CN116283256A - 一种制备块状高熵稀土硅酸盐陶瓷气凝胶的方法 - Google Patents

一种制备块状高熵稀土硅酸盐陶瓷气凝胶的方法 Download PDF

Info

Publication number
CN116283256A
CN116283256A CN202310245799.XA CN202310245799A CN116283256A CN 116283256 A CN116283256 A CN 116283256A CN 202310245799 A CN202310245799 A CN 202310245799A CN 116283256 A CN116283256 A CN 116283256A
Authority
CN
China
Prior art keywords
source
entropy
ceramic aerogel
rare earth
precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310245799.XA
Other languages
English (en)
Inventor
崔升
王杰
苏琮轩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tech University
Original Assignee
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Tech University filed Critical Nanjing Tech University
Priority to CN202310245799.XA priority Critical patent/CN116283256A/zh
Publication of CN116283256A publication Critical patent/CN116283256A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0045Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by a process involving the formation of a sol or a gel, e.g. sol-gel or precipitation processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts

Abstract

本发明涉及一种制备块状高熵稀土硅酸盐陶瓷气凝胶的方法,属于多孔材料制备工艺领域。首先通过溶胶‑凝胶法得到(Yb0.25Y0.25Er0.25Lu0.25)2SiO5前驱体的复合溶胶,再以聚丙烯酸离子分散剂,以环氧丙烷为促凝剂,静置凝胶后加入老化液中老化,最后使用超临界干燥结合热处理工艺制备出轻质、低导热、高热稳定性的块状(Yb0.25Y0.25Er0.25Lu0.25)2SiO5高熵陶瓷气凝胶。本发明制得的块状(Yb0.25Y0.25Er0.25Lu0.25)2SiO5高熵陶瓷气凝胶具有优异的热稳定性、化学稳定性及隔热性能。

Description

一种制备块状高熵稀土硅酸盐陶瓷气凝胶的方法
技术领域
本发明涉及一种制备块状高熵稀土硅酸盐陶瓷气凝胶的方法,属于多孔材料制备工艺领域。
背景技术
气凝胶是一种具有低密度、高孔隙率、比表面积大的三维纳米骨架材料,在高温隔热和催化、生物、能源等领域均有应用。其中陶瓷气凝胶因具有低密度、熔点高、耐腐蚀、物理化学性质稳定等特点,受到学者们的广泛关注。
高熵陶瓷是近年来出现的一种的新型陶瓷,具有优异的力学、热学、电学、磁学等性能。受到高熵合金的启发衍生而来,高熵陶瓷通常是指由五种或以上陶瓷组元形成的多主元固溶体,目前高熵陶瓷已经成为陶瓷领域研究的热门。具有四个核心效应,包括热力学的高熵效应、结构的晶格畸变效应、动力学的迟滞效应和性能的“鸡尾酒”效应。2015年,几位美国的研究者Rost、Maria、Curtarolo等成功制备了一种熵稳定氧化物陶瓷,这种岩盐结构额高熵陶瓷开辟了高熵氧化物陶瓷的先河。
目前有关高熵陶瓷的研究还比较少,目前相关文章及专利仅围绕着致密化高熵陶瓷展开,有关高熵结构陶瓷的研究十分稀少,且制备温度高。专利“高熵陶瓷粉体及其制备方法和高熵陶瓷块体CN 110845237 A”采用共沉淀法制备出高熵陶瓷前驱体粉末,热处理得到高熵陶瓷粉体及块体,但其密度较大,热导率较高,且块体需要将粉末二次烧结成型。文献“Guo X,Zhang Y,Li T,et al.High-entropy rare-earth disilicate(Lu0.2Yb0.2Er0.2Tm0.2Sc0.2)2Si2O7:A potential environmental barrier coatingmaterial[J].Journal of the European Ceramic Society,2022(8):42.”采用球磨结合热处理的方法制备了一种新型稀土硅酸盐高熵陶瓷,但其为致密结构,密度大、热导率高、烧结温度高。
发明内容
本发明所要解决的技术问题在于提供一种制备块状高熵稀土硅酸盐陶瓷气凝胶的方法,该制备方法能够降低高熵陶瓷的合成温度,具有纳米级的多孔的三维骨架结构,拥有更低的密度和热导率。
本发明的技术方案为:本发明所制备的块状高熵稀土硅酸盐陶瓷气凝胶的化学式为(Yb0.25Y0.25Er0.25Lu0.25)2SiO5,采用溶胶-凝胶法结合超临界干燥法制备块状(Yb0.25Y0.25Er0.25Lu0.25)2SiO5高熵陶瓷气凝胶;
其具体步骤如下:
(1)复合溶胶的制备:根据化学式(Yb0.25Y0.25Er0.25Lu0.25)2SiO5准确称取镱源、钇源、铒源和镥源,加入乙醇容器中搅拌,再加去离子水搅拌至完全水解后,然后加入硅源前驱体继续搅拌,再加入聚丙烯酸充分搅拌,最后待溶胶完全冷却后加入1,2-环氧丙烷,得到复合溶胶;
(2)湿凝胶的制备及老化:将复合溶胶倒入模具中,密封静置凝胶完全后加入老化液,老化至其脱模;
(3)高熵陶瓷气凝胶前驱体的制备:将步骤(2)得到的湿凝胶进行超临界干燥,即得到块状高熵稀土硅酸盐陶瓷气凝胶前驱体;
(4)高熵陶瓷气凝胶的制备:将步骤(3)制备的块状高熵稀土硅酸盐陶瓷气凝胶前驱体放入氧气气氛的马弗炉中进行热处理,得到块状高熵稀土硅酸盐陶瓷气凝胶。
优选步骤(1)中所述的镱源为氯化镱YbCl3或氯化镱六水合物YbCl36H2O、钇源为氯化钇YCl3或氯化钇六水合物YCl36H2O、铒源为氯化铒ErCl3或氯化铒六水合物ErCl36H2O、镥源为氯化镥LuCl3或氯化镥六水合物LuCl36H2O。
优选步骤(1)中所述的硅源前驱体为正硅酸四乙酯、正硅酸甲酯、甲基三甲氧基硅烷MTMS或甲基三乙氧基硅烷MTES的一种或几种。
优选步骤(1)中所述复合溶胶中的镱源、钇源、铒源、镥源、硅源前驱体、乙醇、水、聚丙烯酸(PAA)、1,2-环氧丙烷的摩尔比为1:1:1:1:2:(80~200):(40~200):(2~8):(16~40)。
优选步骤(2)中所述的老化时间为48~72h,每6~12h更换一次老化液。
优选步骤(2)中所述的老化液乙醇、丙酮、正己烷或异丙醇中的一种或几种。
优选步骤(3)中所述的超临界干燥为CO2超临界干燥,CO2超临界干燥的温度32~50℃,压力为9~12MPa,干燥时间为3~6h。
优选步骤(4)中所述的热处理温度为1250~1500℃,升温速率为2~20℃/min,热处理时间为1~4h。
本发明制得的块状高熵稀土硅酸盐陶瓷气凝胶的密度为0.32~0.52g/m3,1250~1500℃温度范围热处理后样品的室温热导率为0.032~0.045W/(m·K),压缩强度为0.31~0.45MPa。
有益效果:
(1)本发明有效降低了材料的烧结温度,在1250~1500℃温度范围内制备出了具有硅酸盐结构的高熵陶瓷气凝胶,解决了块状(Yb0.25Y0.25Er0.25Lu0.25)2SiO5高熵陶瓷气凝胶的制备问题,对其他体系的高熵陶瓷气凝胶材料体系具有重要的参考价值。
(2)本发明制备的块状(Yb0.25Y0.25Er0.25Lu0.25)2SiO5高熵陶瓷气凝胶晶粒细小,具有轻质、耐高温、低热导、耐腐蚀等优点,首次实现对(Yb0.25Y0.25Er0.25Lu0.25)2SiO5材料的结构化。
(3)相比与传统的气凝胶制品,本发明所制备的(Yb0.25Y0.25Er0.25Lu0.25)2SiO5可以突破传统氧化物气凝胶在1300℃烧结的瓶颈问题,并大幅提高氧化物气凝胶的耐温性。
(4)相比于传统气凝胶制品,本发明采用快速制备法减少了凝胶时间,将凝胶时间从几个小时降低至30分钟以内,并且可调可控,极大地提高了效率。
附图说明
图1为实例1制备的块状(Yb0.25Y0.25Er0.25Lu0.25)2SiO5高熵陶瓷气凝胶实物图;
图2为实例1~4制备的块状(Yb0.25Y0.25Er0.25Lu0.25)2SiO5高熵陶瓷气凝胶的XRD图;
图3为实例1制备的块状(Yb0.25Y0.25Er0.25Lu0.25)2SiO5高熵陶瓷气凝胶EDSMapping图;
图4为实例2制备的块状(Yb0.25Y0.25Er0.25Lu0.25)2SiO5高熵陶瓷气凝胶SEM图。
具体实施方式
下面结合具体实施例对本发明进行详细阐述,必须理解的是,所述的实例仅涉及本发明的优选方案,这是为了说明本发明的技术路线及特点,目的是为了便于实施,具体实例如下
实例1
将用电子天平准确称取1mol的YbCl36H2O、1mol的YCl36H2O、1mol的ErCl36H2O、1mol的LuCl36H2O)、80mol的乙醇加入容器之中搅拌,再加入40mol去离子水继续搅拌,搅拌至完全反应,再缓慢加入2mol的正硅酸四乙酯混合均匀的,搅拌至完全水解后得到混合溶胶,继续加入2mol的PAA充分搅拌,待其冷却后加入16mol的1,2-环氧丙烷,均匀搅拌后倒入模具中密封静置凝胶,加入到乙醇中老化,老化时间为48h,每6h更换一次老化液,得到老化后的湿凝胶;将样品取出进行CO2超临界干燥,干燥温度为31℃,压力为9MPa,干燥时间为3h,即得到块状(Yb0.25Y0.25Er0.25Lu0.25)2SiO5高熵陶瓷气凝胶前驱体,最后对块状(Yb0.25Y0.25Er0.25Lu0.25)2SiO5高熵陶瓷气凝胶前驱体进行热处理。
所述的热处理设备:马弗炉
热处理温度:1250℃,
保温时间:1h,
升温速率:2℃/min
热处理完成后即得到块状(Yb0.25Y0.25Er0.25Lu0.25)2SiO5高熵陶瓷气凝胶。所制备的材料,密度为0.52g/m3,室温热导率为0.045W/(m·K),压缩强度为0.45MPa。
对实例1所得的块状(Yb0.25Y0.25Er0.25Lu0.25)2SiO5高熵陶瓷气凝胶进行XRD表征,如图2所示,说明得到的为稀土硅酸陶瓷结构。制备的块状(Yb0.25Y0.25Er0.25Lu0.25)2SiO5高熵陶瓷气凝胶EDSMapping图,如图3所示说明元素在材料中分散均匀。对样品磨粉并进行SEM分析,颗粒有很明显的断裂面,无烧结现象,说明三维纳米骨架结构在超高温环境下依然存在。
实例2
将用电子天平准确称取1mol的YbCl3、1mol的YCl3、1mol的ErCl3、1mol的LuCl3、80mol的乙醇加入容器之中搅拌,再加入40mol去离子水继续搅拌,搅拌至完全反应,再缓慢加入2mol的正硅酸甲酯混合均匀的,搅拌至完全水解后得到混合溶胶,继续加入2mol的PAA充分搅拌,待其冷却后加入16mol的1,2-环氧丙烷,均匀搅拌后倒入模具中密封静置凝胶,加入到丙酮中老化,老化时间为56h,每8h更换一次老化液,得到老化后的湿凝胶;将样品取出进行CO2超临界干燥,干燥温度为40℃,压力为11MPa,干燥时间为4h,即得到块状(Yb0.25Y0.25Er0.25Lu0.25)2SiO5高熵陶瓷气凝胶前驱体,最后对块状(Yb0.25Y0.25Er0.25Lu0.25)2SiO5高熵陶瓷气凝胶前驱体进行热处理。
所述的热处理设备:马弗炉
热处理温度:1350℃,
保温时间:2h,
升温速率:5℃/min
热处理完成后即得到块状(Yb0.25Y0.25Er0.25Lu0.25)2SiO5高熵陶瓷气凝胶。所制备的材料,密度为0.49g/m3,室温热导率为0.041W/(m·K),压缩强度为0.39MPa。
对实例2所得的块状(Yb0.25Y0.25Er0.25Lu0.25)2SiO5高熵陶瓷气凝胶进行XRD表征,如图2所示,说明得到的为稀土硅酸陶瓷结构。对样品磨粉并进行SEM分析,如图4所示,颗粒有很明显的断裂面,无烧结现象,说明三维纳米骨架结构在超高温环境下依然存在。
实例3
将用电子天平准确称取1mol的YbCl36H2O、1mol的YCl36H2O、1mol的ErCl36H2O、1mol的LuCl36H2O)、150mol的乙醇加入容器之中搅拌,再加入150mol去离子水继续搅拌,搅拌至完全反应,再缓慢加入2mol的甲基三甲氧基硅烷(MTMS)混合均匀的,搅拌至完全水解后得到混合溶胶,继续加入6mol的PAA充分搅拌,待其冷却后加入30mol的1,2-环氧丙烷,均匀搅拌后倒入模具中密封静置凝胶,加入到正己烷中老化,老化时间为64h,每12h更换一次老化液,得到老化后的湿凝胶;将样品取出进行CO2超临界干燥,干燥温度为45℃,压力为10MPa,干燥时间为5h,即得到块状(Yb0.25Y0.25Er0.25Lu0.25)2SiO5高熵陶瓷气凝胶前驱体,最后对块状(Yb0.25Y0.25Er0.25Lu0.25)2SiO5高熵陶瓷气凝胶前驱体进行热处理。
所述的热处理设备:马弗炉
热处理温度:1450℃,
保温时间:3h,
升温速率:10℃/min
热处理完成后即得到块状(Yb0.25Y0.25Er0.25Lu0.25)2SiO5高熵陶瓷气凝胶。所制备的材料,密度为0.47g/m3,室温热导率为0.035W/(m·K),压缩强度为0.35MPa。
对实例3所得的块状(Yb0.25Y0.25Er0.25Lu0.25)2SiO5高熵陶瓷气凝胶进行XRD表征,如图2所示,说明得到的为稀土硅酸陶瓷结构。对样品磨粉并进行SEM分析,颗粒有很明显的断裂面,无烧结现象,说明三维纳米骨架结构在超高温环境下依然存在。
实例4
将用电子天平准确称取1mol的YbCl36H2O、1mol的YCl36H2O、1mol的ErCl36H2O、1mol的LuCl36H2O)、200mol的乙醇加入容器之中搅拌,再加入200mol去离子水继续搅拌,搅拌至完全反应,再缓慢加入2mol的甲基三乙氧基硅烷(MTES)混合均匀的,搅拌至完全水解后得到混合溶胶,继续加入8mol的PAA充分搅拌,待其冷却后加入40mol的1,2-环氧丙烷,均匀搅拌后倒入模具中密封静置凝胶,加入到异丙醇中老化,老化时间为72h,每12h更换一次老化液,得到老化后的湿凝胶;将样品取出进行CO2超临界干燥,干燥温度为50℃,压力为12MPa,干燥时间为6h,即得到块状(Yb0.25Y0.25Er0.25Lu0.25)2SiO5高熵陶瓷气凝胶前驱体,最后对块状(Yb0.25Y0.25Er0.25Lu0.25)2SiO5高熵陶瓷气凝胶前驱体进行热处理。
所述的热处理设备:马弗炉
热处理温度:1500℃,
保温时间:4h,
升温速率:20℃/min
热处理完成后即得到块状(Yb0.25Y0.25Er0.25Lu0.25)2SiO5高熵陶瓷气凝胶。所制备的材料,密度为0.44g/m3,室温热导率为0.032W/(m·K),压缩强度为0.31MPa。
对实例4所得的块状(Yb0.25Y0.25Er0.25Lu0.25)2SiO5高熵陶瓷气凝胶进行XRD表征,如图2所示,说明得到的为稀土硅酸陶瓷结构。对样品磨粉并进行SEM分析,颗粒有很明显的断裂面,无烧结现象,说明三维纳米骨架结构在超高温环境下依然存在。

Claims (8)

1.一种制备块状高熵稀土硅酸盐陶瓷气凝胶的方法,其具体步骤如下:
(1)复合溶胶的制备:根据化学式(Yb0.25Y0.25Er0.25Lu0.25)2SiO5准确称取镱源、钇源、铒源和镥源,加入乙醇容器中搅拌,再加去离子水搅拌至完全水解后,然后加入硅源前驱体继续搅拌,再加入聚丙烯酸充分搅拌,最后待溶胶完全冷却后加入1,2-环氧丙烷,得到复合溶胶;
(2)湿凝胶的制备及老化:将复合溶胶倒入模具中,密封静置凝胶完全后加入老化液,老化至其脱模;
(3)高熵陶瓷气凝胶前驱体的制备:将步骤(2)得到的湿凝胶进行超临界干燥,即得到块状高熵稀土硅酸盐陶瓷气凝胶前驱体;
(4)高熵陶瓷气凝胶的制备:将步骤(3)制备的块状高熵稀土硅酸盐陶瓷气凝胶前驱体放入氧气气氛的马弗炉中进行热处理,得到块状高熵稀土硅酸盐陶瓷气凝胶。
2.根据权利要求1所述的方法,其特征在于步骤(1)中所述的镱源为氯化镱YbCl3或氯化镱六水合物YbCl36H2O、钇源为氯化钇YCl3或氯化钇六水合物YCl36H2O、铒源为氯化铒ErCl3或氯化铒六水合物ErCl36H2O、镥源为氯化镥LuCl3或氯化镥六水合物LuCl36H2O。
3.根据权利要求1所述的方法,其特征在于步骤(1)中所述的硅源前驱体为正硅酸四乙酯、正硅酸甲酯、甲基三甲氧基硅烷MTMS或甲基三乙氧基硅烷MTES的一种或几种。
4.根据权利要求1所述的方法,其特征在于步骤(1)中所述复合溶胶中的镱源、钇源、铒源、镥源、硅源前驱体、乙醇、水、聚丙烯酸(PAA)、1,2-环氧丙烷的摩尔比为1:1:1:1:2:(80~200):(40~200):(2~8):(16~40)。
5.根据权利要求1所述的方法,其特征在于步骤(2)中所述的老化时间为48~72h,每6~12h更换一次老化液。
6.根据权利要求1所述的方法,其特征在于步骤(2)中所述的老化液乙醇、丙酮、正己烷或异丙醇中的一种或几种。
7.根据权利要求1所述的方法,其特征在于步骤(3)中所述的超临界干燥为CO2超临界干燥,CO2超临界干燥的温度32~50℃,压力为9~12MPa,干燥时间为3~6h。
8.根据权利要求1所述的方法,其特征在于步骤(4)中所述的热处理温度为1250~1500℃,升温速率为2~20℃/min,热处理时间为1~4h。
CN202310245799.XA 2023-03-15 2023-03-15 一种制备块状高熵稀土硅酸盐陶瓷气凝胶的方法 Pending CN116283256A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310245799.XA CN116283256A (zh) 2023-03-15 2023-03-15 一种制备块状高熵稀土硅酸盐陶瓷气凝胶的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310245799.XA CN116283256A (zh) 2023-03-15 2023-03-15 一种制备块状高熵稀土硅酸盐陶瓷气凝胶的方法

Publications (1)

Publication Number Publication Date
CN116283256A true CN116283256A (zh) 2023-06-23

Family

ID=86782951

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310245799.XA Pending CN116283256A (zh) 2023-03-15 2023-03-15 一种制备块状高熵稀土硅酸盐陶瓷气凝胶的方法

Country Status (1)

Country Link
CN (1) CN116283256A (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5958363A (en) * 1998-10-29 1999-09-28 The Regents Of The University Of California Method for making monolithic metal oxide aerogels
CN103086692A (zh) * 2013-01-17 2013-05-08 南京工业大学 一种块状SiO2-Y2O3复合气凝胶的制备方法
US20190103600A1 (en) * 2017-10-03 2019-04-04 California Institute Of Technology Three-Dimensional Architected Pyrolyzed Electrodes for Use in Secondary Batteries and Methods of Making Three-Dimensional Architected Electrodes
WO2020047278A1 (en) * 2018-08-30 2020-03-05 University Of Virginia Patent Foundation Functional barrier coating and related methods thereof
US20210347699A1 (en) * 2018-10-09 2021-11-11 Oerlikon Metco (Us) Inc. High-entropy oxides for thermal barrier coating (tbc) top coats
US20220106234A1 (en) * 2019-06-18 2022-04-07 Kunming University Of Science And Technology High-entropy rare earth-toughened tantalate ceramic and preparation method therefor
CN114656262A (zh) * 2022-04-26 2022-06-24 太原理工大学 一种低热导率的高熵陶瓷气凝胶粉体及其制备方法
CN114853473A (zh) * 2022-04-22 2022-08-05 沈阳工业大学 一种耐高温cmas腐蚀的稀土硅酸盐陶瓷与制备方法
CN115417669A (zh) * 2022-09-30 2022-12-02 武汉科技大学 高硅氧玻璃纤维增强焦磷酸锆基复合材料及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5958363A (en) * 1998-10-29 1999-09-28 The Regents Of The University Of California Method for making monolithic metal oxide aerogels
CN103086692A (zh) * 2013-01-17 2013-05-08 南京工业大学 一种块状SiO2-Y2O3复合气凝胶的制备方法
US20190103600A1 (en) * 2017-10-03 2019-04-04 California Institute Of Technology Three-Dimensional Architected Pyrolyzed Electrodes for Use in Secondary Batteries and Methods of Making Three-Dimensional Architected Electrodes
WO2020047278A1 (en) * 2018-08-30 2020-03-05 University Of Virginia Patent Foundation Functional barrier coating and related methods thereof
US20210347699A1 (en) * 2018-10-09 2021-11-11 Oerlikon Metco (Us) Inc. High-entropy oxides for thermal barrier coating (tbc) top coats
US20220106234A1 (en) * 2019-06-18 2022-04-07 Kunming University Of Science And Technology High-entropy rare earth-toughened tantalate ceramic and preparation method therefor
CN114853473A (zh) * 2022-04-22 2022-08-05 沈阳工业大学 一种耐高温cmas腐蚀的稀土硅酸盐陶瓷与制备方法
CN114656262A (zh) * 2022-04-26 2022-06-24 太原理工大学 一种低热导率的高熵陶瓷气凝胶粉体及其制备方法
CN115417669A (zh) * 2022-09-30 2022-12-02 武汉科技大学 高硅氧玻璃纤维增强焦磷酸锆基复合材料及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HENG CHEN等: "High entropy (Yb0.25Y0.25Lu0.25Er0.25)2SiO5 with strong anisotropy in thermal expansion", JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, pages 134 - 139 *
WANG JIE等: "High-entropy (YErYbLu)2SiO5 ceramic aerogel: A potential ceramic insulator with low thermal conductivity", CERAMICS INTERNATIONAL, 26 October 2023 (2023-10-26), pages 1795 - 1806 *
YUHAN REN: "Design and preparation of novel Y2O3-SiO2 composite aerogels for high-temperature thermal insulators", JOURNAL OF NON-CRYSTALLINE SOLIDS, pages 1 - 8 *
胡成平;赵亚林;王杰鹏;段海涛;寇宏超;张铁邦;李健;: "高浓度过氧化氢中AlCoCrFeNiCu的摩擦学性能研究", 摩擦学学报, no. 05, pages 17 - 24 *

Similar Documents

Publication Publication Date Title
CN106747541B (zh) 一种原位合成莫来石晶须自增韧的莫来石陶瓷的方法
CN106699227B (zh) 一种纳米线自增强多孔氮化硅陶瓷及其制备方法
Zhang et al. High-strength macro-porous alumina ceramics with regularly arranged pores produced by gel-casting and sacrificial template methods
CN103274696B (zh) 一种热透波多孔陶瓷材料及其制备方法
CN103588482B (zh) 一种高孔隙率及高强度钇硅氧多孔陶瓷的制备方法
CN103159454B (zh) 一种纳米多孔气凝胶/纤维复合超级绝热材料及其制备方法
CN105601277A (zh) 一种氧化钇基透明陶瓷的制备方法
CN115448719B (zh) 一种具有高温稳定性的高熵块体陶瓷气凝胶及其制备方法和应用
CN112645729B (zh) 具有介孔结构的耐高温氧化锆复合隔热材料及其制备方法
CN110028324A (zh) 一种氮化物陶瓷的制备方法
CN110468453B (zh) 一种原位生长高长径比莫来石晶须的制备方法
CN104649709A (zh) 一种多孔碳化硅陶瓷的制造方法
CN102964128B (zh) 一种Yb2Si2O7粉体的溶胶凝胶制备方法
CN106608730A (zh) 碳基Si-C-O气凝胶隔热复合材料及其制备方法
CN104926355B (zh) 基于明胶溶液冷冻干燥技术制备定向多孔氮化硅陶瓷的方法
CN108395240A (zh) 磷酸镧的制备方法、磷酸镧多孔陶瓷及其制备方法和应用
CN115141030A (zh) 一种(LaCeSmEuNd)2Zr2O7高熵氧化物陶瓷气凝胶的制备方法
CN101955359A (zh) 一种低介电常数、高强度多孔氮化硅透波陶瓷的制备方法
Liu et al. Microstructure and properties of the inter-locked corundum/mullite structure
CN101456561B (zh) 一种纳米莫来石粉体的制备方法
CN108793911A (zh) 一种利用发泡法制备镁质轻质骨料的方法
CN104418608B (zh) 碳化硅多孔陶瓷的低温烧成方法
CN117285338A (zh) 一种耐高温性好的超高孔隙率高熵稀土硅酸盐及制备方法
CN116283256A (zh) 一种制备块状高熵稀土硅酸盐陶瓷气凝胶的方法
Tatli et al. Low temperature densification of silicon nitride using Li2O-based surface coatings

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination