CN116139867A - 一种MOFs衍生的ZnO@CDs@Co3O4复合光催化剂及其制备方法和应用 - Google Patents

一种MOFs衍生的ZnO@CDs@Co3O4复合光催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN116139867A
CN116139867A CN202310135328.3A CN202310135328A CN116139867A CN 116139867 A CN116139867 A CN 116139867A CN 202310135328 A CN202310135328 A CN 202310135328A CN 116139867 A CN116139867 A CN 116139867A
Authority
CN
China
Prior art keywords
cds
zif
zno
composite photocatalyst
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310135328.3A
Other languages
English (en)
Other versions
CN116139867B (zh
Inventor
梁倩
柯仪
李忠玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou University
Original Assignee
Changzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou University filed Critical Changzhou University
Priority to CN202310135328.3A priority Critical patent/CN116139867B/zh
Publication of CN116139867A publication Critical patent/CN116139867A/zh
Application granted granted Critical
Publication of CN116139867B publication Critical patent/CN116139867B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/007Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8671Removing components of defined structure not provided for in B01D53/8603 - B01D53/8668
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/40Carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/80Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
    • B01D2259/802Visible light

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biomedical Technology (AREA)
  • Toxicology (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明属于纳米材料领域,具体涉及一种MOFs衍生的ZnO@CDs@Co3O4复合光催化剂及其制备方法和应用。本发明通过先合成ZIF‑8结构,再负载碳点,最后再原位合成ZIF‑67,经煅烧制备的ZnO@CDs@Co3O4复合光催化剂形成了独特的核壳结构。根据结构表征和性能表征实验,可以发现所制备的ZnO@CDs@Co3O4复合光催化剂具有化学性质稳定,形貌均匀,催化效率高等优点,又因其具有原料易得,且制备成本低廉等优点,具有一定的研究和应用价值。

Description

一种MOFs衍生的ZnO@CDs@Co3O4复合光催化剂及其制备方法和 应用
技术领域
本发明属于纳米材料领域,特别涉及一种MOFs衍生的ZnO@CDs@Co3O4复合光催化剂及其制备方法和应用。
背景技术
能源短缺和环境问题已成为当今人类社会所面临的重大挑战。当前世界能源消耗的80%仍来自于以石油、煤、天然气等为主的化石能源。随着人类社会活动的增加,不仅加快了对化石能源的消耗,还造成大气中以CO2为主的温室气体排放量的增加,严重干扰了自然界的碳循环,导致全球气候变暖。
近年来,半导体材料包括金属氧化物(ZnO和Co3O4)、金属硫化物(CdS和In2S3),碳基材料(C3N4和碳量子点),金属有机框架(UIO-66-NH2和MIL-125氨基)等等,已经报道了CO2光转换。其中,ZnO一直被称为是一种大多数有前途的半导体都因其高稳定性,成本低,具有合理的氧化还原二氧化碳能力。但是,宽频带隙高达3.2eV,充电速度快复合限制了光催化CO2转化,裸ZnO用作光催化剂时的效率来提高光催化性能,有许多策略采用了包括表面工程、各种形态调节、助催化剂负载,杂原子掺杂,异质结建筑等等。
金属-有机骨架材料(MOFs)由于具有高的比表面积、半导体性质和丰富的活性位点,在光催化领域得到了广泛的应用,其中,以ZIF-67和ZIF-8为代表的沸石型咪唑酸骨架结构具有金属位点暴露、碳氮配体易接近、化学稳定性好等特点,是太阳能制氢的理想材料。Wang等人报道了ZIF-67/Ni-Fe LDHs复合材料,其中ZIF-67具有较高的比表面积和匹配良好的能带结构,从而表现出更高的光催化氢率。ZIF-8/ZIF-67与其他MOFs相比具有更好的稳定性和附着力。此外,当光催化体系释放大量二氧化碳时,二氧化碳可以快速通过多孔层,从而加速化学反应动力学。
在我们之前的工作中,我们通过多步骤合成的CD-修饰的金属有机框架(MOF)形成的Co3O4/In2O3纳米管(CDs-M-CIO)异质结构在没有牺牲剂的情况下表现出较高的太阳能驱动CO生成速率,达到2.05μmol h-1g-1。本发明中我们通过一步热解制备ZIF-8@CDs@ZIF-67衍生的具有独特的核壳结构的ZnO@CDs@Co3O4,首次应用于光催化领域且能极大地提高光催化二氧化碳还原性能。
发明内容
本发明要解决的技术问题是:基于上述问题,本发明的目的是提供一种MOFs衍生的ZnO@CDs@Co3O4复合光催化剂及其制备方法和应用。
本发明为解决其技术问题所采用的一个技术方案是:一种MOFs衍生的ZnO@CDs@Co3O4复合光催化剂,以ZnO为核,在ZnO的表面分布碳点,以Co3O4为壳的核壳结构的复合光催化剂,其制备方法包括以下步骤:
(1)ZIF-8的制备:将六水合硝酸锌(Zn(NO3)2·6H2O)加入甲醇中,再加入含2-甲基咪唑的甲醇溶液,搅拌使混合均匀后,甲醇洗涤数次,干燥,得到ZIF-8;
(2)ZIF-8@CDs@ZIF-67的制备:将制备好的ZIF-8溶于甲醇中,加入碳点的乙醇溶液,再加入氯化钴,将含2-甲基咪唑的甲醇溶液缓慢放入上述悬浮液中,搅拌使反应完全,用甲醇洗涤数次得到ZIF-8@CDs@ZIF-67;
(3)ZnO@CDs@Co3O4的制备:将制备好的ZIF-8@CDs@ZIF-67放入坩埚中,在马弗炉中煅烧,得到产品ZnO@CDs@Co3O4
进一步地,步骤(1)中Zn(NO3)2·6H2O和2-甲基咪唑物质的量的比为2~3:5~7;优选为2.7:6.4。在该比例下制备得到的ZIF-8的尺寸在2μm左右,而不同的比例会影响ZIF-8的形貌和尺寸,进而影响复合和催化效果。
进一步地,所述的步骤(2)中ZIF-8、CoCl2、2-甲基咪唑的物质的量比为0.1~0.3:1~1.5:10~11;优选0.1~0.3:1.4:10.9;进一步优选为0.2:1.4:10.9。在该比例下,形成的ZIF-67的形貌和尺寸可以确保能把ZIF-8和CDs包裹进去,从而形成核壳结构。
进一步地,所述的步骤(2)中将CDs分散在乙醇溶液中以是CDs能均匀分散为宜,优选的,CDs的乙醇溶液的浓度为1mg/ml;CDs的加入量为ZIF-8质量的1%~5%;进一步优选CDs的加入量为ZIF-8质量的3%。
进一步地,所述步骤(3)中煅烧温度为450℃,煅烧时间为2h。煅烧温度和时间会影响煅烧出来的形貌和粒径,优选450℃下煅烧2h,使最终ZnO@CDs@Co3O4复合光催化剂的形貌为形状规整,大小均匀的褶皱的十二面体。
本发明制备的ZnO@CDs@Co3O4复合光催化剂用于光催化二氧化碳还原,进一步的本发明制备的ZnO@CDs@Co3O4复合光催化剂用于光催化二氧化碳还原产一氧化碳。
相比于现有技术,本发明的有益效果是:
(1)本发明先合成了ZIF-8结构,再通过机械搅拌负载碳点,最后再原位生产上ZIF-67,制备的ZnO@CDs@Co3O4复合光催化剂以ZnO为核,在ZnO的表面分布了CDs的粒子,最后包覆Co3O4作为整个结构的壳,形成了独特的核壳结构。通过本发明方法制备的ZIF-8@CDs@ZIF-67复合光催化剂的形貌为形状规整,大小均匀的十二面体;ZnO@CDs@Co3O4复合光催化剂的形貌为形状规整,大小均匀的褶皱的十二面体;
(2)本发明中负载的碳点(CDs)不仅具有良好的电子转移特性,从而抑制光激发电子-空穴对的复合,且CDs具有共轭p结构可以优先吸附和激活二氧化碳,因此具有优异的光催化活性;
(3)与现有技术的立方体结构相比,本发明的ZnO@CDs@Co3O4复合光催化剂比表面积明显增大,具有较好的稳定性,无二次污染,且催化效率,能在180min中ZnO@CDs@Co3O4光催化二氧化碳速率可以达到2123μmol g-1h-1
(4)本发明的ZnO@CDs@Co3O4复合光催化剂的制备方法简单,制备条件易于控制,无二次污染等优点,具有一定的研究和应用价值。
附图说明:
下面结合附图对本发明进一步说明。
图1是本发明实施例1制备得到的纯ZIF-67,纯ZIF-8,ZIF-8@ZIF-67,ZIF-8@CDs@ZIF-67,纯Co3O4,纯ZnO,ZnO@Co3O4,和ZnO@CDs@Co3O4复合光催化剂的X射线衍射图;
图2是本发明实施例1制备得到的纯ZIF-67(图2a),纯ZIF-8(图2b),ZIF-67@ZIF-8(图2c),ZIF-8@CDs@ZIF-67(图2d),纯Co3O4(图2e),纯ZnO(图2f),Co3O4@ZnO(图2g),和ZnO@CDs@Co3O4(图2h)复合光催化剂的扫描电镜图;ZIF-8@CDs@ZIF-67(图2i)和ZnO@CDs@Co3O4(图2j)的透射电镜图;ZnO@CDs@Co3O4(图2k)的高倍透射电镜图;ZnO@CDs@Co3O4(图2l)的EDX能谱图;
图3是本发明实施例1制备得到的ZnO@Co3O复合光催化剂光催化二氧化碳速率图;
图4是本发明实施例1制备得到的ZnO@CDs@Co3O复合光催化剂光催化二氧化碳速率图;
图5是本发明实施例1制备得到的3%-ZnO@CDs@Co3O与3%-ZnO@Co3O@CDs复合光催化剂光催化二氧化碳速率对比图。
具体实施方式
现在结合具体实施例对本发明作进一步说明,以下实施例旨在说明本发明而不是对本发明的进一步限定。
本发明中复合光催化剂进行光催化二氧化碳还原的通常方法是:10mg的样本和10mg吡啶钌添加到20ml乙腈,5ml水,5ml三乙醇胺中,再超声30分钟以制备出均匀分散的催化剂样品。然后,将制备好的催化剂样品和30ml溶液放入120ml的Pyrex玻璃反应器中与二氧化碳***鼓泡30min,确保30分钟的厌氧条件。光催化实验使用300W氙灯(模拟太阳光全光谱,波长范围是200-2500nm)。在反应进行三个小时后取样用气相色谱法(GC-7860Plus,TCD检测器)检测。
本发明所用试剂如无特殊说明,均为分析纯。
实施例1
(1)CDs的制备:
以两根石墨棒作为碳源,先在去离子水中超声清洗15min,以去除表面杂质。两根石墨棒分别与正负极连接后***装有超纯水的烧杯中,作为阳极和阴极。两电极相距7.5cm左右,并从电解液液面向外突出3-5cm,用直流电源在两个电极之间施加30V的电压。电解石墨棒半个月左右,待烧杯中的水溶液变成棕黑色时,用慢性定量滤纸过滤三次,或离心机22000rpm离心15-30min左右,以去除沉淀的氧化石墨和较大石墨颗粒,最终得到纯CDs的水溶液。通过取一定量的CDs水溶液进行冷冻干燥,获得CDs粉末。最后将CDs粉末分散在乙醇溶液中备用,CDs的乙醇溶液的浓度为1mg/ml。
(2)ZIF-67和ZIF-8的制备:将0.177g CoCl2溶于15ml甲醇中,然后将15mL含0.895g 2-甲基咪唑的甲醇溶液缓慢放入上述悬浮液中,搅拌3h后,用甲醇洗涤数次,所得样品为ZIF-67;将0.810g Zn(NO3)2·6H2O加入15mL甲醇中,然后将40mL含0.526g 2-甲基咪唑的甲醇溶液加入上述混悬液中,搅拌3h后,用甲醇洗涤3次,60℃干燥,所得样品为ZIF-8。
(3)ZnO@Co3O4复合光催化剂的制备:
将40mg ZIF-8或50mg ZIF-8或60mg ZIF-8溶于15ml甲醇中,再加入0.177gCoCl2。然后,将15mL含0.895g 2-甲基咪唑的甲醇溶液缓慢放入上述悬浮液中,搅拌3h后,用甲醇洗涤数次得到产品ZIF-8@ZIF-67;将制备好的ZIF-8@ZIF-67放入坩埚中,在马弗炉中450℃煅烧2h,得到产品分别标记为40mg-ZnO@Co3O4、50mg-ZnO@Co3O4、60mg-ZnO@Co3O4
从图3可以看出,50mg-ZnO@Co3O4催化二氧化碳产CO的效率最高,达1032μmol g-1h-1相比于ZnO和Co3O4分别提高了2.96、2.30倍。
(4)ZnO@CDs@Co3O4复合光催化剂的制备:
1%-ZnO@CDs@Co3O4复合光催化剂的制备:将50mg ZIF-8溶于15ml甲醇中,加入0.5ml CDs的乙醇溶液(1mg/ml),再加入0.177g CoCl2。然后,将15mL含0.895g 2-甲基咪唑的甲醇溶液缓慢放入上述悬浮液中。搅拌3h后,用甲醇洗涤数次得到产品ZIF-8@CDs@ZIF-67;将制备好的ZIF-8@CDs@ZIF-67放入坩埚中,在马弗炉中450℃煅烧,2h后得到产品1%-ZnO@CDs@Co3O4
3%-ZnO@CDs@Co3O4复合光催化剂的制备:与1%-ZnO@CDs@Co3O4复合光催化剂制备方法不同的是,1mg/ml CDs的乙醇溶液的加入量为1.5ml。
5%-ZnO@CDs@Co3O4复合光催化剂的制备:与1%-ZnO@CDs@Co3O4复合光催化剂制备方法不同的是,1mg/ml CDs的乙醇溶液的加入量为2.5ml。
从图4可见,在180min内,1%-ZnO@CDs@Co3O4、3%-ZnO@CDs@Co3O4、5%-ZnO@CDs@Co3O4复合光催化剂相比于50mg-ZnO@Co3O4分别提高了1.22、2.06、1.35倍,其中3%-ZnO@CDs@Co3O4光催化二氧化碳还原生产CO的速率可以达到2123μmol g-1h-1,CO选择性为62%。由此可见所制备的ZnO@CDs@Co3O4复合光催化剂具有很高的光催化活性。
(5)制备3%-ZnO@Co3O4@CDs,考察CDs的掺杂方式对光催化剂的活性的影响
按步骤(3)ZnO@Co3O4复合光催化剂的制备方法,称取50mg ZIF-8,制备50mg-ZnO@Co3O4;将50mg-ZnO@Co3O4溶于15ml甲醇中,加入1.5ml CDs的乙醇溶液(1mg/ml),搅拌24h后,用甲醇洗涤数次得到产品3%-ZnO@Co3O4@CDs。
从图5可见CDs的掺杂方式对光催化剂的活性会有明显影响,先制备ZnO@Co3O4再负载CDs制备的3%-ZnO@Co3O4@CDs的CO生成速率为1528μmol g-1h-1;先负载CDs制备的3%-ZnO@CDs@Co3O4的CO生成速率为2123μmol g-1h-1;二者相比,先掺杂的方式制备的复合光催化其催化二氧化碳产生CO的速率提高了1.39倍。
采用日本D/MAX2500的X-射线衍射仪分析实施例1所制备的纯ZIF-67,纯ZIF-8,ZIF-8@ZIF-67,ZIF-8@CDs@ZIF-67,纯Co3O4,纯ZnO,Co3O4@ZnO,和ZnO@CDs@Co3O4复合光催化剂的晶相结构,其中,X射线为Cu靶Kα
Figure BDA0004085214940000071
电压40kV,电流100mA,步长为0.02°,扫描范围5°~80°。X射线衍射图谱如图1所示,由图可知,制备的ZIF-8@CDs@ZIF-67复合光催化剂的XRD衍射图中可看到在7.4°,10.4°,12.8°,14.7°,16.4°和17.8°出现ZIF-8的特征衍射峰分别对应ZIF-8的(011),(002),(112),(022),(013),以及(222)晶面,7.4°,10.4°,12.8°,14.7°,16.4°和17.8°是ZIF-67的特征衍射峰分别对应ZIF-67的(011),(002),(112),(022),(013),以及(222)晶面。22.5°和42.3°是CDs的特征衍射峰分别对应CDs的(002)和(100)晶面。但是在X射线衍射图谱中ZIF-8@CDs@ZIF-67复合材料没有明显的CDs峰,这与CDs加载量低、体积小、分散性好有关。因此,该复合光催化剂中只含有ZIF-8和ZIF-67,并且在复合过程中未改变二者的化学结构和晶型。同样的,制备的ZnO@CDs@Co3O4复合光催化剂的XRD衍射图中可看到在31.2°,37.1°,44.7°,59.3°,和65.3°出现Co3O4的特征衍射峰分别对应Co3O4的(220),(311),(400),(511),以及(440)晶面,31.9°,34.5°,36.3°,47.5°,56.6°,62.9°,66.4°,68.0°和69.1°是ZnO的特征衍射峰分别对应ZnO的(100),(002),(101),(102),(110),(103),(200),(112)以及(201)晶面。22.5°和42.3°是CDs的特征衍射峰分别对应CDs的(002)和(100)晶面。但是在X射线衍射图谱中ZnO@CDs@Co3O复合材料没有明显的CDs峰,这与CDs加载量低、体积小、分散性好有关。因此,该复合光催化剂中只含有Co3O4和ZnO,并且在复合过程中未改变二者的化学结构和晶型。
采用Quanta 200F型场发射扫描电子显微镜观察实施例1制备的ZIF-8@CDs@ZIF-67和ZnO@CDs@Co3O4复合光催化剂的形貌,扫描电镜图如图2所示,从图可以看出,本实施方式制备的ZIF-8@CDs@ZIF-67复合光催化剂的形貌为形状规整,大小均匀的十二面体;而ZnO@CDs@Co3O4复合光催化剂的形貌为形状规整,大小均匀的褶皱的十二面体。这也可以由图2中的TEM图进一步表明。

Claims (8)

1.一种MOFs衍生的ZnO@CDs@Co3O4复合光催化剂,其特征在于,所述MOFs衍生的ZnO@CDs@Co3O4复合光催化剂是以表面分布碳点的ZnO为核,以Co3O4为壳的核壳结构的复合光催化剂。
2.根据权利要求1所述的MOFs衍生的ZnO@CDs@Co3O4复合光催化剂的制备方法,其特征是:包括以下步骤:
(1)ZIF-8的制备:将六水合硝酸锌加入甲醇中,再加入含2-甲基咪唑的甲醇溶液,搅拌使混合均匀后,甲醇洗涤数次,干燥,得到ZIF-8;
(2)ZIF-8@CDs@ZIF-67的制备:将制备好的ZIF-8溶于甲醇中,加入碳点的乙醇溶液,再加入氯化钴,将含2-甲基咪唑的甲醇溶液缓慢放入上述悬浮液中,搅拌使反应完全,用甲醇洗涤数次得到ZIF-8@CDs@ZIF-67;
(3)ZnO@CDs@Co3O4的制备:将制备好的ZIF-8@CDs@ZIF-67放入坩埚中,在马弗炉中煅烧,得到产品ZnO@CDs@Co3O4
3.根据权利要求2所述的MOFs衍生的ZnO@CDs@Co3O4复合光催化剂的制备方法,其特征在于,所述步骤(1)中六水合硝酸锌与2-甲基咪唑物质的量的比为2~3:5~7。
4.根据权利要求2所述的MOFs衍生的ZnO@CDs@Co3O4复合光催化剂的制备方法,其特征在于,所述步骤(2)中ZIF-8、氯化钴、2-甲基咪唑物质的量比为0.1~0.3:1~1.5:10~11。
5.根据权利要求2所述的MOFs衍生的ZnO@CDs@Co3O4复合光催化剂的制备方法,其特征在于,所述步骤(2)中碳点的加入量为ZIF-8质量的1%~5%。
6.根据权利要求2所述的MOFs衍生的ZnO@CDs@Co3O4复合光催化剂的制备方法,其特征在于,所述步骤(3)中煅烧温度为450℃,煅烧时间为2h。
7.根据权利要求1所述的MOFs衍生的ZnO@CDs@Co3O4复合光催化剂的应用,其特征在于,所述复合光催化剂在光催化二氧化碳还原中的应用。
8.根据权利要求7所述的MOFs衍生的ZnO@CDs@Co3O4复合光催化剂的应用,其特征在于,所述复合光催化剂在光催化二氧化碳还原产一氧化碳中的应用。
CN202310135328.3A 2023-02-20 2023-02-20 一种MOFs衍生的ZnO@CDs@Co3O4复合光催化剂及其制备方法和应用 Active CN116139867B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310135328.3A CN116139867B (zh) 2023-02-20 2023-02-20 一种MOFs衍生的ZnO@CDs@Co3O4复合光催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310135328.3A CN116139867B (zh) 2023-02-20 2023-02-20 一种MOFs衍生的ZnO@CDs@Co3O4复合光催化剂及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN116139867A true CN116139867A (zh) 2023-05-23
CN116139867B CN116139867B (zh) 2024-04-05

Family

ID=86359709

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310135328.3A Active CN116139867B (zh) 2023-02-20 2023-02-20 一种MOFs衍生的ZnO@CDs@Co3O4复合光催化剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN116139867B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116747885A (zh) * 2023-06-06 2023-09-15 常州大学 一种ZIF-67衍生的CsPbBr3/Co3O4复合光催化剂的制备方法及其应用
CN117003293A (zh) * 2023-07-31 2023-11-07 武汉理工大学 一种改性Co3O4/MOFs复合气敏材料及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111111668A (zh) * 2019-12-18 2020-05-08 济南大学 一种mof基衍生复合光催化剂及其制备方法
CN113842950A (zh) * 2021-08-18 2021-12-28 中国石油大学(华东) 金属氧化物与金属有机框架复合材料在光催化降解抗生素中的应用方法
CN114669289A (zh) * 2022-03-27 2022-06-28 绍兴文理学院 一种碳量子点/ZnO复合光催化剂的合成方法
CN115106127A (zh) * 2022-07-08 2022-09-27 南昌航空大学 一种可光催化降解四环素的三元mof衍生锌钛纳米复合材料的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111111668A (zh) * 2019-12-18 2020-05-08 济南大学 一种mof基衍生复合光催化剂及其制备方法
CN113842950A (zh) * 2021-08-18 2021-12-28 中国石油大学(华东) 金属氧化物与金属有机框架复合材料在光催化降解抗生素中的应用方法
CN114669289A (zh) * 2022-03-27 2022-06-28 绍兴文理学院 一种碳量子点/ZnO复合光催化剂的合成方法
CN115106127A (zh) * 2022-07-08 2022-09-27 南昌航空大学 一种可光催化降解四环素的三元mof衍生锌钛纳米复合材料的制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JING TANG ET AL.: ""Thermal Conversion of Core−Shell Metal−Organic Frameworks: A New Method for Selectively Functionalized Nanoporous Hybrid Carbon"", 《JOURNAL OF THE AMERICAN CHEMICAL SOCIETY》, vol. 137, pages 1572 - 1580 *
MEI LI ET AL.: ""Construction of Highly Active and Selective Polydopamine Modified Hollow ZnO/Co3O4 p‑n Heterojunction Catalyst for Photocatalytic CO2 Reduction"", 《ACS SUSTAINABLE CHEMISTRY & ENGINEERING》, vol. 8, pages 11465 *
TAO WANG ET AL.: ""A Co3O4-embedded porous ZnO rhombic dodecahedron prepared using zeolitic imidazolate frameworks as precursors for CO2 photoreduction"", 《NANOSCALE》, vol. 8, pages 1 - 2 *
张春艳: ""Zn-Co双金属ZIF基半导体材料合成及光电催化性能研究"", 《中国优秀博硕士学位论文全文数据库(硕士)工程科技Ⅰ辑》, no. 1, pages 19 - 21 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116747885A (zh) * 2023-06-06 2023-09-15 常州大学 一种ZIF-67衍生的CsPbBr3/Co3O4复合光催化剂的制备方法及其应用
CN117003293A (zh) * 2023-07-31 2023-11-07 武汉理工大学 一种改性Co3O4/MOFs复合气敏材料及其制备方法和应用
CN117003293B (zh) * 2023-07-31 2024-04-05 武汉理工大学 一种改性Co3O4/MOFs复合气敏材料及其制备方法和应用

Also Published As

Publication number Publication date
CN116139867B (zh) 2024-04-05

Similar Documents

Publication Publication Date Title
Guo et al. Noble-metal-free CdS/Ni-MOF composites with highly efficient charge separation for photocatalytic H2 evolution
WO2021031967A1 (zh) 一种非贵金属单原子催化剂的制备方法及应用
CN109331883B (zh) 一种CdS/金属有机框架复合光催化材料及其制备方法和应用
Wang et al. Photocatalytic CO2 reduction over copper-based materials: A review
CN116139867B (zh) 一种MOFs衍生的ZnO@CDs@Co3O4复合光催化剂及其制备方法和应用
CN110280281B (zh) 铁酸锌/黑磷微球复合物的制备方法及其在光催化领域中的应用
CN113151855B (zh) 一种富含孪晶界的铜纳米电极及其制备和应用
Zhang et al. Robust, double-shelled ZnGa 2 O 4 hollow spheres for photocatalytic reduction of CO 2 to methane
CN111617790B (zh) 一种氮掺杂碳层包覆碳化钴锰复合材料及其应用
Luo et al. Ultrathin ZIS nanosheets encapsulated in metal–organic-framework-derived CNCo-Fe 3 O 4 as an efficient functional photocatalyst for hydrogen evolution
Liu et al. Improved charge separation and carbon dioxide photoreduction performance of surface oxygen vacancy-enriched zinc ferrite@ titanium dioxide hollow nanospheres with spatially separated cocatalysts
Jin et al. Fabrication of a novel Ni 3 N/Ni 4 N heterojunction as a non-noble metal co-catalyst to boost the H 2 evolution efficiency of Zn 0.5 Cd 0.5 S
CN114308079A (zh) 一种硫化镉-双助催化剂复合光催化材料及其制备方法与应用
Dong et al. Facile preparation of Zn x Cd 1− x S/ZnS heterostructures with enhanced photocatalytic hydrogen evolution under visible light
Xue et al. C3N4 nanosheets loaded with the CuWO4 activated NiS co-catalyst: A stable noble metal-free photocatalyst with dramatic photocatalytic activity for H2 generation and high salinity tolerant
Xie et al. Ultrasmall Co-NiP embedded into lantern shaped composite achieved by coordination confinement phosphorization for overall water splitting
Wang et al. Hollow rod-shaped Cu-In-Zn-S@ ZnCo2O4@ In2O3 tandem heterojunction for efficient visible light-induced photocatalytic hydrogen production
Zhu et al. Composition-dependent activity of Mn-doping NiS2 nanosheets for boosting photocatalytic H2 evolution
Yang et al. Modulable Cu (0)/Cu (I)/Cu (II) sites of Cu/C catalysts derived from MOF for highly selective CO2 electroreduction to hydrocarbons
CN112958096B (zh) 花球状镍铝水滑石/二氧化钛原位生长在片状二碳化三钛复合光催化剂的制备方法及应用
Yin et al. Enhanced charge transfer and photocatalytic carbon dioxide reduction of copper sulphide@ cerium dioxide pn heterojunction hollow cubes
Zhao et al. Efficient charge transfer in cadmium sulfide quantum dot-decorated hierarchical zinc sulfide-coated tin disulfide cages for carbon dioxide photoreduction
CN112023948A (zh) 一种高效光催化分解水产氢的光触媒及其制备方法
CN115845885B (zh) 一种CdS/WC1-x@C复合光催化剂及其制备方法和应用
CN114870899B (zh) 一种光催化co2分解制合成气的复合光催化剂及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant