CN116216781A - 一种管间限域诱导合成超细纳米线/碳纳米管复合薄膜的方法 - Google Patents

一种管间限域诱导合成超细纳米线/碳纳米管复合薄膜的方法 Download PDF

Info

Publication number
CN116216781A
CN116216781A CN202211668945.1A CN202211668945A CN116216781A CN 116216781 A CN116216781 A CN 116216781A CN 202211668945 A CN202211668945 A CN 202211668945A CN 116216781 A CN116216781 A CN 116216781A
Authority
CN
China
Prior art keywords
carbon nanotube
nanowire
composite film
inter
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211668945.1A
Other languages
English (en)
Inventor
张峰
张子初
刘畅
杨昊
成会明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Metal Research of CAS
Original Assignee
Institute of Metal Research of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Metal Research of CAS filed Critical Institute of Metal Research of CAS
Priority to CN202211668945.1A priority Critical patent/CN116216781A/zh
Publication of CN116216781A publication Critical patent/CN116216781A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • C01G41/02Oxides; Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • B01J21/185Carbon nanotubes
    • B01J35/33
    • B01J35/39
    • B01J35/59
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0547Nanofibres or nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/159Carbon nanotubes single-walled
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/949Tungsten or molybdenum carbides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/10Details of absorbing elements characterised by the absorbing material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/16Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Abstract

本发明涉及碳纳米管复合材料的可控制备领域,具体为一种管间限域诱导合成超细纳米线/碳纳米管复合薄膜的方法。该方法通过化学氧化、等离子体处理等在碳纳米管管壁上可控引入缺陷,后采用化学气相沉积、湿化学合成、溶剂热合成等方法在碳纳米管管束间引入过渡金属、贵金属、过渡金属氧化物等,后经快热处理等诱导自组装形成限域于碳纳米管管束间的超细纳米线,该纳米线定向排列于碳纳米管的管间形成有序复合薄膜。该方法通过改变制造缺陷和引入纳米线前驱体的方法,可调控纳米线的结构和成分,所制备的超细纳米线复合碳纳米管薄膜具有独特的有序结构和优异的性能,在电催化全分解水、热蒸发淡化海水、光热耦合催化等领域具有广泛的应用前景。

Description

一种管间限域诱导合成超细纳米线/碳纳米管复合薄膜的 方法
技术领域
本发明涉及碳纳米管复合材料的可控制备领域,具体为一种管间限域诱导合成超细纳米线/碳纳米管复合薄膜的方法。
背景技术
碳纳米管可看作是由石墨烯卷曲而成的一维中空管状结构,其具有超细的纳米管腔(0.6~2.0nm)。自碳纳米管的结构被精细解析以来,其独特的中空管状结构吸引了研究者们的广泛关注。特别是以单壁碳纳米管作为“模板”合成具有新结构和新性能的碳纳米管复合结构一直是该领域的研究热点。
针对碳纳米管复合结构的可控合成,研究者们提出了两类方法:(一)利用碳纳米管特有纳米管腔的“毛细作用”,通过吸附气相和液相前驱体源实现碳纳米管的填充,制备出C60@碳纳米管、I2@碳纳米管、金属纳米颗粒/纳米线@碳纳米管、金属氧化物纳米颗粒/纳米线@碳纳米管、硫族同素异形体@碳纳米管等一维管状结构,并发现其在纳电子器件、光电探测、催化等领域极具应用潜力(SmithB.W.etal.Carbon,2000,321,1-2,169-174;ZhangJ.etal.Angew.Chem.Int.Ed.,2017,56,1850-1854;HartM.,etal.Inorg.Chem.2019,58,15216-15224)。(二)以碳纳米管的管壁为“模板”,通过化学气相沉积生长同轴一维管状异质节,制备出单壁碳纳米管@h-BN、单壁碳纳米管@h-BN@MoS2等碳纳米管复合结构,并发现其具有出色的导热增强及光电性能等(Xiang R.,etal.Science,2020,367,6477,537-542)。
采用以上方法已获得了具有优异性能的新型碳纳米管复合材料,但样品量通常很少,极大限制了其应用范围。且由于碳纳米管的管壁曲率大、管腔尺寸小,通过填充和包覆制备碳纳米管一维复合结构存在可控性差、效率低、重复性差等问题。基于此,本发明提出一种以单壁碳纳米管间限域空间为“模板”,高效可控合成超细纳米线/碳纳米管复合薄膜的方法。
发明内容
本发明的目的在于提供一种管间限域诱导合成超细纳米线/碳纳米管复合薄膜的方法,通过在碳纳米管管间可控制造缺陷,并在缺陷处吸附前驱体,经自组装或快热驱动形成管间限域的超细纳米线,获得结构均一有序的碳纳米管复合薄膜。通过低压化学气相沉积引入过渡金属氧化物,经高温碳化制备管间限域超细过渡金属碳化物/碳纳米管复合薄膜;采用湿化学法使金属乙酰丙酮盐还原,并在管间自组装形成超细金属纳米线/碳纳米管复合薄膜;采用溶剂热法使过渡金属多酸盐分解形成金属氧化物在管间形核生长,经热处理获得超细过渡金属氧化物纳米线/碳纳米管复合薄膜。管间限域纳米线具有单分散和定向排列的特点,以此方法构筑的复合碳纳米管薄膜在能量存贮与转换领域具有广阔的应用前景。
本发明的技术方案:
一种管间限域诱导合成超细纳米线/碳纳米管复合薄膜的方法,通过化学氧化或等离子体处理方法在高质量碳纳米管管壁上可控引入缺陷,采用化学气相沉积、湿化学合成或溶剂热合成方法在碳纳米管管束间引入过渡金属、贵金属或过渡金属氧化物,经快热处理诱导自组装形成碳纳米管间限域的超细纳米线,获得超细纳米线定向排列于碳纳米管管间的复合薄膜;通过改变制造缺陷和引入纳米线前驱体的方法,调控纳米线的结构和成分。
所述的管间限域诱导合成超细纳米线/碳纳米管复合薄膜的方法,所使用碳纳米管薄膜为高质量单壁碳纳米管薄膜,薄膜厚度为1~2μm,经化学氧化或等离子体引入缺陷后,仍具有良好的机械性能,能保持自支撑结构。
所述的管间限域诱导合成超细纳米线/碳纳米管复合薄膜的方法,采用化学氧化的方法在碳纳米管管壁上可控引入缺陷,化学氧化过程中通过使用不同氧化性的氧化剂、改变氧化剂的浓度和氧化时间调控缺陷密度和大小;其中,氧化剂是强氧化性的KMnO4或H2SO4、弱氧化性的H2O2,或者氧化性酸HNO3
所述的管间限域诱导合成超细纳米线/碳纳米管复合薄膜的方法,采用等离子体处理在碳纳米管管壁上可控引入缺陷,使用不同化学反应活性的等离子体源、改变产生等离子体的功率和处理时间调控引入缺陷的密度和尺寸;其中,等离子体源为高化学反应活性的O3或O2,或者中等化学反应活性的H2,或者惰性的N2或Ar。
所述的管间限域诱导合成超细纳米线/碳纳米管复合薄膜的方法,通过化学气相沉积、湿化学合成或溶剂热合成方法在碳纳米管管间引入过渡金属、贵金属或过渡金属氧化物,经热处理后形成限域于碳纳米管管间的超细纳米线。
所述的管间限域诱导合成超细纳米线/碳纳米管复合薄膜的方法,前驱体经缺陷诱导沉积生长,所制备超细纳米线的直径小于5nm且定向排列于碳纳米管的管间,形成结构有序的碳纳米管复合薄膜。
所述的管间限域诱导合成超细纳米线/碳纳米管复合薄膜的方法,采用低压化学气相沉积方法合成管间限域的超细过渡金属碳化物纳米线,负压条件下以金属有机物为前驱体源,在低于前驱体源分解温度下,将过渡金属氧化物团簇沉积在含有缺陷的碳纳米管管壁上,以升温速率50~500℃/s快速升温至700~1700℃,通入CH4碳源使其碳化1~5min,同时在管间限域空间内团聚形成超细过渡金属碳化物纳米线;其中,过渡金属碳化物为Mo2C、W2C、TaC或ReC中的一种或两种以上,管间限域过渡金属碳化物/单壁碳纳米管复合薄膜具有优异的电催化析氢性能。
所述的管间限域诱导合成超细纳米线/碳纳米管复合薄膜的方法,采用湿化学法合成管间限域的超细金属纳米线,以乙酰丙酮金属盐为前驱体,添加表面活性剂在130~220℃油胺中加热1~300min,在碳纳米管薄膜管束间生成超细金属纳米线;其中,金属为Pt、Pd、Fe、Co、Ni、Mo、Ru、Rh中的一种或两种以上;表面活性剂为双十二烷基二甲基溴化铵、十六烷基三甲基溴化铵、十六烷基三甲基氯化铵、十八烷基三甲基溴化铵、二十二烷基二甲基溴化铵中的一种或两种以上,管间限域超细金属纳米线/单壁碳纳米管复合薄膜具有优异的界面水蒸发性能。
所述的管间限域诱导合成超细纳米线/碳纳米管复合薄膜的方法,超细纳米线限域定向排列于碳纳米管管间,具有特定的结构取向,广泛应用在电催化全分解水、热蒸发淡化海水、光热耦合催化或太阳能界面水蒸发领域。
本发明的设计思想是:
本发明利用单壁碳纳米管管间沟槽为限域空间可控合成自支撑超细纳米线/碳纳米管复合薄膜。以单壁碳纳米管具有超细管径的特点,管与管间形成微小限域空间,在碳纳米管管壁可控制造缺陷,后通过溶剂热反应、化学气相沉积和湿化学合成等方法在碳纳米管缺陷处引入前驱体自组装形成超细纳米线。管间限域单分散超细纳米线具有一致的取向,复合薄膜具有优异的性能。
本发明的优点及有益效果是:
1、本发明提供了一种管间限域超细纳米线/碳纳米管复合薄膜的制备方法,利用碳纳米管管间限域效应可控制备定向排列的单分散超细纳米线。
2、本发明可采用化学气相沉积、溶剂热反应、湿化学合成等多种方法在碳纳米管管间引入过渡金属、金属氧化物、金属碳化物等,通过改变引入纳米线的方法和工艺条件,可实现复合薄膜结构和性能的调控,具有很强的兼容性和可控性。
3、本发明方法以具有大比表面积、高导电性的碳纳米管网络为载体,管间限域使超细纳米线与碳纳米管具有更好的接触,从而提高其稳定性,在增强电子和声子传输方面性能优异。
4、本发明方法制备的管间限域过渡金属碳化物超细纳米线/碳纳米管复合薄膜和金属超细纳米线碳纳米管复合薄膜,在电催化全分解水、光热转换、以及太阳能界面水蒸发等领域有良好的应用前景。
附图说明
图1.化学气相沉积制备管间限域超细过渡金属碳化物纳米线/碳纳米管复合薄膜的过程示意图。
图2.管间限域超细W2C纳米线/碳纳米管复合薄膜的扫描透射电子显微镜照片。
图3.管间限域超细W2C纳米线/碳纳米管复合薄膜的析氢曲线(对电极:石墨电极;参比电极:Ag/AgCl电极;电解质溶液:0.5mol/LH2SO4溶液)。
图4.湿化学法制备管间限域过渡金属超细纳米线/碳纳米管复合薄膜的过程示意图。
图5.管间限域过渡金属超细纳米线/碳纳米管复合薄膜的透射电子显微镜照片。
图6.管间限域过渡金属超细纳米线/碳纳米管复合薄膜的全解水性能(电解质溶液:1mol/L KOH水溶液)。
图7.管间限域过渡金属超细纳米线/碳纳米管复合薄膜的光热界面水蒸发淡化海水的性能。
图8.过渡金属碳化物颗粒/碳纳米管复合薄膜的透射电子显微镜照片。
具体实施方式
在具体实施过程中,本发明通过化学氧化、等离子体处理等在碳纳米管管壁上可控引入缺陷,后采用低压化学气相沉积、湿化学合成、溶剂热合成等方法在碳纳米管管间引入过渡金属、贵金属、过渡金属氧化物等前驱体,经热处理等诱导自组装形成限域于碳纳米管管束间的超细纳米线,该纳米线定向排列于碳纳米管的管间,获得超细纳米线/碳纳米管有序复合薄膜。通过在碳纳米管管壁引入缺陷、调控前驱体引入过程的工艺条件、改变前驱体源种类等,制备管间限域金属/金属氧化物/过渡金属碳化物超细纳米线/碳纳米管复合薄膜。
下面,通过实施例和附图进一步详述本发明。
实施例1
如图1所示,化学气相沉积制备管间限域过渡金属碳化物超细纳米线/碳纳米管复合薄膜过程,具体实验步骤为:
(1)在碳纳米管管壁上可控制造缺陷
配制体积配比为V硫酸:V硝酸=5:1的混合酸溶液,将浮动催化化学气相沉积法生长的单壁碳纳米管置于10~30ml混合酸溶液并加热至70℃处理20h。用去离子水洗涤至中性并真空抽滤成膜,获得管壁含有缺陷的单壁碳纳米管薄膜,其厚度为2~3μm,混合酸在碳纳米管管壁上形成了大量缺陷位。
(2)低压化学气相沉积过渡金属氧化物
取尺寸为1×1cm的酸处理单壁碳纳米管薄膜,并取30mg三羰基三甲苯钨粉末一同放入石英管中,采用真空封管将石英管内真空降至气压为1×10-4~1×10-1Pa后密封,将密封的石英管放入马弗炉中在300℃下热处理10h,获得管间分散氧化钨纳米颗粒的单壁碳纳米管复合薄膜。
(3)过渡金属氧化物的碳化组装形成纳米线
将步骤(2)中所得薄膜放在管式炉中通入混合气(按体积百分比计,甲烷2%,氢气10%,氩气88%)并以500℃/min的升温速率升温至1500℃热处理5min后随炉冷却,在管间限域形成W2C纳米线,获得超细W2C纳米线/碳纳米管复合薄膜。
(4)复合薄膜的结构表征
如图2所示,将复合薄膜超声分散后滴加到铜网微栅上,使用透射电子显微镜观察超细W2C纳米线/碳纳米管复合薄膜的微观结构,超细W2C纳米线单分散于碳纳米管的管束间,直径为1~1.5nm,平均长度为10nm,且具有一致的取向。
(5)复合薄膜的电催化析氢性能测试
测试步骤(3)所得超细W2C纳米线/单壁碳纳米管薄膜的电催化析氢性能,在三电极电化学工作站中(工作电极:旋转圆盘电极;对电极:石墨电极;参比电极:Ag/AgCl电极;电解质溶液:0.5mol/LH2SO4溶液),以5mV/s的扫描速率进行线性扫描。如图3所示,测试结果表明,该复合薄膜电催化析氢的起始电位为42mV,10mA/cm2电流密度下的过电位为72mV。
实施例2
如图4所示,湿化学法制备管间限域超细过渡金属纳米线/碳纳米管复合薄膜过程,具体实验步骤为:
(1)在碳纳米管管壁上可控制造缺陷
将浮动催化化学气相沉积方法生长后直接收集的单壁碳纳米管薄膜置于等离子体清洗机中,所使用的等离子体处理功率为7W,处理时间为1min,利用等离子体在碳纳米管管壁上制造缺陷,获得管壁富含缺陷的单壁碳纳米管薄膜,该单壁碳纳米管薄膜厚度为1~2μm,管壁上负载的缺陷主要为碳空位、点缺陷等。
(2)湿化学法沉积过渡金属
取一定量的乙酰丙酮铂、乙酰丙酮铁、乙酰丙酮钼、乙酰丙酮镍、乙酰丙酮钴(每种20mg)和50mg十六烷基三甲基溴化铵,以及80mg无水葡萄糖,置于5ml油胺溶剂中进行超声分散溶解形成均一的溶液,将富含缺陷的碳纳米管薄膜置于该溶液中,在160℃油浴中加热60min。反应结束后取出薄膜,无水乙醇清洗去除表面活性剂,获得超细PtFeCoNiMo纳米线/单壁碳纳米管复合薄膜。
(3)复合薄膜的结构表征
同实施例1步骤(4)。如图5所示,将复合薄膜超声分散后滴加到铜网微栅上,使用透射电子显微镜观察超细PtFeCoNiMo纳米线/单壁碳纳米管复合薄膜的微观结构,其单分散于碳纳米管的管束间,平均直径为1.56nm,平均长度为20nm,且具有一致的取向。
(4)复合薄膜的电催化全解水性能测试
测试步骤(2)所得超细PtFeCoNiMo纳米线/单壁碳纳米管复合薄膜的电催化全解水性能,使用1mol/LKOH水溶液为电解质,以5mV/s的扫描速率进行线性扫描。如图6所示,测试结果表明,该复合薄膜在1.667V电压下,可以达到10mA·cm-2电流密度的高效全解水。
实施例3
如图4所示,湿化学法制备管间限域过渡金属超细纳米线/碳纳米管复合薄膜过程,具体实验步骤为:
(1)碳纳米管管壁上可控制造缺陷
同实施例1步骤(1)。
(2)湿化学法沉积多种过渡金属
同实施例2步骤(2)。
(3)复合薄膜的结构表征
同实施例1步骤(4)。将复合薄膜超声分散后滴加到铜网微栅上,使用透射电子显微镜观察超细PtFeCoNiMo纳米线/单壁碳纳米管复合薄膜的微观结构,超细PtFeCoNiMo纳米线单分散于碳纳米管的管束间,平均直径为1.44nm,平均长度为10.3nm,且具有一致的取向。
(4)复合薄膜的界面热蒸发性能测试
取步骤(2)中制备的复合薄膜放入热蒸发性能测试设备中,利用木浆纤维作为水通道吸水并传输至上方复合薄膜处,使用聚四氟乙烯作为结构支撑模具并起到将复合薄膜和海水分离,防止其热量散失的作用。如图7所示,测试6h后得到在一个太阳光光照下过渡金属超细纳米线碳纳米管复合薄膜的热蒸发性能,蒸发效率为1.2kg·m-2·h-1
实施例4
溶剂热法制备管间限域超细WO3纳米线/碳纳米管复合薄膜,具体实验步骤为:
(1)碳纳米管管壁上可控制造缺陷
同实施例2步骤(1)。
(2)溶剂热合成超细WO3纳米线
首先,取0.1g钨酸(WO3·H2O),溶解在20mL20%过氧化氢水溶液中,取(1)中单壁碳纳米管薄膜和该溶液一起放入40mL反应釜中,在马弗炉中以10℃/min的升温速率升温至110℃,保温3h后随炉冷却至室温。后取出薄膜并用去离子水反复清洗,获得超细WO3纳米线/碳纳米管复合薄膜。
(3)复合薄膜的结构表征
同实施例1步骤(4)。将复合薄膜超声分散后滴加到铜网微栅上,使用透射电子显微镜观察超细WO3纳米线/碳纳米管复合薄膜的微观结构,超细WO3纳米线单分散于碳纳米管的管束间,直径为1~2nm,平均长度约为5nm,且具有一致的取向。
比较例1
过渡金属碳化物纳米颗粒/碳纳米管复合薄膜,具体步骤如下:
(1)使用浮动催化化学气相沉积法收集单壁碳纳米管薄膜,剪取1×1cm大小并取20mg六羰基钨粉末一同放入石英管中,真空封管将石英管内真空降至气压为1×10-4~1×10-1Pa后密封,将密封的石英管放入230℃的马弗炉中热处理5h。
(2)同实施例1步骤(3)
(3)实施例1步骤(4),透射电子显微镜表征结果如图8所示,由图可知,无超细纳米线形成,碳纳米管上担载着尺寸分布较宽、团聚明显的纳米颗粒颗粒的平均直径达10nm。同时,由于小尺寸氧化物颗粒发生团聚,导致复合薄膜的中纳米颗粒的分散性和均匀性差。
实施例和比较例结果表明,未在管壁构造缺陷的单壁碳纳米管经化学气相沉积的颗粒较大,在后续热处理过程中大尺寸的颗粒更倾向于团聚成尺寸更大的颗粒。所以,通过改变制造缺陷和引入纳米线前驱体的方法,可调控纳米线的结构和成分,单壁碳纳米管的前处理引入缺陷步骤对管间限域生长纳米线具有促进作用。该方法所制备的超细纳米线复合碳纳米管薄膜具有独特的有序结构和优异的性能,在电催化全分解水、热蒸发淡化海水、光热耦合催化、界面水蒸发等能量存储与转换等领域具有广泛的应用前景。
尽管上文中已经用一般性说明及具体实施方案对本发明作了详尽的描述,但在本发明基础上,可以对之做出修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。

Claims (9)

1.一种管间限域诱导合成超细纳米线/碳纳米管复合薄膜的方法,其特征在于,通过化学氧化或等离子体处理方法在高质量碳纳米管管壁上可控引入缺陷,采用化学气相沉积、湿化学合成或溶剂热合成方法在碳纳米管管束间引入过渡金属、贵金属或过渡金属氧化物,经快热处理诱导自组装形成碳纳米管间限域的超细纳米线,获得超细纳米线定向排列于碳纳米管管间的复合薄膜;通过改变制造缺陷和引入纳米线前驱体的方法,调控纳米线的结构和成分。
2.按照权利要求1所述的管间限域诱导合成超细纳米线/碳纳米管复合薄膜的方法,其特征在于,所使用碳纳米管薄膜为高质量单壁碳纳米管薄膜,薄膜厚度为1~2μm,经化学氧化或等离子体引入缺陷后,仍具有良好的机械性能,能保持自支撑结构。
3.按照权利要求1或2所述的管间限域诱导合成超细纳米线/碳纳米管复合薄膜的方法,其特征在于,采用化学氧化的方法在碳纳米管管壁上可控引入缺陷,化学氧化过程中通过使用不同氧化性的氧化剂、改变氧化剂的浓度和氧化时间调控缺陷密度和大小;其中,氧化剂是强氧化性的KMnO4或H2SO4、弱氧化性的H2O2,或者氧化性酸HNO3
4.按照权利要求1或2所述的管间限域诱导合成超细纳米线/碳纳米管复合薄膜的方法,其特征在于,采用等离子体处理在碳纳米管管壁上可控引入缺陷,使用不同化学反应活性的等离子体源、改变产生等离子体的功率和处理时间调控引入缺陷的密度和尺寸;其中,等离子体源为高化学反应活性的O3或O2,或者中等化学反应活性的H2,或者惰性的N2或Ar。
5.按照权利要求1所述的管间限域诱导合成超细纳米线/碳纳米管复合薄膜的方法,其特征在于,通过化学气相沉积、湿化学合成或溶剂热合成方法在碳纳米管管间引入过渡金属、贵金属或过渡金属氧化物,经热处理后形成限域于碳纳米管管间的超细纳米线。
6.按照权利要求1或5所述的管间限域诱导合成超细纳米线/碳纳米管复合薄膜的方法,其特征在于,前驱体经缺陷诱导沉积生长,所制备超细纳米线的直径小于5nm且定向排列于碳纳米管的管间,形成结构有序的碳纳米管复合薄膜。
7.按照权利要求1或5所述的管间限域诱导合成超细纳米线/碳纳米管复合薄膜的方法,其特征在于,采用低压化学气相沉积方法合成管间限域的超细过渡金属碳化物纳米线,负压条件下以金属有机物为前驱体源,在低于前驱体源分解温度下,将过渡金属氧化物团簇沉积在含有缺陷的碳纳米管管壁上,以升温速率50~500℃/s快速升温至700~1700℃,通入CH4碳源使其碳化1~5min,同时在管间限域空间内团聚形成超细过渡金属碳化物纳米线;其中,过渡金属碳化物为Mo2C、W2C、TaC或ReC中的一种或两种以上,管间限域过渡金属碳化物/单壁碳纳米管复合薄膜具有优异的电催化析氢性能。
8.按照权利要求1或5所述的管间限域诱导合成超细纳米线/碳纳米管复合薄膜的方法,其特征在于,采用湿化学法合成管间限域的超细金属纳米线,以乙酰丙酮金属盐为前驱体,添加表面活性剂在130~220℃油胺中加热1~300min,在碳纳米管薄膜管束间生成超细金属纳米线;其中,金属为Pt、Pd、Fe、Co、Ni、Mo、Ru、Rh中的一种或两种以上;表面活性剂为双十二烷基二甲基溴化铵、十六烷基三甲基溴化铵、十六烷基三甲基氯化铵、十八烷基三甲基溴化铵、二十二烷基二甲基溴化铵中的一种或两种以上,管间限域超细金属纳米线/单壁碳纳米管复合薄膜具有优异的界面水蒸发性能。
9.按照权利要求1所述的管间限域诱导合成超细纳米线/碳纳米管复合薄膜的方法,其特征在于,超细纳米线限域定向排列于碳纳米管管间,具有特定的结构取向,广泛应用在电催化全分解水、热蒸发淡化海水、光热耦合催化或太阳能界面水蒸发领域。
CN202211668945.1A 2022-12-23 2022-12-23 一种管间限域诱导合成超细纳米线/碳纳米管复合薄膜的方法 Pending CN116216781A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211668945.1A CN116216781A (zh) 2022-12-23 2022-12-23 一种管间限域诱导合成超细纳米线/碳纳米管复合薄膜的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211668945.1A CN116216781A (zh) 2022-12-23 2022-12-23 一种管间限域诱导合成超细纳米线/碳纳米管复合薄膜的方法

Publications (1)

Publication Number Publication Date
CN116216781A true CN116216781A (zh) 2023-06-06

Family

ID=86588238

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211668945.1A Pending CN116216781A (zh) 2022-12-23 2022-12-23 一种管间限域诱导合成超细纳米线/碳纳米管复合薄膜的方法

Country Status (1)

Country Link
CN (1) CN116216781A (zh)

Similar Documents

Publication Publication Date Title
Zhang et al. Ni diffusion in vertical growth of MoS2 nanosheets on carbon nanotubes towards highly efficient hydrogen evolution
CN109956463B (zh) 一种碳纳米管及其制备方法
Kumar et al. Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production
EP1655266B1 (en) Method of preparing a carbon nanosphere having at least one opening, impregnated catalyst comprising the carbon nanosphere and fuel cell using this catalyst
CN108689398B (zh) 一种可控的氮掺杂碳纳米管的制备方法
CN110148760B (zh) 一种多孔碳-碳纳米管复合材料及其制备方法和应用
Ping et al. Co-production of hydrogen and carbon nanotubes on nickel foam via methane catalytic decomposition
Chandrasekaran et al. Advanced opportunities and insights on the influence of nitrogen incorporation on the physico-/electro-chemical properties of robust electrocatalysts for electrocatalytic energy conversion
CN111939940B (zh) 钌基催化剂及其制备方法和应用
CN107262127A (zh) 一种氮磷双掺杂中空碳纳米管的制备方法
Yanli et al. The synergistic effect of NiCo nanoparticles and metal organic framework: Enhancing the oxygen evolution reaction of carbon nanohorn-based catalysts
He et al. Ultrafast synthetic strategies under extreme heating conditions toward single-atom catalysts
Lobiak et al. Structure, functional composition and electrochemical properties of nitrogen-doped multi-walled carbon nanotubes synthesized using Co–Mo, Ni–Mo and Fe–Mo catalysts
Jiang et al. Controlled growth of highly active NiMoN (100)-decorated porous N-doped carbon nanotubes on carbon cloth as efficient electrodes for alkaline media and seawater electrolysis
CN113036165B (zh) 一种氮硫掺杂的缺陷化碳纳米管及其制备方法
Liu et al. In situ engineering of hollow porous Mo 2 C@ C nanoballs derived from giant Mo-polydopamine clusters as highly efficient electrocatalysts for hydrogen evolution
Zhang et al. In-situ preparation of carbon nanotubes on CuO nanowire via chemical vapor deposition and their growth mechanism investigation
Wu et al. A general method for large-scale fabrication of metal nanoparticles embedded N-doped carbon fiber cloth with highly efficient hydrogen production in all pH range
Zhang et al. Carbothermal shock enabled functional nanomaterials for energy-related applications
CN104357841A (zh) 一种铁族碳化物纳米晶体-石墨烯纳米带复合材料、制备及其应用
CN111705378A (zh) 利用微波燃烧在碳基载体上快速生长过渡金属碳化物纳米点的方法及其应用
CN116216781A (zh) 一种管间限域诱导合成超细纳米线/碳纳米管复合薄膜的方法
CN114031042B (zh) 一种制备小尺寸过渡金属硫族化合物的方法及应用
CN110102236A (zh) 一种微波技术在柔性碳基底上快速负载生长单分散金属复合物的制备方法及其应用
KR100995388B1 (ko) 템플릿을 이용한 탄소나노튜브의 직경제어방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination