材料和次氯酸钠产生协同增效作用的较为关键的技术参数。
以上所述的仅是本发明的实施例,方案中公知的具体技术方案和/或特性等常识在此未作过多描述。应当指出,对于本领域的技术人员来说,在不脱离本发明技术方案的前提下,还可以作出若干变形和改进,这些也应该视为本发明的保护范围,这些都不会影响本发明实施的效果和专利的实用性。本申请要求的保护范围应当以其权利要求的内容为准,说明书中的具体实施方式等记载可以用于解释权利要求的内容。

Claims (10)

1.一种高效杀菌降解有机污染物的方法,其特征在于,包括以下步骤:
S1:将介孔材料与光催化材料进行搅拌研磨复合,获得光催化介孔材料;
S2:将所述光催化介孔材料与石墨烯搅拌研磨复合,获得石墨烯包覆的光催化介孔复合材料;
S3:使用石墨烯包覆的光催化介孔复合材料和次氯酸盐处理水体,所述石墨烯包覆的光催化介孔复合材料在自然光照下生成电子空穴,电子空穴激发吸附于石墨烯包覆的光催化介孔复合材料上的ClO-产生ClO自由基,ClO自由基在石墨烯包覆的光催化介孔复合材料上形成限域反应以增强其氧化能力,通过石墨烯包覆的光催化介孔复合材料光催化协同ClO自由基以实现高效杀菌降解有机污染物,反应过程包括:
ClO-@光催化介孔复合材料+电子空穴→ClO自由基;
ClO自由基+光催化介孔复合材料+细菌/有机物→CO2+H2O+Cl-/ClO-
2.根据权利要求1所述的一种高效杀菌降解有机污染物的方法,其特征在于,所述介孔材料与光催化材料的质量比为1:(0.1~0.8);所述光催化介孔材料与石墨烯的质量比为1:(0.01~2)。
3.根据权利要求1或2所述的一种高效杀菌降解有机污染物的方法,其特征在于,次氯酸盐在水体中的质量百分比浓度为0.1~20%;石墨烯包覆的光催化介孔复合材料在水体中的质量百分比浓度为0.001~1%。
4.根据权利要求1或2所述的一种高效杀菌降解有机污染物的方法,其特征在于,所述介孔材料的比表面积≥150m2/g,孔径为0.1~10nm,孔容≥0.1cm3/g,所述介孔材料具有表面亲水性,接触角≤30°。
5.根据权利要求1或2所述的一种高效杀菌降解有机污染物的方法,其特征在于,所述在S1和S2中,搅拌研磨复合为物理搅拌研磨复合;物理搅拌研磨复合的方法为:使用球磨、砂磨或气流磨,通过高速剪切的方式进行至少两种原料的混合。
6.根据权利要求5所述的一种高效杀菌降解有机污染物的方法,其特征在于,使用球磨进行物理搅拌研磨复合,球磨转速为100~1500r/min,球磨时间为2~4h。
7.根据权利要求1、2或6所述的一种高效杀菌降解有机污染物的方法,其特征在于,所述介孔材料包括介孔氧化硅、介孔碳、介孔硅、炭黑、凹凸棒、膨润土、硅藻土、三维石墨烯、金属有机物框架材料、共价有机框架材料、二维的金属碳化物和氮化物中的至少一种。
8.根据权利要求1、2或6所述的一种高效杀菌降解有机污染物的方法,其特征在于,所述光催化材料包括氧化钛、氧化锌、氧化钨、氮化碳、卤素银系光催化材料、磷酸银、三氧化二铟、钛酸锶、钒酸铋、硫化锌、硫化铜和氧化亚铜中的至少一种。
9.根据权利要求8所述的一种高效杀菌降解有机污染物的方法,其特征在于,所述光催化材料的粒径为1-10nm。
10.根据权利要求1、2或6所述的一种高效杀菌降解有机污染物的方法,其特征在于,所述光催化介孔材料的比表面积≥50m2/g,孔径为0.1-3nm,孔容≥0.1cm3/g,光吸收波段为200-1200nm。
CN202310424724.8A 2023-04-19 2023-04-19 一种高效杀菌降解有机污染物的方法 Pending CN116371393A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310424724.8A CN116371393A (zh) 2023-04-19 2023-04-19 一种高效杀菌降解有机污染物的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310424724.8A CN116371393A (zh) 2023-04-19 2023-04-19 一种高效杀菌降解有机污染物的方法

Publications (1)

Publication Number Publication Date
CN116371393A true CN116371393A (zh) 2023-07-04

Family

ID=86976789

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310424724.8A Pending CN116371393A (zh) 2023-04-19 2023-04-19 一种高效杀菌降解有机污染物的方法

Country Status (1)

Country Link
CN (1) CN116371393A (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170009566A (ko) * 2015-07-17 2017-01-25 포항공과대학교 산학협력단 광촉매 복합체 및 그를 이용한 폐수처리 방법
CN107376921A (zh) * 2017-09-01 2017-11-24 中国科学院上海硅酸盐研究所苏州研究院 一种废水深度处理用石墨烯‑多孔氧化镍复合催化剂及其制备方法和应用
JP2018153787A (ja) * 2017-03-21 2018-10-04 株式会社東芝 次亜塩素酸を含む光触媒塗布液、光触媒付き基材の製造方法、及び光触媒付き基材
CN108654586A (zh) * 2018-05-07 2018-10-16 山东大学 一种石墨化介孔碳-TiO2复合光催化材料及其制备方法与应用
CN111821982A (zh) * 2020-04-26 2020-10-27 闽南师范大学 一种氧化石墨烯-氧化铈-氧化铁复合材料、合成方法及其在催化降解性中的应用
CN112473700A (zh) * 2020-12-07 2021-03-12 南昌航空大学 一种溴氧化铋/生物炭复合可见光催化剂的制备方法及应用
CN113019401A (zh) * 2021-03-11 2021-06-25 黑龙江工业学院 一种石墨烯基光催化复合材料的制备方法和应用及应用方法
US20210292205A1 (en) * 2020-05-27 2021-09-23 Shaoguan University SYSTEM AND METHOD FOR TREATING MEDICAL SEWAGE CONTAINING SARS-CoV-2 BASED ON NANO GRAPHENE
CN113732298A (zh) * 2021-08-24 2021-12-03 华东师范大学 一种木基材料负载纳米零价铁基还原剂及制备方法和应用
CN113929220A (zh) * 2021-11-09 2022-01-14 华东师范大学重庆研究院 基于限域增氧技术的介孔量子光催化材料协同生物菌的复合材料制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170009566A (ko) * 2015-07-17 2017-01-25 포항공과대학교 산학협력단 광촉매 복합체 및 그를 이용한 폐수처리 방법
JP2018153787A (ja) * 2017-03-21 2018-10-04 株式会社東芝 次亜塩素酸を含む光触媒塗布液、光触媒付き基材の製造方法、及び光触媒付き基材
CN107376921A (zh) * 2017-09-01 2017-11-24 中国科学院上海硅酸盐研究所苏州研究院 一种废水深度处理用石墨烯‑多孔氧化镍复合催化剂及其制备方法和应用
CN108654586A (zh) * 2018-05-07 2018-10-16 山东大学 一种石墨化介孔碳-TiO2复合光催化材料及其制备方法与应用
CN111821982A (zh) * 2020-04-26 2020-10-27 闽南师范大学 一种氧化石墨烯-氧化铈-氧化铁复合材料、合成方法及其在催化降解性中的应用
US20210292205A1 (en) * 2020-05-27 2021-09-23 Shaoguan University SYSTEM AND METHOD FOR TREATING MEDICAL SEWAGE CONTAINING SARS-CoV-2 BASED ON NANO GRAPHENE
CN112473700A (zh) * 2020-12-07 2021-03-12 南昌航空大学 一种溴氧化铋/生物炭复合可见光催化剂的制备方法及应用
CN113019401A (zh) * 2021-03-11 2021-06-25 黑龙江工业学院 一种石墨烯基光催化复合材料的制备方法和应用及应用方法
CN113732298A (zh) * 2021-08-24 2021-12-03 华东师范大学 一种木基材料负载纳米零价铁基还原剂及制备方法和应用
CN113929220A (zh) * 2021-11-09 2022-01-14 华东师范大学重庆研究院 基于限域增氧技术的介孔量子光催化材料协同生物菌的复合材料制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
EL-SAYED, F ET AL.: ""Comparative Degradation Studies of Carmine Dye by Photocatalysis and Photoelectrochemical Oxidation Processes in the Presence of Graphene/N-Doped ZnO Nanostructures "", 《CRYSTALS》, vol. 12, no. 4, 29 April 2022 (2022-04-29) *
李凤生等: "《微纳米粉体后处理技术及应用》", 30 September 2005, 北京:国防工业出版社, pages: 330 *
顾雅洁: ""水污染控制纳米氧化镍合成与应用研究"", 《中国优秀硕士学位论文全文数据库 工程科技I辑》, no. 3, 15 March 2021 (2021-03-15), pages 3 *

Similar Documents

Publication Publication Date Title
Guo et al. Photocatalytic degradation of tetracycline antibiotics using delafossite silver ferrite-based Z-scheme photocatalyst: Pathways and mechanism insight
Payan et al. Catalytic decomposition of sulfamethazine antibiotic and pharmaceutical wastewater using Cu-TiO2@ functionalized SWCNT ternary porous nanocomposite: influential factors, mechanism, and pathway studies
Qamar et al. Designing of highly active g-C3N4/Ni-ZnO photocatalyst nanocomposite for the disinfection and degradation of the organic dye under sunlight radiations
Prabavathi et al. Construction of heterostructure CoWO4/g-C3N4 nanocomposite as an efficient visible-light photocatalyst for norfloxacin degradation
Liu et al. Two‐dimensional nanomaterials for photocatalytic water disinfection: recent progress and future challenges
Srinivasan et al. Bactericidal and detoxification effects of irradiated semiconductor catalyst, TiO 2
Mondal et al. Photocatalytic oxidation of pollutant dyes in wastewater by TiO2 and ZnO nano-materials–a mini-review
Yuan et al. Research progress on photocatalytic reduction of Cr (VI) in polluted water
Padervand et al. Investigation of the antibacterial and photocatalytic properties of the zeolitic nanosized AgBr/TiO2 composites
Xu et al. Preparation of Ag3PO4/CoWO4 S-scheme heterojunction and study on sonocatalytic degradation of tetracycline
Alikhani et al. Photocatalytic removal of Escherichia coli from aquatic solutions using synthesized ZnO nanoparticles: a kinetic study
Liyanaarachchi et al. Efficient photocatalysis of Cu doped TiO2/g-C3N4 for the photodegradation of methylene blue
Orimolade et al. Advancements in electrochemical technologies for the removal of fluoroquinolone antibiotics in wastewater: a review
Al-Hasani et al. Effect of water quality in photocatalytic degradation of phenol using zinc oxide nanorods under visible light irradiation
CN111418608A (zh) Ag-MoS2@TiO2纳米光催化杀菌材料及其制备方法
CN111439807B (zh) 一种基于多元复合材料可见光催化水体消毒的方法
Li et al. Fabrication of carbon quantum dots/1D MoO3-x hybrid junction with enhanced LED light efficiency in photocatalytic inactivation of E. ácoli and S. áaureus
Okab et al. Photodegradation of tetracycline antibiotic by ternary recyclable Z-scheme g-C3N4/Fe3O4/Bi2WO6/Bi2S3 photocatalyst with improved charge separation efficiency: Characterization and mechanism studies
Zhang et al. Design of tandem CuO/CNTs composites for enhanced tetracycline degradation and antibacterial activity
Wang et al. Facile fabrication of AgVO3/rGO/BiVO4 hetero junction for efficient degradation and detoxification of norfloxacin
Zhang et al. Bi (Ⅲ) and Ce (Ⅳ) functionalized carbon nitride photocatalyst for antibiotic degradation: Synthesis, toxicity, and mechanism investigations
Chen et al. Towards removal of PPCPs by advanced oxidation processes: a review
KR20110093108A (ko) 하이브리드 광촉매 표면처리제의 제조방법 및 이에 의해 제조된 하이브리드 광촉매
Thakur et al. Photocatalytic behaviors of bismuth-based mixed oxides: Types, fabrication techniques and mineralization mechanism of antibiotics
CN116371393A (zh) 一种高效杀菌降解有机污染物的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination