CN116288347A - 减少腐蚀磨损方法及海洋环境表面耐腐蚀磨损氟化碳基膜 - Google Patents

减少腐蚀磨损方法及海洋环境表面耐腐蚀磨损氟化碳基膜 Download PDF

Info

Publication number
CN116288347A
CN116288347A CN202310523841.XA CN202310523841A CN116288347A CN 116288347 A CN116288347 A CN 116288347A CN 202310523841 A CN202310523841 A CN 202310523841A CN 116288347 A CN116288347 A CN 116288347A
Authority
CN
China
Prior art keywords
corrosion
tio
ceramic layer
film
titanium alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310523841.XA
Other languages
English (en)
Inventor
曹磊
沈学忠
李庆超
陈华杰
袁安素
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dongguan Hanjing Nano Materials Ltd
Nashi New Materials Co ltd
Nashi New Materials Co ltd Hangzhou Branch
Original Assignee
Dongguan Hanjing Nano Materials Ltd
Nashi New Materials Co ltd
Nashi New Materials Co ltd Hangzhou Branch
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dongguan Hanjing Nano Materials Ltd, Nashi New Materials Co ltd, Nashi New Materials Co ltd Hangzhou Branch filed Critical Dongguan Hanjing Nano Materials Ltd
Publication of CN116288347A publication Critical patent/CN116288347A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/046Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material with at least one amorphous inorganic material layer, e.g. DLC, a-C:H, a-C:Me, the layer being doped or not
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Thermal Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

本发明公开了减少腐蚀磨损方法及海洋环境表面耐腐蚀磨损氟化碳基膜,涉及材料表面改性技术领域,包括:织构化TiO2陶瓷层,形成于钛合金基体表面;F‑DLC结构层,由氟化碳膜层修饰于织构化TiO2陶瓷层表面形成;和缓蚀剂,封装于织构化TiO2陶瓷层的织构结构中。本发明制备的海洋环境中钛合金表面新型高疏水耐腐蚀磨损氟化碳基薄膜具有更加优异的耐磨损性能,与基体结合力显著提升,且具有持续抗腐蚀磨损性能;同时氟化碳基薄膜表现出更加优异的抗菌性能。

Description

减少腐蚀磨损方法及海洋环境表面耐腐蚀磨损氟化碳基膜
技术领域
本发明属于材料表面改性技术领域,具体涉及减少腐蚀磨损方法及海洋环境表面耐腐蚀磨损氟化碳基膜。
背景技术
海洋产业已成为国家的战略高科技产业。目前,我国正在大力发展***、舰载机、核潜艇、海洋钻井平台等多种军用和民用海洋设备,因此有关海水环境下材料的摩擦学性能的研究越来越受到人们的关注,钛合金在常温海水环境中会立即在表面生成一层氧化物钝化膜,阻止点蚀和缝隙腐蚀的发生,被誉为“海洋金属”,因此常被用作设备的支撑部件。然而,钛合金作为机械运动部件使用时,在摩擦过程中表面氧化物钝化膜很容易破坏,此时由于力学、化学以及电化学等因素的交互作用,会导致钛合金发生严重的腐蚀磨损。
近年来,碳基薄膜以其优异的摩擦学性能和化学稳定性在减摩和耐蚀领域显示出巨大的应用前景。但是其在海洋环境中实际应用时,由于其硬度与内应力较大,容易在外加载荷的作用下产生微裂纹,而碳基薄膜多显亲水性,因此海水等腐蚀介质又会加速这种微裂纹的扩展,并可能通过贯穿微裂纹渗透至膜-基界面处,导致薄膜剥落而失效,难以完全发挥持久的保护特性。另一方面,对于钛合金而言,其本身的弹性模量和显微硬度较低,与碳基薄膜的弹性模量和热膨胀系数差异较大,高的内应力导致薄膜-基底结合力较差,也不利于碳基薄膜对基底的长效保护。因此,要实现碳基薄膜对钛合金基底在腐蚀磨损工况下的长效保护,则需要有效的办法来解决这一技术瓶颈。
发明内容
本发明的目的在于提供减少腐蚀磨损方法及海洋环境表面耐腐蚀磨损氟化碳基膜,该氟化碳基薄膜具有更加优异的耐磨损性能,与基体结合力显著提升,且具有持续抗腐蚀磨损性能;同时氟化碳基薄膜表现出更加优异的抗菌性能。
本发明为实现上述目的所采取的技术方案为:
一种钛合金表面高疏水耐腐蚀磨损氟化碳基薄膜,包括:织构化TiO2陶瓷层,形成于钛合金基体表面;
F-DLC结构层,由氟化碳膜层修饰于织构化TiO2陶瓷层表面形成;
和缓蚀剂,封装于织构化TiO2陶瓷层的织构结构中。
本发明首先在钛合金基底表面构筑织构化的TiO2陶瓷薄膜作为过渡层,TiO2陶瓷薄膜与钛合金具有良好的结合强度,其本身也是良好的耐蚀材料,对涂层整体的结合力与耐蚀性的提升产生重要作用;并且可以提升涂层的承载力,可以使涂层在较大的负载条件下同样具有优异的耐腐蚀磨损效果;此外其本身的高硬度使得表面F-DLC涂层具有足够的承载力,织构化的F-DLC涂层能够有效地提高涂层的表面疏水性,接触角能升高到140°以上,而表面超疏水膜独特的非润湿性可以有效阻止腐蚀性介质在表面的浸润,进而有效提高材料的耐蚀性能;凹面的织构化图案可以使得摩擦仅发生在图案的交汇的棱边上,减小凹坑内部疏水材料的磨损,使其长期保持疏水性,从而起到长效的耐蚀效果;同时氟元素的掺杂能够有效的降低碳基薄膜内应力。此外,本发明在织构化结构中封装合适的缓蚀剂,作为摩擦引起表层薄膜破坏后的缓冲机制,能够在涂层经过长期腐蚀磨损后产生微孔与裂纹的时候吸附其中,延缓腐蚀的进一步发生,使得薄膜具有持续抗腐蚀磨损性能,保证涂层的长效寿命。
于具体实施例中,织构化TiO2陶瓷层通过热氧化或PVD真空镀膜得到TiO2陶瓷层,再通过激光蚀刻进行织构化处理获得。
于具体实施例中,F-DLC结构层通过PECVD真空镀膜形成。
于具体实施例中,缓蚀剂包括纤维素、壳聚糖或其衍生物。
于具体实施例中,壳聚糖衍生物由2-氨基-4,6-二甲氧基嘧啶修饰壳聚糖获得。本发明采用2-氨基-4,6-二甲氧基嘧啶修饰壳聚糖制备得到其衍生物,具有优异的缓蚀性能,作为缓蚀剂应用于氟化碳基薄膜的制备工艺中,能够进一步改善薄膜的耐磨性能,其摩擦系数及磨损率明显降低;同时使得薄膜具有更加优异的抗菌性能。其原因可能在于,采用-氨基-4,6-二甲氧基嘧啶修饰壳聚糖,在其链结构中引入更多活性官能团,如含氧、含氮基团,能够更好地在金属基体表面发生吸附作用,更好地填补金属器件腐蚀磨损后产生微孔与裂纹,进而更佳有效地延缓器件腐蚀的发生,延长涂层使用寿命。
本发明又公开了上述壳聚糖衍生物的制备方法,包括:
取壳聚糖加入蒸馏水,55~65℃水浴锅的条件下边搅拌边均匀滴加30%浓度的过氧化氢,反应5~7h;之后过滤、60~65℃减压蒸馏,接着加入无水乙醇静置,过滤,得到的固体真空干燥、研磨得到降解的壳聚糖,分子量为2000~4000;
取降解的壳聚糖,加入蒸馏水溶解;加入等体积量的环氧氯丙烷的丙酮溶液,25~35℃下搅拌10~20min,然后升温至55~65℃,加入2-氨基-4,6-二甲氧基嘧啶反应8~10h;旋蒸,加入无水乙醇沉淀,减压抽滤,无水乙醇洗涤、真空干燥得到壳聚糖衍生物。
于具体实施例中,壳聚糖与蒸馏水的固液比为1:12~15mL;壳聚糖与30%浓度过氧化氢的固液比为1g:3.5~4.5mL。
于具体实施例中,降解的壳聚糖与蒸馏水的固液比为1g:60~70mL;环氧氯丙烷与降解的壳聚糖的摩尔比为3.5~4.5:1;环氧氯丙烷与丙酮的体积比为1:30~35;2-氨基-4,6-二甲氧基嘧啶与降解的壳聚糖的摩尔比为2~4:1。
本发明还公开了一种减少腐蚀磨损方法,包括:在钛合金基体表面制备表面高疏水耐腐蚀磨损氟化碳基薄膜。
需要说明的是,表面高疏水耐腐蚀磨损氟化碳基薄膜即为海洋环境表面耐腐蚀磨损氟化碳基膜。
上述钛合金表面高疏水耐腐蚀磨损氟化碳基薄膜的制备方法,包括:
(1)在钛合金表面通过热氧化法或PVD真空镀膜法制备TiO2陶瓷层;
(2)通过激光蚀刻将TiO2陶瓷层进行织构化处理得到织构化TiO2陶瓷层;
(3)采用PECVD真空镀膜法在织构化TiO2陶瓷层表面制备F-DLC,进行低表面能物质修饰获得高疏水表面;
(4)在织构中封装绿色缓蚀剂即可。
于具体实施例中,步骤(1)中热氧化法制备TiO2陶瓷层,具体为:
取钛合金在混酸(HF:HNO3=1:2.8~3.2,v/v)中浸泡4~6min,去除表面氧化膜层,然后依次用丙酮、蒸馏水超声清洗8~12min,自然干燥后,置于程序控温的马弗炉中,空气气氛下从室温升温至设定温度550~650℃,升温速率为4~7℃/min;恒温保温1.5~2.5h后,自然冷却至室温即可。
于具体实施例中,TiO2陶瓷层厚度为0.5~10μm。
于具体实施例中,步骤(2)中TiO2陶瓷层织构化过程具体为:预设激光蚀刻图形;将步骤(1)中制备的表面具有TiO2陶瓷层的钛合金放置在激光蚀刻设备的工作台上,并进行定位;根据预设的激光蚀刻图形控制激光蚀刻设备对被蚀刻产品进行蚀刻获得。
于具体实施例中,上述蚀刻图形包括倒金字塔、倒圆锥或倒梯形形状。
于具体实施例中,步骤(3)中PECVD真空镀膜工艺具体为:
取步骤(2)中织构化的TiO2陶瓷层,超声清洗15~30min,丙酮浸泡清洗表面有机物,再用无水乙醇浸泡清洗,干燥;之后将其放置于仪器的真空室中下极板样品盘上,进行镀膜实验。
于具体实施例中,PECVD真空镀膜工艺具体参数包括:源气体为碳源和氟源,反应气体总流量16~20sccm,流量比(氟源/(碳源+氟源))为0.5~0.7,实验过程中流量保持不变,沉积本底压强不低于2×10-3Pa,温度为130~150℃,沉积时间为20~40min,沉积功率为200~250W。
于具体实施例中,F-DLC结构层的厚度为1~20μm。
于具体实施例中,步骤(4)中封装缓蚀剂的具体过程为:将步骤(3)中获得的具有高疏水表面的钛合金浸渍于5~8wt%浓度的壳聚糖衍生物溶液中,2~5h后取出,室温干燥即可。
需要说明的是,壳聚糖衍生物溶液中的溶剂为丙酮/水混合液,两者体积比为1:2~3。
于具体实施例中,PECVD真空镀膜工艺中源气体包括碳源和氟源。
于具体实施例中,碳源选自C2H2、CH4中的至少一种;所述氟源选自CF4、C2H2F4中的至少一种。
本发明又公开了上述表面高疏水耐腐蚀磨损氟化碳基薄膜用于海洋构件表面耐腐蚀磨损处理中。
相比于现有技术,本发明具有如下有益效果:
本发明提出了制备具有耐腐蚀磨损性能的复合超疏水碳膜的理念,在钛合金表面制备具有持久耐腐蚀性能的复合氟化碳基薄膜,一方面能显著提高其疏水性,另一方面也有利于降低摩擦系数,降低能耗。并且将薄膜的微纳织构作为容器容纳适量的缓蚀剂,有利于进一步提升薄膜的耐腐蚀磨损性能。本发明为解决钛合金在海水环境下腐蚀磨损的措施与办法提供了新思路,能够更好地应用于开发新一代可用于海水环境下的机械设备的高性能材料。进一步的,本发明采用2-氨基-4,6-二甲氧基嘧啶修饰壳聚糖制备得到其衍生物,作为缓蚀剂应用于氟化碳基薄膜的制备工艺中,能够进一步改善薄膜的耐磨性能,其摩擦系数及磨损率明显降低;同时使得薄膜具有更加优异的抗菌性能。
因此,本发明提供了减少腐蚀磨损方法及海洋环境表面耐腐蚀磨损氟化碳基膜,该氟化碳基薄膜具有更加优异的耐磨损性能,与基体结合力显著提升,且具有持续抗腐蚀磨损性能;同时氟化碳基薄膜表现出更加优异的抗菌性能。
附图说明
图1是本发明实施例1中氟化碳基薄膜的结构示意图;
图2是本发明实施例3中制备的壳聚糖衍生物及其壳聚糖的红外光谱;
图3是本发明实施例5、实施例7中制备的TiO2陶瓷层的XRD图谱。
附图标记:
1-缓蚀剂,2-F-DLC层,3-织构化TiO2陶瓷层,4-钛合金。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合实施例对本发明的各实施方式进行详细的阐述。然而,本领域的普通技术人员可以理解,在本发明各实施方式中,为了使读者更好地理解本申请而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施方式的种种变化和修改,也可以实现本申请所要求保护的技术方案。
实施例1:
一种钛合金表面高疏水耐腐蚀磨损氟化碳基薄膜,其结构示意图如图1所示,具体制备过程为:
(1)钛合金表面通过热氧化法制备TiO2陶瓷层,具体为:
取钛合金(Ti6Al4V)在混酸(HF:HNO3=1:3,v/v)中浸泡5min,去除表面氧化膜层,然后依次用丙酮、蒸馏水超声清洗10min,自然干燥后,置于程序控温的马弗炉中,空气气氛下从室温升温至设定温度600℃,升温速率为5℃/min;恒温保温2h后,自然冷却至室温即可,TiO2陶瓷层厚度为7.6μm;
(2)将TiO2陶瓷层织构化,采用激光蚀刻获得倒梯形的形状;具体为:预设激光蚀刻图形;将步骤(1)中制备的表面具有TiO2陶瓷层的钛合金放置在激光蚀刻设备的工作台上,并进行定位;根据预设的激光蚀刻图形控制激光蚀刻设备对被蚀刻产品进行蚀刻;
(3)在TiO2陶瓷层表面制备F-DLC(厚度为15.4μm),进行低表面能物质修饰获得具有高疏水表面的钛合金,具体为:
取步骤(2)中织构化的TiO2陶瓷层,超声清洗20min,丙酮浸泡清洗表面有机物,再用无水乙醇浸泡清洗,干燥;之后将其放置于仪器的真空室中下极板样品盘上,进行镀膜实验;具体参数包括:源气体为CH4和CF4,反应气体总流量18sccm,流量比(CF4/(CH4+CF4))为0.65,实验过程中流量保持不变,沉积本底压强不低于2×10-3Pa,温度为145℃,沉积时间为30min,沉积功率为230W;
(4)在织构中封装绿色缓蚀剂,将步骤(3)中获得的具有高疏水表面的钛合金浸渍于6.4wt%浓度的壳聚糖溶液(溶剂为丙酮/水混合液,v/v,1:2.5)中,3.5h后取出,室温干燥即可。
实施例2:
一种钛合金表面高疏水耐腐蚀磨损氟化碳基薄膜的制备与实施例1的不同之处在于:
步骤(3)中PECVD真空镀膜工艺具体参数为:源气体为碳源(C2H2)和氟源(C2H2F4),反应气体总流量20sccm,流量比(C2H2F4/( C2H2+ C2H2F4))为0.55,实验过程中流量保持不变,沉积本底压强不低于2×10-3Pa,温度为140℃,沉积时间为25min,沉积功率为250W。
步骤(4)中壳聚糖溶液的浓度为7.2wt%。
实施例3:
一种钛合金表面高疏水耐腐蚀磨损氟化碳基薄膜的制备与实施例1的不同之处在于:
步骤(4)中采用壳聚糖衍生物替代壳聚糖,壳聚糖衍生物为本实施例制备的。
壳聚糖衍生物的制备:
按照固液比为1:13.6mL的比例取壳聚糖加入蒸馏水,60℃水浴锅的条件下边搅拌边均匀滴加30%浓度的过氧化氢(壳聚糖与30%浓度过氧化氢的固液比为1g:4.1mL),反应6h;之后过滤、60℃减压蒸馏,接着加入无水乙醇静置,过滤,得到的固体真空干燥、研磨得到降解的壳聚糖,分子量为3200;
按照固液比为1g:64mL的比例取降解的壳聚糖,加入蒸馏水溶解;加入等体积量的环氧氯丙烷(与降解的壳聚糖的摩尔比为4.2:1)的丙酮溶液(环氧氯丙烷与丙酮的体积比为1:32),30℃下搅拌15min,然后升温至60℃,加入2-氨基-4,6-二甲氧基嘧啶(与降解的壳聚糖的摩尔比为3.1:1)反应9h;旋蒸,加入无水乙醇沉淀,减压抽滤,无水乙醇洗涤、真空干燥得到壳聚糖衍生物。
实施例4:
一种钛合金表面高疏水耐腐蚀磨损氟化碳基薄膜的制备与实施例3的不同之处在于:
步骤(3)中PECVD真空镀膜工艺具体参数为:源气体为碳源(C2H2)和氟源(C2H2F4),反应气体总流量17sccm,流量比(C2H2F4/( C2H2+ C2H2F4))为0.7,实验过程中流量保持不变,沉积本底压强不低于2×10-3Pa,温度为150℃,沉积时间为25min,沉积功率为220W。
步骤(4)中壳聚糖衍生物为本实施例制备的,其溶液的浓度为5.8wt%。
壳聚糖衍生物的制备与实施例3的不同之处在于:降解的壳聚糖的分子量为2200;环氧氯丙烷与降解的壳聚糖的摩尔比为3.6:1;2-氨基-4,6-二甲氧基嘧啶与降解的壳聚糖的摩尔比为2.3:1。
实施例5:
一种钛合金表面高疏水耐腐蚀磨损氟化碳基薄膜的制备与实施例1的不同之处在于:
钛合金表面制备TiO2陶瓷层的方法为微弧氧化法,具体为:
取钛合金用砂轮机和水砂纸逐级打磨,使其表面平整,然后用丙酮超声清洗30min,烘干得到预处理的钛合金;
配制复合电解液,配制复合溶液体系NaAlO2(8~12g/L)+NaF(4~6g/L)+KOH(4~6g/L)+吡咯烷二硫代甲酸铵-铜(0.5~2g/L);其中,吡咯烷二硫代甲酸铵-铜的配制:五水硫酸铜和吡咯烷二硫代甲酸铵按照质量比为1:1~1.5的比例混合制得;
以不锈钢电解槽作为阴极,钛合金作为阳极进行微弧氧化处理,具体实验参数设置为:脉冲频率550~650Hz,占空比35~45%,氧化时间30~50min,电流密度4~8A/dm2。本发明采用吡咯烷二硫代甲酸铵作为添加剂,加入电解液中通过微弧氧化法制备TiO2陶瓷层,然后再进行剩余步骤操作获得氟化碳基薄膜,与基体之间表现出更佳的结合能力,结合力进一步提升;并且进一步增强薄膜的摩擦性能,摩擦系数减小,磨损率进一步降低;同时表现出更佳的抗菌能力。其原因可能在于,电解液中加入吡咯烷二硫代甲酸铵,对制备TiO2陶瓷层结构产生有益的影响,形成更多稳定的金红石相TiO2,表现出更加优异的界面结合能力,使得薄膜的摩擦性能得到改善。
进一步的,本实施例中钛合金表面制备TiO2陶瓷层的方法具体为:
取钛合金用砂轮机和水砂纸逐级打磨,使其表面平整,然后用丙酮超声清洗30min,烘干得到预处理的钛合金;
配制复合电解液,配制复合溶液体系NaAlO2(9.5g/L)+NaF(5g/L)+KOH(4.5g/L)+吡咯烷二硫代甲酸铵-铜(1.5g/L);其中,吡咯烷二硫代甲酸铵-铜的配制:五水硫酸铜和吡咯烷二硫代甲酸铵按照质量比为1:1.5的比例混合制得;
以不锈钢电解槽作为阴极,钛合金作为阳极进行微弧氧化处理,具体实验参数设置为:脉冲频率620Hz,占空比38%,氧化时间40min,电流密度6A/dm2
实施例6:
一种钛合金表面高疏水耐腐蚀磨损氟化碳基薄膜的制备与实施例5的不同之处在于:
步骤(4)中采用壳聚糖衍生物替代壳聚糖,壳聚糖衍生物为本实施例制备的。
壳聚糖衍生物的制备与实施例3相同。
实施例7:
一种钛合金表面高疏水耐腐蚀磨损氟化碳基薄膜的制备与实施例5的不同之处在于:
微弧氧化法中复合电解液中不加入添加剂。
试验例1:
红外性能表征
采用傅里叶红外光谱仪进行,分辨率为4cm-1,波长范围500~4000cm-1
对实施例1中制备的壳聚糖衍生物以及壳聚糖进行上述测试,结果如图2所示。从图中分析可知,相比于壳聚糖的红外测试结果,在实施例1中制备的壳聚糖衍生物的红外光谱中,1570cm-1附近出现嘧啶环的特征吸收峰,表明实施例1中壳聚糖衍生物成功制备。
XRD表征
利用X射线衍射仪对样品进行表征。
对实施例5和实施例7中制备的TiO2陶瓷层进行上述测试,结果如图3所示。从图中分析可知,相比于实施例7中制备的TiO2陶瓷层的XRD图,在实施例5制备的TiO2陶瓷层的XRD图谱中,金红石相TiO2的衍射峰强度增高,锐钛矿相TiO2的衍射峰消失。以上结果表明电解液中吡咯烷二硫代甲酸铵的加入,更有利于锐钛矿相TiO2向高温稳定相金红石相TiO2转变。
试验例2:
水接触角测定
对待测样品表面水接触角进行测试,测试方法按照常规测试方法进行即可。
对实施例1~7制备的薄膜进行上述测试,结果如表1所示:
表1 水接触角测试结果
样品 水接触角(°)
实施例1 149.5
实施例2 148.4
实施例3 150.7
实施例4 149.8
实施例5 150.1
实施例6 150.5
实施例7 149.9
从表1中的数据分析可知,本发明实施例1~7制备的钛合金表面高疏水耐腐蚀磨损氟化碳基薄膜具有较高的水接触角,表现出优异的疏水性能。
试验例3:
膜基结合力的测量:采用多功能材料表面性能试验仪对样品进行测试,半球形金刚石锥头(锥角为120°,尖端半径为0.2mm),垂直方式加载,载荷从零开始以100N/min速度加载至20N;然后通过锥头附近安装的声发射探头探测并记录声信号,结合仪器记录的摩擦力变化曲线综合分析判断膜与基体的结合力。
磨损率和摩擦系数的测量:利用多功能摩擦磨损试验机,温度50℃下测试待测样品的摩擦性能。其中,对偶材料采用直径6.0mm、硬度RC=62的Al2O3轴承球,载荷2N,滑移速度为0.15m/s,频率5Hz,测试时间6h。摩擦实验结束后,利用KLA-Tencor Alpha-Step IQ轮廓仪测定磨痕的深度。
对实施例1~7制备的薄膜进行上述测试,结果如表2所示:
表2 氟化碳基薄膜性质
样品 膜基结合力(N) 摩擦系数 磨损率(×10-14m3/N·m)
实施例1 30 0.45 3.6
实施例2 28 0.47 4.1
实施例3 31 0.32 0.9
实施例4 30 0.34 1.1
实施例5 41 0.38 0.6
实施例6 42 0.29 0.09
实施例7 35 0.43 1.8
从表2中的数据分析可知,实施例1中制备的钛合金表面高疏水耐腐蚀磨损氟化碳基薄膜与基体之间表现出优异的结合力。实施例5的效果明显好于实施例1的,实施例6的效果好于实施例3的,表明采用吡咯烷二硫代甲酸铵作为添加剂,通过微弧氧化工艺对基体表面进行膜层修饰,制备得到的薄膜与基体之间表现出更佳的结合力。
此外,实施例1中制备的钛合金表面高疏水耐腐蚀磨损氟化碳基薄膜的摩擦系数和磨损率均较低,能够有效降低能耗。实施例3的效果明显好于实施例1的,表明采用2-氨基-4,6-二甲氧基嘧啶修饰壳聚糖制备得到其衍生物,作为缓蚀剂封装于织构化结构中,能够有效改善薄膜的摩擦性能,摩擦系数明显降低,耐磨损能力进一步提升,磨损率明显降低。实施例5的效果明显好于实施例1的,实施例6的效果好于实施例3的,表明采用吡咯烷二硫代甲酸铵作为添加剂,通过微弧氧化工艺对基体表面进行膜层修饰,制备得到的薄膜的耐磨损能力得到进一步增强。
试验例4:
抗菌性能测试:
测试方法具体为:采用PBS将制备的金黄色葡萄球菌菌悬液稀释至2.5×104cfu/mL,在待测样品表面均匀涂布0.1mL,置于无菌平皿中,37℃接触培养24h。然后用PBS反复冲洗样品表面8次,冲洗下的溶液离心(2000r/min,3min)收集金黄色葡萄球菌,溶解于1mL的细菌重悬液中,通过平板菌落计数法进行计数,通过处理前后菌株数量计算细菌附着率来表征样品表面的抗菌性能。
对实施例1~7制备的薄膜进行上述测试,结果如表3所示:
表3 抗菌性能测试结果
样品 附着率(%)
实施例1 33
实施例2 32
实施例3 11
实施例4 12
实施例5 28
实施例6 5
实施例7 31
从表3中的数据分析可知,实施例3中制备的钛合金表面高疏水耐腐蚀磨损氟化碳基薄膜对金黄色葡萄球菌的附着率明显低于实施例1的,表明采用2-氨基-4,6-二甲氧基嘧啶修饰壳聚糖制备得到其衍生物,作为缓蚀剂封装于织构化结构中,能够有效改善薄膜的抗菌性能,对金黄色葡萄球菌的一直效果明显增加。实施例5的效果明显好于实施例1的,实施例6的效果好于实施例3的,表明采用吡咯烷二硫代甲酸铵作为添加剂,通过微弧氧化工艺对基体表面进行膜层修饰,制备得到的薄膜的抗菌性能得到进一步提升。
上述实施例中的常规技术为本领域技术人员所知晓的现有技术,故在此不再详细赘述。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (9)

1.一种海洋环境表面耐腐蚀磨损氟化碳基膜,包括:织构化TiO2陶瓷层,形成于钛合金基体表面;
F-DLC结构层,由氟化碳膜层修饰于织构化TiO2陶瓷层表面形成;
和缓蚀剂,封装于织构化TiO2陶瓷层的织构结构中。
2.根据权利要求1所述的一种海洋环境表面耐腐蚀磨损氟化碳基膜,其特征在于,所述织构化TiO2陶瓷层通过热氧化或PVD真空镀膜得到TiO2陶瓷层,再通过激光蚀刻进行织构化处理获得。
3.根据权利要求1所述的一种海洋环境表面耐腐蚀磨损氟化碳基膜,其特征在于,所述F-DLC结构层通过PECVD真空镀膜形成。
4.根据权利要求1所述的一种海洋环境表面耐腐蚀磨损氟化碳基膜,其特征在于,所述缓蚀剂包括纤维素、壳聚糖或壳聚糖衍生物。
5.根据权利要求4所述的一种海洋环境表面耐腐蚀磨损氟化碳基膜,其特征在于,所述壳聚糖衍生物由2-氨基-4,6-二甲氧基嘧啶修饰壳聚糖获得。
6.权利要求1所述的海洋环境表面耐腐蚀磨损氟化碳基膜的制备方法,包括:
(1)在钛合金表面通过热氧化法或PVD真空镀膜法制备TiO2陶瓷层;
(2)通过激光蚀刻将TiO2陶瓷层进行织构化处理得到织构化TiO2陶瓷层;
(3)采用PECVD真空镀膜法在织构化TiO2陶瓷层表面制备F-DLC,进行低表面能物质修饰获得高疏水表面;
(4)在织构结构中封装绿色缓蚀剂即可。
7.根据权利要求6所述的制备方法,其特征在于,所述PECVD真空镀膜工艺中源气体包括碳源和氟源。
8.根据权利要求7所述的制备方法,其特征在于,所述碳源选自C2H2和CH4中的至少一种;所述氟源选自CF4和C2H2F4中的至少一种。
9.权利要求1所述的海洋环境表面耐腐蚀磨损氟化碳基膜在海洋构件表面耐腐蚀磨损处理中的应用。
CN202310523841.XA 2023-03-01 2023-05-11 减少腐蚀磨损方法及海洋环境表面耐腐蚀磨损氟化碳基膜 Pending CN116288347A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2023101836096 2023-03-01
CN202310183609 2023-03-01

Publications (1)

Publication Number Publication Date
CN116288347A true CN116288347A (zh) 2023-06-23

Family

ID=86826119

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310523841.XA Pending CN116288347A (zh) 2023-03-01 2023-05-11 减少腐蚀磨损方法及海洋环境表面耐腐蚀磨损氟化碳基膜

Country Status (1)

Country Link
CN (1) CN116288347A (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101476143A (zh) * 2007-12-31 2009-07-08 比亚迪股份有限公司 一种微弧氧化电解液及微弧氧化方法
CN102560591A (zh) * 2011-12-01 2012-07-11 浙江吉利汽车研究院有限公司 一种微弧氧化电解液及微弧氧化方法
CN103160800A (zh) * 2011-12-16 2013-06-19 中国科学院兰州化学物理研究所 在硅基底表面制备含氟碳基薄膜的方法
CN103233260A (zh) * 2013-05-10 2013-08-07 中国石油大学(华东) 一种制备钛合金表面防污损陶瓷膜电解液及微弧氧化方法
CN104480511A (zh) * 2014-12-12 2015-04-01 南京理工大学 一种钛合金表面复合耐磨减摩涂层及其制备方法
CN106119846A (zh) * 2016-06-27 2016-11-16 湖南航天新材料技术研究院有限公司 一种在镁合金表面制备耐腐蚀耐磨涂层的方法
CN107460518A (zh) * 2017-06-22 2017-12-12 浙江工业职业技术学院 一种金属纳米陶瓷涂层制备方法
CN109576640A (zh) * 2018-11-28 2019-04-05 江苏大学 一种在钛基底上制备TiO2多尺度微纳复合结构的方法
CN210727894U (zh) * 2018-11-30 2020-06-12 深圳先进技术研究院 超疏水医疗器具
WO2020119680A1 (zh) * 2018-12-14 2020-06-18 深圳先进技术研究院 超疏水类金刚石复合层结构及其制备方法
CN113430616A (zh) * 2021-06-16 2021-09-24 常州大学 钛合金表面黑色陶瓷膜的制备方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101476143A (zh) * 2007-12-31 2009-07-08 比亚迪股份有限公司 一种微弧氧化电解液及微弧氧化方法
CN102560591A (zh) * 2011-12-01 2012-07-11 浙江吉利汽车研究院有限公司 一种微弧氧化电解液及微弧氧化方法
CN103160800A (zh) * 2011-12-16 2013-06-19 中国科学院兰州化学物理研究所 在硅基底表面制备含氟碳基薄膜的方法
CN103233260A (zh) * 2013-05-10 2013-08-07 中国石油大学(华东) 一种制备钛合金表面防污损陶瓷膜电解液及微弧氧化方法
CN104480511A (zh) * 2014-12-12 2015-04-01 南京理工大学 一种钛合金表面复合耐磨减摩涂层及其制备方法
CN106119846A (zh) * 2016-06-27 2016-11-16 湖南航天新材料技术研究院有限公司 一种在镁合金表面制备耐腐蚀耐磨涂层的方法
CN107460518A (zh) * 2017-06-22 2017-12-12 浙江工业职业技术学院 一种金属纳米陶瓷涂层制备方法
CN109576640A (zh) * 2018-11-28 2019-04-05 江苏大学 一种在钛基底上制备TiO2多尺度微纳复合结构的方法
CN210727894U (zh) * 2018-11-30 2020-06-12 深圳先进技术研究院 超疏水医疗器具
WO2020119680A1 (zh) * 2018-12-14 2020-06-18 深圳先进技术研究院 超疏水类金刚石复合层结构及其制备方法
CN113430616A (zh) * 2021-06-16 2021-09-24 常州大学 钛合金表面黑色陶瓷膜的制备方法

Similar Documents

Publication Publication Date Title
CN109136992B (zh) 预焙炭阳极用石墨烯复合保护层的制备方法
CN114290000A (zh) 一种金属表面自清洁超疏水微纳双微观结构的制备方法
CN106498396A (zh) 镁合金表面低应力疏水复合TiSiCN薄膜的制备方法
CN108611672B (zh) 铝合金硬质阳极氧化电解液、制备方法及应用
CN101824620A (zh) 一种镁合金表面超疏水涂层的制备方法
CN111020671A (zh) 一种在钛制品表面形成氧化物膜层的方法
CN107653475A (zh) 一种钛合金表面使用微弧氧化溶液制备高温复合涂层的方法
CN101914743A (zh) 一种镁合金表面处理方法
CN113005497B (zh) 一种钛合金表面防污损的复合涂层及其制备方法和应用
CN116288347A (zh) 减少腐蚀磨损方法及海洋环境表面耐腐蚀磨损氟化碳基膜
US8367162B2 (en) Pretreatment method for improving antioxidation of steel T91/P91 in high temperature water vapor
CN109055910B (zh) 一种耐磨防腐抗污一体化(Cr, Cu)-GLC复合涂层及其制备方法
CN112680753B (zh) 一种超疏水镁合金的制备方法
CN104875440A (zh) 一种以镁/镁合金为基体的多涂层复合材料及其制备方法
CN113308693A (zh) 一种高强度耐腐蚀不锈钢管件及其加工工艺
CN110923781B (zh) 一种用于降低钛及钛合金电偶电流的表面处理方法
CN115181874B (zh) 一种在锌合金表面生成碳酸盐保护层的方法及其应用
CN109913862B (zh) 一种铝塑复合膜用铝箔的处理方法
CN109504996B (zh) 一种用于钢铁表面dlc复合氧化膜制备的阴极微弧氧化溶液和方法
CN109811389B (zh) 一种氮化钛铌纳米管阵列及渗氮层复合结构的制备方法
CN112626588A (zh) 一种耐磨抗腐蚀型阴极电泳涂装工艺
CN113005498A (zh) 一种自润滑锆基非晶合金及其制备方法和应用
CN113186570B (zh) 一种活塞杆表面处理工艺
CN106835227B (zh) 一种基于卤素效应和陶瓷涂层提高钛基合金抗高温氧化性能的方法
CN116535884B (zh) 镁锂合金表面致密防腐耐磨SWF/LDHs复合涂层及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination