CN116365580A - 一种海上风电送出***的短路电流计算模型的建立方法 - Google Patents

一种海上风电送出***的短路电流计算模型的建立方法 Download PDF

Info

Publication number
CN116365580A
CN116365580A CN202211581933.5A CN202211581933A CN116365580A CN 116365580 A CN116365580 A CN 116365580A CN 202211581933 A CN202211581933 A CN 202211581933A CN 116365580 A CN116365580 A CN 116365580A
Authority
CN
China
Prior art keywords
current
voltage
positive
negative sequence
equation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211581933.5A
Other languages
English (en)
Other versions
CN116365580B (zh
Inventor
李博通
钟晴
焦新茹
陈晓龙
刘思源
李斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN202211581933.5A priority Critical patent/CN116365580B/zh
Publication of CN116365580A publication Critical patent/CN116365580A/zh
Application granted granted Critical
Publication of CN116365580B publication Critical patent/CN116365580B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
    • G06F17/13Differential equations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/466Scheduling the operation of the generators, e.g. connecting or disconnecting generators to meet a given demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/06Power analysis or power optimisation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computational Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Software Systems (AREA)
  • Databases & Information Systems (AREA)
  • Algebra (AREA)
  • Operations Research (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • Inverter Devices (AREA)

Abstract

本发明涉及一种海上风电送出***的短路电流计算模型的建立方法,研究考虑正负序分解环节影响的暂态故障电流短路计算模型,考虑了正负序分解环节中的SOGI传递函数,得到dq轴坐标系下的电路方程及逆变器出口电压正/负序计算分量与正/负序调制信号关系式;利用电路方程、控制方程、差异关系式得到短路计算模型。本发明设计科学合理,能够实现暂态故障电流准确计算,适用于不同短路故障类型,并且准确揭示了故障电流暂态特性。

Description

一种海上风电送出***的短路电流计算模型的建立方法
技术领域
本发明属于电力***及自动化技术领域,涉及继电保护,特别涉及一种海上风电送出***的短路电流计算模型的建立方法。
背景技术
当海上交流送出***发生不同类型短路故障时,控制***中正负序分解环节的暂态响应对风电场输出暂态电流会产生显著影响。目前,针对稳态故障电流分析一般考虑低电压穿越控制的作用,通过序网络分析计算得到稳态电流值。大部分文献将短路故障后处于稳态的风电场等效为受控电压源或受控电流源,并建立不同故障条件下的复合网络简化故障分析和计算的建模程序;针对暂态故障电流的计算模型考虑了逆变器控制、锁相环等环节的影响,通过列写控制环节方程和等效电路微分方程计算得到暂态电流值。
但是,现有技术未考虑正负序分解环节对短路计算模型的影响,因此无法准确揭示故障电流的暂态特性。针对此问题,本发明充分考虑正负序分解环节影响,建立故障电流计算模型,可以详细揭示故障暂态期间短路电流的暂态特性。
发明内容
本发明的目的在于克服现有技术的不足,提供一种海上风电送出***的短路电流计算模型的建立方法。
本发明解决其技术问题是通过以下技术方案实现的:
一种海上风电送出***的短路电流计算模型的建立方法,其特征在于:所述方法的步骤为:
步骤S1、基于DSOGI-PLL的正负序分解过程,分析并推导计及正负序分解环节的正/负序dq轴坐标系下的风机并网***电路方程
(1)正序dq轴坐标系下的电路方程
以海上风电送出***拓扑结构为基础列写并网点电压ua、ub、uc至逆变器出口电压va、vb、vc三相电路方程为:
Figure BDA0003991672660000021
将三相电路方程式(1)经克拉克变换至αβ坐标系下可得:
Figure BDA0003991672660000022
其中:v'α、v'β为变换至两相静止坐标系下换流器出口电压分量;
i'α、i'β为变换至两相静止坐标系下换流器输出电流分量;
SOGI环节利用复频域上的传递函数表示输入信号与输出信号的关系:
Figure BDA0003991672660000023
将式(2)进行拉普拉斯变换得到两相静止坐标系复频域下的电路方程:
Figure BDA0003991672660000024
其中:i'α(t0)、i'β(t0)为故障时两相静止坐标系下电流初值;
对式(4)作SOGI环节采用的坐标变换方式,得到两相静止坐标系下的正序分量
Figure BDA0003991672660000025
为:
Figure BDA0003991672660000026
将式(3)中的传递函数G1(s)、G2(s)带入式(5)并化简可得:
Figure BDA0003991672660000027
其中:
Figure BDA0003991672660000028
为故障时刻两相静止坐标系下正序分量的电流初值;
f1(s)、f2(s)为化简过程中产生的的振荡衰减分量,具体表达式如式(7)所示:
Figure BDA0003991672660000029
将式(6)变换至时域可得:
Figure BDA0003991672660000031
最终将式(8)进行派克变换得到正序dq轴坐标系下的电路方程:
Figure BDA0003991672660000032
其中:
Figure BDA0003991672660000033
为经DSOGI-PLL分解后的逆变器出口正序dq轴电压计算分量;
(2)负序dq轴坐标系下的电路方程
根据(1)所述变换过程可得到负序电路方程为:
Figure BDA0003991672660000034
其中:
Figure BDA0003991672660000035
为经DSOGI分解后的逆变器出口负序dq轴电压计算分量;
h1(t)、h2(t)为化简过程中产生的衰减分量,具体表达式如式(11)所示:
Figure BDA0003991672660000036
步骤S2、根据正、负序控制回路等效模型列写控制回路方程
(1)正序控制回路等效计算模型
正序控制采用低电压穿越控制方案,其基本原理为:当并网点电压uabc发生跌落后,检测并网点正序电压upcc跌落幅度,根据电压跌落程度确定有功无功电流参考值
Figure BDA0003991672660000037
最终控制目标为:根据换流器的耐受短路电流能力,实现外界故障后输出的故障电流iabc不超过额定电流的1.2倍;
当电压跌落未到90%时,维持当前控制策略不变,即按照正常运行时的控制策略由外环控制产生内环控制dq轴电流参考值
Figure BDA0003991672660000038
此时外环控制在dq坐标系下的数学方程为:
Figure BDA0003991672660000039
其中:Q*
Figure BDA00039916726600000310
是外环无功功率和直流电压的参考值;
Q、udc是实际发出无功和直流侧电压;
Figure BDA0003991672660000041
分别是电压跌落后外环控制产生的正序电流d、q轴参考值;因为正常运行时输出无功一般为0,因此Q*设置为0,此时/>
Figure BDA0003991672660000042
为:
Figure BDA0003991672660000043
当upcc跌落至90%后,需要网侧换流器提供一定的无功支撑作用,为提高无功响应速度,
Figure BDA0003991672660000044
不经过外环控制产生,将外环无功控制切换至直接电流控制,/>
Figure BDA0003991672660000045
将改变为:
Figure BDA0003991672660000046
其中:upcc与并网点dq轴正序电压
Figure BDA0003991672660000047
关系为:
Figure BDA0003991672660000048
Figure BDA0003991672660000049
确定的情况下,/>
Figure BDA00039916726600000410
由/>
Figure BDA00039916726600000411
和/>
Figure BDA00039916726600000412
决定,如式(16)所示:
Figure BDA00039916726600000413
Figure BDA00039916726600000414
与/>
Figure BDA00039916726600000415
相等,可求出d轴切换至直接电流控制时并网点电压跌落程度u'pcc
Figure BDA00039916726600000416
而当upcc继续跌落到10%以下时,网侧换流器只输出无功电流,式(14)与式(16)应修正为:
Figure BDA00039916726600000417
基于低压穿越控制策略,当把
Figure BDA00039916726600000418
视为upcc的函数时,可将电压跌落前后/>
Figure BDA00039916726600000419
Figure BDA00039916726600000420
变化用式(19)表示:
Figure BDA00039916726600000421
Figure BDA0003991672660000051
其中:ε(upcc)为阶跃函数;
最后利用电流参考值与电压电流正序分量得到控制回路方程为:
Figure BDA0003991672660000052
(2)负序控制回路等效计算模型
由于并网双PWM变换器的直流侧电容量较大,因此较小程度不平衡电压下直流母线电容电压的二倍频脉动也较小,且抑制有功或无功功率波动的同时需要向电网注入大量的负序电流,这可能加重网侧电流的不平衡程度,导致并网变流器发热不均匀,变流器运行控制风险增加;因此目前实际工程中一般采用控制电网负序电流为零的控制方式,根据风电机组在故障发生后的负序电流抑制控制策略,负序控制电流环往往结合主回路的稳态电路方程设计,当控制***中加入正负序分解环节时,通常将分解后的负序dq轴电流
Figure BDA0003991672660000053
并网点负序电压/>
Figure BDA0003991672660000054
Figure BDA0003991672660000055
加入负序电流环并计算得出负序dq轴逆变器电压调制信号/>
Figure BDA0003991672660000056
通常将负序电流参考值设置id *、iq *为0可得负序抑制电流环控制响应方程如式(21)所示:
Figure BDA0003991672660000057
其中:L为网侧换流器端口到并网点间滤波器的等效电感;
Figure BDA0003991672660000058
为负序dq轴逆变器电压调制信号;
Figure BDA0003991672660000059
为负序dq轴坐标系下换流器的实际输出电流,即测量得到的电流;
将控制***中负序电流环得到的
Figure BDA00039916726600000510
与正序电流环得到的正序电压调制信号/>
Figure BDA00039916726600000511
利用派克反变换得到三相电压调制信号对逆变器进行调制;
步骤S3、分析dq轴坐标系下逆变器出口电压的电路方程分解量与调制信号的关系
根据逆变器出口电压坐标变换原理,在控制***中,换流器出口电压调制波产生方法为:将内环正负序电流环控制所得的正负序dq轴电压
Figure BDA00039916726600000512
Figure BDA00039916726600000513
分别经过派克反变换后叠加产生三相调制波,其值与换流器出口电压va、vb、vc相等,因此存在如式(22)所示的关系:
Figure BDA0003991672660000061
将式(22)进行包含正负序分解环节在内的坐标变换,此时式(22)等号右侧部分经过正负序分解环节后可以得到解耦后的正负序方程,只考虑正序方程可以得到
Figure BDA0003991672660000062
关系式:
Figure BDA0003991672660000063
Figure BDA0003991672660000064
其中:“*”代表卷积;
“.”代表乘积;
g1(t)、g2(t)分别为SOGI传递函数G1(s)、G2(s)化简到时域的表达式;
由式(23)和式(24)可知,左端电路方程经包含正负序分解环节的坐标变换后得到与式(9)相同的正序分量
Figure BDA0003991672660000065
进而得到与实际正序分量/>
Figure BDA0003991672660000066
的具体关系式,且可以看出/>
Figure BDA0003991672660000067
同理可得到逆变器出口电压负序分量差异关系式为:
Figure BDA0003991672660000068
Figure BDA0003991672660000069
根据式(25)和式(26)可知
Figure BDA00039916726600000610
步骤S4、联立方程得到暂态短路电流时域计算模型
将式(9)、式(20)、式(23)、式(24)联立可得包含六个未知数
Figure BDA00039916726600000611
六个方程的二阶微分方程组形式的正序时域短路模型如式(27)所示:
Figure BDA0003991672660000071
将式(10)、式(21)、式(25)、式(26)联立可得包含六个未知数
Figure BDA0003991672660000072
六个方程的二阶微分方程组形式的负序时域短路模型如式(28)所示:
Figure BDA0003991672660000073
为化简计算,对逆变器出口电压计算分量与调制信号之差
Figure BDA0003991672660000074
Figure BDA0003991672660000075
进行拟合,并将拟合结果作为已知量代入计算,则式(27)、式(28)可分别化简为:
Figure BDA0003991672660000076
Figure BDA0003991672660000077
本发明的优点和有益效果为:
本发明海上风电送出***的短路电流计算模型的建立方法,研究考虑正负序分解环节影响的暂态故障电流短路计算模型,考虑了正负序分解环节中的SOGI传递函数,得到了dq轴坐标系下的电路方程及逆变器出口电压正/负序计算分量与正/负序调制信号关系式;利用电路方程、控制方程、差异关系式得到短路计算模型,该发明能够实现暂态故障电流准确计算,适用于不同短路故障类型,并且准确揭示了故障电流暂态特性。
附图说明
图1为本发明的流程图;
图2为本发明海上风电送出***拓扑图;
图3为本发明DSOGI-PLL结构图;
图4为本发明低电压穿越控制方案图;
图5为本发明负序电流抑制方案图;
图6为本发明逆变器出口电压坐标变换原理图;
图7为本发明正序dq轴逆变器出口电压分解量与内环输出量之差曲线图;
图8a为本发明正序d轴电流的计算及仿真曲线图,图8b为本发明正序q轴电流的计算及仿真曲线图。
具体实施方式
下面通过具体实施例对本发明作进一步详述,以下实施例只是描述性的,不是限定性的,不能以此限定本发明的保护范围。
如图1所示,一种海上风电送出***的短路电流计算模型的建立方法,其创新之处在于:所述方法的步骤为:
步骤S1、如图3,基于DSOGI-PLL的正负序分解过程,分析并推导计及正负序分解环节的正/负序dq轴坐标系下的风机并网***电路方程
(1)正序dq轴坐标系下的电路方程
如图2,以海上风电送出***拓扑结构为基础列写并网点电压ua、ub、uc至逆变器出口电压va、vb、vc三相电路方程为:
Figure BDA0003991672660000081
将三相电路方程式(1)经克拉克变换至αβ坐标系下可得:
Figure BDA0003991672660000082
其中:v'α、v'β为变换至两相静止坐标系下换流器出口电压分量;
i'α、i'β为变换至两相静止坐标系下换流器输出电流分量;
SOGI环节利用复频域上的传递函数表示输入信号与输出信号的关系:
Figure BDA0003991672660000091
将式(2)进行拉普拉斯变换得到两相静止坐标系复频域下的电路方程:
Figure BDA0003991672660000092
其中:i'α(t0)、i'β(t0)为故障时两相静止坐标系下电流初值;
对式(4)作SOGI环节采用的坐标变换方式,得到两相静止坐标系下的正序分量
Figure BDA0003991672660000093
为:
Figure BDA0003991672660000094
将式(3)中的传递函数G1(s)、G2(s)带入式(5)并化简可得:
Figure BDA0003991672660000095
其中:
Figure BDA0003991672660000096
为故障时刻两相静止坐标系下正序分量的电流初值;
f1(s)、f2(s)为化简过程中产生的的振荡衰减分量,具体表达式如式(7)所示:
Figure BDA0003991672660000097
将式(6)变换至时域可得:
Figure BDA0003991672660000098
最终将式(8)进行派克变换得到正序dq轴坐标系下的电路方程:
Figure BDA0003991672660000099
其中:
Figure BDA00039916726600000910
为经DSOGI-PLL分解后的逆变器出口正序dq轴电压计算分量;
(2)负序dq轴坐标系下的电路方程
根据(1)所述变换过程可得到负序电路方程为:
Figure BDA0003991672660000101
其中:
Figure BDA0003991672660000102
为经DSOGI分解后的逆变器出口负序dq轴电压计算分量;
h1(t)、h2(t)为化简过程中产生的衰减分量,具体表达式如式(11)所示:
Figure BDA0003991672660000103
步骤S2、根据正、负序控制回路等效模型列写控制回路方程
(1)正序控制回路等效计算模型
如图4为正序控制采用低电压穿越控制方案,其基本原理为:当并网点电压uabc发生跌落后,检测并网点正序电压upcc跌落幅度,根据电压跌落程度确定有功无功电流参考值
Figure BDA0003991672660000104
最终控制目标为:根据换流器的耐受短路电流能力,实现外界故障后输出的故障电流iabc不超过额定电流的1.2倍;
当电压跌落未到90%时,维持当前控制策略不变,即按照正常运行时的控制策略由外环控制产生内环控制dq轴电流参考值
Figure BDA0003991672660000105
此时外环控制在dq坐标系下的数学方程为:
Figure BDA0003991672660000106
其中:Q*
Figure BDA0003991672660000107
是外环无功功率和直流电压的参考值;
Q、udc是实际发出无功和直流侧电压;
Figure BDA0003991672660000108
分别是电压跌落后外环控制产生的正序电流d、q轴参考值;因为正常运行时输出无功一般为0,因此Q*设置为0,此时/>
Figure BDA0003991672660000109
为:
Figure BDA00039916726600001010
当upcc跌落至90%后,需要网侧换流器提供一定的无功支撑作用,为提高无功响应速度,
Figure BDA00039916726600001011
不经过外环控制产生,将外环无功控制切换至直接电流控制,/>
Figure BDA00039916726600001012
将改变为:
Figure BDA0003991672660000111
其中:upcc与并网点dq轴正序电压
Figure BDA0003991672660000112
关系为:
Figure BDA0003991672660000113
Figure BDA0003991672660000114
确定的情况下,/>
Figure BDA0003991672660000115
由/>
Figure BDA0003991672660000116
和/>
Figure BDA0003991672660000117
决定,如式(16)所示:
Figure BDA0003991672660000118
Figure BDA0003991672660000119
与/>
Figure BDA00039916726600001110
相等,可求出d轴切换至直接电流控制时并网点电压跌落程度u'pcc
Figure BDA00039916726600001111
而当upcc继续跌落到10%以下时,网侧换流器只输出无功电流,式(14)与式(16)应修正为:
Figure BDA00039916726600001112
基于低压穿越控制策略,当把
Figure BDA00039916726600001113
视为upcc的函数时,可将电压跌落前后/>
Figure BDA00039916726600001116
Figure BDA00039916726600001117
变化用式(19)表示:
Figure BDA00039916726600001114
其中:ε(upcc)为阶跃函数;
最后利用电流参考值与电压电流正序分量得到控制回路方程为:
Figure BDA00039916726600001115
(2)负序控制回路等效计算模型
由于并网双PWM变换器的直流侧电容量较大,因此较小程度不平衡电压下直流母线电容电压的二倍频脉动也较小,且抑制有功或无功功率波动的同时需要向电网注入大量的负序电流,这可能加重网侧电流的不平衡程度,导致并网变流器发热不均匀,变流器运行控制风险增加;因此目前实际工程中一般采用控制电网负序电流为零的控制方式,根据风电机组在故障发生后的负序电流抑制控制策略,如图5所示,负序控制电流环往往结合主回路的稳态电路方程设计,当控制***中加入正负序分解环节时,通常将分解后的负序dq轴电流
Figure BDA0003991672660000121
并网点负序电压/>
Figure BDA0003991672660000122
加入负序电流环并计算得出负序dq轴逆变器电压调制信号/>
Figure BDA0003991672660000123
通常将负序电流参考值设置id *、iq *为0可得负序抑制电流环控制响应方程如式(21)所示:
Figure BDA0003991672660000124
其中:L为网侧换流器端口到并网点间滤波器的等效电感;
Figure BDA0003991672660000125
为负序dq轴逆变器电压调制信号;
Figure BDA0003991672660000126
为负序dq轴坐标系下换流器的实际输出电流,即测量得到的电流;
将控制***中负序电流环得到的
Figure BDA0003991672660000127
与正序电流环得到的正序电压调制信号/>
Figure BDA0003991672660000128
利用派克反变换得到三相电压调制信号对逆变器进行调制;
步骤S3、分析dq轴坐标系下逆变器出口电压的电路方程分解量与调制信号的关系
如图6,根据逆变器出口电压坐标变换原理,在控制***中,换流器出口电压调制波产生方法为:将内环正负序电流环控制所得的正负序dq轴电压
Figure BDA0003991672660000129
Figure BDA00039916726600001210
分别经过派克反变换后叠加产生三相调制波,其值与换流器出口电压va、vb、vc相等,因此存在如式(22)所示的关系:
Figure BDA00039916726600001211
将式(22)进行包含正负序分解环节在内的坐标变换,此时式(22)等号右侧部分经过正负序分解环节后可以得到解耦后的正负序方程,只考虑正序方程可以得到
Figure BDA00039916726600001212
关系式:
Figure BDA00039916726600001213
Figure BDA0003991672660000131
其中:“*”代表卷积;
“.”代表乘积;
g1(t)、g2(t)分别为SOGI传递函数G1(s)、G2(s)化简到时域的表达式;
由式(23)和式(24)可知,左端电路方程经包含正负序分解环节的坐标变换后得到与式(9)相同的正序分量
Figure BDA0003991672660000132
进而得到与实际正序分量/>
Figure BDA0003991672660000133
的具体关系式,且可以看出/>
Figure BDA0003991672660000134
同理可得到逆变器出口电压负序分量差异关系式为:
Figure BDA0003991672660000135
Figure BDA0003991672660000136
根据式(25)和式(26)可知
Figure BDA0003991672660000137
步骤S4、联立方程得到暂态短路电流时域计算模型
将式(9)、式(20)、式(23)、式(24)联立可得包含六个未知数
Figure BDA0003991672660000138
六个方程的二阶微分方程组形式的正序时域短路模型如式(27)所示:/>
Figure BDA0003991672660000139
将式(10)、式(21)、式(25)、式(26)联立可得包含六个未知数
Figure BDA00039916726600001310
六个方程的二阶微分方程组形式的负序时域短路模型如式(28)所示:
Figure BDA0003991672660000141
为化简计算,对逆变器出口电压计算分量与调制信号之差
Figure BDA0003991672660000142
Figure BDA0003991672660000143
进行拟合,并将拟合结果作为已知量代入计算,则式(27)、式(28)可分别化简为:
Figure BDA0003991672660000144
Figure BDA0003991672660000145
以对称故障为例验证所提模型准确性
设置仿真模型在2s时发生三相故障,此时并网点电压跌落至7%。观察逆变器出口电压差异波形如图7所示,
Figure BDA0003991672660000146
可近似看作呈衰减震荡趋势,二者经一段暂态过程后趋于稳定即差值为0,此暂态过程波动较大且持续时间较长,约为80ms。对逆变器出口电压差异进行拟合得到:
Figure BDA0003991672660000147
/>
Figure BDA0003991672660000148
将式(31)、式(32)作为已知量代入式(29),利用四阶龙格库塔法计算得到dq轴电流暂态过程计算结果如图8(a)、(b)所示。
从图8(a)和图8(b)中可以看出,利用公式所求解的正序dq轴暂态电流与仿真电流波形的差距基本很小;仿真结果证明了本专利申请提出的计及正负序分解环节的暂态电流故障特性分析方法可以有效地提升研究结果的准确性;且根据波形可以看出,正负序分解环节使得暂态电流出现了明显的超调特征且持续时间较长。
尽管为说明目的公开了本发明的实施例和附图,但是本领域的技术人员可以理解:在不脱离本发明及所附权利要求的精神和范围内,各种替换、变化和修改都是可能的,因此,本发明的范围不局限于实施例和附图所公开的内容。

Claims (1)

1.一种海上风电送出***的短路电流计算模型的建立方法,其特征在于:所述方法的步骤为:
步骤S1、基于DSOGI-PLL的正负序分解过程,分析并推导计及正负序分解环节的正/负序dq轴坐标系下的风机并网***电路方程
(1)正序dq轴坐标系下的电路方程
以海上风电送出***拓扑结构为基础列写并网点电压ua、ub、uc至逆变器出口电压va、vb、vc三相电路方程为:
Figure FDA0003991672650000011
将三相电路方程式(1)经克拉克变换至αβ坐标系下可得:
Figure FDA0003991672650000012
其中:v'α、v'β为变换至两相静止坐标系下换流器出口电压分量;
i'α、i'β为变换至两相静止坐标系下换流器输出电流分量;
SOGI环节利用复频域上的传递函数表示输入信号与输出信号的关系:
Figure FDA0003991672650000013
将式(2)进行拉普拉斯变换得到两相静止坐标系复频域下的电路方程:
Figure FDA0003991672650000014
其中:i'α(t0)、i'β(t0)为故障时两相静止坐标系下电流初值;
对式(4)作SOGI环节采用的坐标变换方式,得到两相静止坐标系下的正序分量
Figure FDA0003991672650000015
为:
Figure FDA0003991672650000016
将式(3)中的传递函数G1(s)、G2(s)带入式(5)并化简可得:
Figure FDA0003991672650000021
其中:
Figure FDA0003991672650000022
为故障时刻两相静止坐标系下正序分量的电流初值;
f1(s)、f2(s)为化简过程中产生的的振荡衰减分量,具体表达式如式(7)所示:
Figure FDA0003991672650000023
将式(6)变换至时域可得:
Figure FDA0003991672650000024
最终将式(8)进行派克变换得到正序dq轴坐标系下的电路方程:
Figure FDA0003991672650000025
其中:
Figure FDA0003991672650000026
为经DSOGI-PLL分解后的逆变器出口正序dq轴电压计算分量;
(2)负序dq轴坐标系下的电路方程
根据(1)所述变换过程可得到负序电路方程为:
Figure FDA0003991672650000027
其中:
Figure FDA0003991672650000028
为经DSOGI分解后的逆变器出口负序dq轴电压计算分量;
h1(t)、h2(t)为化简过程中产生的衰减分量,具体表达式如式(11)所示:
Figure FDA0003991672650000029
步骤S2、根据正、负序控制回路等效模型列写控制回路方程
(1)正序控制回路等效计算模型
正序控制采用低电压穿越控制方案,其基本原理为:当并网点电压uabc发生跌落后,检测并网点正序电压upcc跌落幅度,根据电压跌落程度确定有功无功电流参考值
Figure FDA0003991672650000031
最终控制目标为:根据换流器的耐受短路电流能力,实现外界故障后输出的故障电流iabc不超过额定电流的1.2倍;
当电压跌落未到90%时,维持当前控制策略不变,即按照正常运行时的控制策略由外环控制产生内环控制dq轴电流参考值
Figure FDA0003991672650000032
此时外环控制在dq坐标系下的数学方程为:
Figure FDA0003991672650000033
其中:Q*
Figure FDA0003991672650000034
是外环无功功率和直流电压的参考值;
Q、udc是实际发出无功和直流侧电压;
Figure FDA0003991672650000035
分别是电压跌落后外环控制产生的正序电流d、q轴参考值;因为正常运行时输出无功一般为0,因此Q*设置为0,此时/>
Figure FDA0003991672650000036
为:
Figure FDA0003991672650000037
当upcc跌落至90%后,需要网侧换流器提供一定的无功支撑作用,为提高无功响应速度,
Figure FDA0003991672650000038
不经过外环控制产生,将外环无功控制切换至直接电流控制,/>
Figure FDA0003991672650000039
将改变为:
Figure FDA00039916726500000310
其中:upcc与并网点dq轴正序电压
Figure FDA00039916726500000311
关系为:
Figure FDA00039916726500000312
Figure FDA00039916726500000313
确定的情况下,/>
Figure FDA00039916726500000314
由/>
Figure FDA00039916726500000315
和/>
Figure FDA00039916726500000316
决定,如式(16)所示:
Figure FDA00039916726500000317
Figure FDA00039916726500000318
与/>
Figure FDA00039916726500000319
相等,可求出d轴切换至直接电流控制时并网点电压跌落程度u'pcc
Figure FDA00039916726500000320
而当upcc继续跌落到10%以下时,网侧换流器只输出无功电流,式(14)与式(16)应修正为:
Figure FDA0003991672650000041
基于低压穿越控制策略,当把
Figure FDA0003991672650000042
视为upcc的函数时,可将电压跌落前后/>
Figure FDA0003991672650000043
Figure FDA0003991672650000044
变化用式(19)表示:
Figure FDA0003991672650000045
其中:ε(upcc)为阶跃函数;
最后利用电流参考值与电压电流正序分量得到控制回路方程为:
Figure FDA0003991672650000046
(2)负序控制回路等效计算模型
由于并网双PWM变换器的直流侧电容量较大,因此较小程度不平衡电压下直流母线电容电压的二倍频脉动也较小,且抑制有功或无功功率波动的同时需要向电网注入大量的负序电流,这可能加重网侧电流的不平衡程度,导致并网变流器发热不均匀,变流器运行控制风险增加;因此目前实际工程中一般采用控制电网负序电流为零的控制方式,根据风电机组在故障发生后的负序电流抑制控制策略,负序控制电流环往往结合主回路的稳态电路方程设计,当控制***中加入正负序分解环节时,通常将分解后的负序dq轴电流
Figure FDA0003991672650000047
并网点负序电压/>
Figure FDA0003991672650000048
Figure FDA0003991672650000049
加入负序电流环并计算得出负序dq轴逆变器电压调制信号
Figure FDA00039916726500000410
通常将负序电流参考值设置id *、iq *为0可得负序抑制电流环控制响应方程如式(21)所示:
Figure FDA00039916726500000411
其中:L为网侧换流器端口到并网点间滤波器的等效电感;
Figure FDA00039916726500000412
为负序dq轴逆变器电压调制信号;
Figure FDA00039916726500000413
为负序dq轴坐标系下换流器的实际输出电流,即测量得到的电流;
将控制***中负序电流环得到的
Figure FDA0003991672650000051
与正序电流环得到的正序电压调制信号
Figure FDA0003991672650000052
利用派克反变换得到三相电压调制信号对逆变器进行调制;
步骤S3、分析dq轴坐标系下逆变器出口电压的电路方程分解量与调制信号的关系
根据逆变器出口电压坐标变换原理,在控制***中,换流器出口电压调制波产生方法为:将内环正负序电流环控制所得的正负序dq轴电压
Figure FDA0003991672650000053
Figure FDA0003991672650000054
分别经过派克反变换后叠加产生三相调制波,其值与换流器出口电压va、vb、vc相等,因此存在如式(22)所示的关系:
Figure FDA0003991672650000055
将式(22)进行包含正负序分解环节在内的坐标变换,此时式(22)等号右侧部分经过正负序分解环节后可以得到解耦后的正负序方程,只考虑正序方程可以得到
Figure FDA0003991672650000056
关系式:
Figure FDA0003991672650000057
Figure FDA0003991672650000058
其中:“*”代表卷积;
“.”代表乘积;
g1(t)、g2(t)分别为SOGI传递函数G1(s)、G2(s)化简到时域的表达式;
由式(23)和式(24)可知,左端电路方程经包含正负序分解环节的坐标变换后得到与式(9)相同的正序分量
Figure FDA0003991672650000059
进而得到与实际正序分量/>
Figure FDA00039916726500000510
的具体关系式,且可以看出/>
Figure FDA00039916726500000511
同理可得到逆变器出口电压负序分量差异关系式为:
Figure FDA00039916726500000512
Figure FDA00039916726500000513
根据式(25)和式(26)可知
Figure FDA0003991672650000061
步骤S4、联立方程得到暂态短路电流时域计算模型
将式(9)、式(20)、式(23)、式(24)联立可得包含六个未知数
Figure FDA0003991672650000062
六个方程的二阶微分方程组形式的正序时域短路模型如式(27)所示:
Figure FDA0003991672650000063
将式(10)、式(21)、式(25)、式(26)联立可得包含六个未知数
Figure FDA0003991672650000064
六个方程的二阶微分方程组形式的负序时域短路模型如式(28)所示:
Figure FDA0003991672650000065
为化简计算,对逆变器出口电压计算分量与调制信号之差
Figure FDA0003991672650000066
Figure FDA0003991672650000067
进行拟合,并将拟合结果作为已知量代入计算,则式(27)、式(28)可分别化简为:
Figure FDA0003991672650000068
Figure FDA0003991672650000069
CN202211581933.5A 2022-12-09 2022-12-09 一种海上风电送出***的短路电流计算模型的建立方法 Active CN116365580B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211581933.5A CN116365580B (zh) 2022-12-09 2022-12-09 一种海上风电送出***的短路电流计算模型的建立方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211581933.5A CN116365580B (zh) 2022-12-09 2022-12-09 一种海上风电送出***的短路电流计算模型的建立方法

Publications (2)

Publication Number Publication Date
CN116365580A true CN116365580A (zh) 2023-06-30
CN116365580B CN116365580B (zh) 2024-06-14

Family

ID=86939451

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211581933.5A Active CN116365580B (zh) 2022-12-09 2022-12-09 一种海上风电送出***的短路电流计算模型的建立方法

Country Status (1)

Country Link
CN (1) CN116365580B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117240049A (zh) * 2023-09-08 2023-12-15 东南大学 一种变流器的快速电压响应及暂态穿越控制方法及***

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015035892A1 (zh) * 2013-09-10 2015-03-19 国家电网公司 一种双馈异步发电机组暂态短路电流的计算方法
CN107069800A (zh) * 2017-02-21 2017-08-18 华北电力大学 一种双馈风电场短路电流模型的建立方法
CN115313473A (zh) * 2022-07-06 2022-11-08 华北电力大学 一种计及逆变电源正负序解耦控制的故障电流解析方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015035892A1 (zh) * 2013-09-10 2015-03-19 国家电网公司 一种双馈异步发电机组暂态短路电流的计算方法
CN107069800A (zh) * 2017-02-21 2017-08-18 华北电力大学 一种双馈风电场短路电流模型的建立方法
CN115313473A (zh) * 2022-07-06 2022-11-08 华北电力大学 一种计及逆变电源正负序解耦控制的故障电流解析方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117240049A (zh) * 2023-09-08 2023-12-15 东南大学 一种变流器的快速电压响应及暂态穿越控制方法及***
CN117240049B (zh) * 2023-09-08 2024-03-19 东南大学 一种变流器的快速电压响应及暂态穿越控制方法及***

Also Published As

Publication number Publication date
CN116365580B (zh) 2024-06-14

Similar Documents

Publication Publication Date Title
CN110707958B (zh) 一种基于调制波区间划分的中点电压控制方法
CN110429611B (zh) 一种静止无功补偿器序阻抗建模及控制参数调整方法
CN102223100A (zh) 基于修正比例谐振调节器的三相并网逆变器控制方法
Zhou et al. DC-link voltage research of photovoltaic grid-connected inverter using improved active disturbance rejection control
CN114583702B (zh) Lcl型有源电力滤波器的并联电流控制***及控制方法
CN116365580B (zh) 一种海上风电送出***的短路电流计算模型的建立方法
CN113162021A (zh) 基于不确定干扰估计的vsc内环电流控制方法
CN113346785A (zh) 一种逆变器自适应误差补偿控制***及方法
CN113629763B (zh) 非理想电网下中压直挂储能变流器电流控制方法及***
CN111614118A (zh) 一种消除逆变器直流母线电压纹波的实现方法
CN112636348B (zh) 一种模块化三相电流型并网逆变器控制方法
Ma et al. Second-order linear active disturbance rejection control and stability analysis of energy storage grid-connected inverter
CN109951093B (zh) 一种基于混杂参数的中点电压控制***及方法
CN112003318A (zh) 一种风电并网逆变器直流母线电压控制方法
CN116979542A (zh) 一种基于二阶ladrc的储能变流器直流母线电压控制方法
Le et al. A nonlinear control strategy for UPQC
CN111525567B (zh) 一种光伏并网逆变器故障电流的计算方法和装置
Benazza et al. Backstepping control of three-phase multilevel series active power filter
Zhang et al. An improved robust model predictive and repetitive combined control for three-phase four-leg active power filters with fixed switching frequency
Tyagi et al. Utilization of small hydro energy conversion based renewable energy for dual mode operation
CN116544969B (zh) 弱电网下抑制直驱风电场次同步振荡的控制方法及装置
CN113346779B (zh) 一种模块化多电平变换器并网电流无源控制方法
Li et al. Study on transient characteristics of three-phase short-circuit fault current of offshore wind power delivery system including positive and negative sequence decomposition
Lu et al. Virtual synchronous generator control strategy based on improved inner loop applied to power storage converter
CN117977706A (zh) 一种风电并网逆变器新型双闭环控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant