CN116063091A - 三维连续多孔碳基预制体及其在制备SiC基复合材料中的应用 - Google Patents

三维连续多孔碳基预制体及其在制备SiC基复合材料中的应用 Download PDF

Info

Publication number
CN116063091A
CN116063091A CN202310137104.6A CN202310137104A CN116063091A CN 116063091 A CN116063091 A CN 116063091A CN 202310137104 A CN202310137104 A CN 202310137104A CN 116063091 A CN116063091 A CN 116063091A
Authority
CN
China
Prior art keywords
carbon
porous carbon
composite material
sic
dimensional continuous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310137104.6A
Other languages
English (en)
Other versions
CN116063091B (zh
Inventor
刘磊
冯薇
杨忠
白亚平
郭巧琴
杨伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Technological University
Original Assignee
Xian Technological University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Technological University filed Critical Xian Technological University
Priority to CN202310137104.6A priority Critical patent/CN116063091B/zh
Publication of CN116063091A publication Critical patent/CN116063091A/zh
Application granted granted Critical
Publication of CN116063091B publication Critical patent/CN116063091B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/407Copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本发明属于无机非金属混杂金属基体复合材料制备技术领域,具体来说是三维连续多孔碳基预制体及其在制备SiC基复合材料中的应用,本发明针对以多孔碳为单一碳基体、Si‑Al为主渗透剂在1400℃以下反应熔渗制备SiC基复合材料时,出现的增强相存在高温反应损伤或有效渗透深度不足问题,提供一种多孔碳骨架‑三维连续多孔碳基预制体,并将其应用于SiC基复合材料的制备中,目的在于解决增强相高温反应损伤、碳的动力学活性不足严重降低反应熔渗速率,以及湿热反应抑制反应熔渗的问题。

Description

三维连续多孔碳基预制体及其在制备SiC基复合材料中的应用
技术领域
本发明属于无机非金属混杂金属基体复合材料制备技术领域,特别涉及三维连续多孔碳基预制体及其在制备SiC基复合材料中的应用。
背景技术
SiC基复合材料兼具低密度、耐热、耐磨、抗烧蚀等优异性能,向其中引入碳和联通金属相能够有效提高其自润滑、强度、导热、耐冲击、抗冲蚀能力,可作为轻量化热结构材料被广泛用于制造先进装备的核心和关键零部件,如飞行器热端、刹车制动件、装甲、内燃机燃烧室及轴瓦、速射武器身管、热管理等领域。
SiC基复合材料在以碳和碳化硅的纤维、晶须和纳米线等一维增强相,尤其是其高维织物作为增强相时,主要通过向多孔预制体中引入SiC基体的化学气相渗透法、前驱体浸渍裂解法、料浆浸渗法、气相渗硅法以及反应熔体浸渗法等制得,其中反应熔渗法相对制备周期短、成本低且可近净尺寸成型,但受制于Si的熔点(1410℃),材料制备温度通常需高于1450℃。这一制备条件具体的不利影响体现在:一方面无法在常规硅碳棒或电阻丝作为发热体的热处理炉中制备,对设备要求高且能耗大,不利于大面积工业化生产;另一方面因高温导致增强相的种类主要局限于碳和碳化硅纤维,使得其他一维增强相在SiC基复合材料中鲜有应用。显然,将制备温度降低至1400℃、尤其是1200℃以下不仅有利于降低高能耗和高设备要求,而且能使增强相的可选范围大幅放宽、便于复合材料设计。
发明人在文献“Ceram.Int.46(2020)8469-8472”、“J.Cent.SouthUniv.27(2020)2557-2566”和“DOI:10.1016/j.ceramint.2022.10.280”中研究了Si-Al粉料为渗透剂、热解碳为多孔C/C碳基体时,1100-1200℃低温反应溶渗制备的C/C-SiC-AlSi复合材料的微结构、物相组成、密度,以及强度、冲蚀、烧蚀等性能特点,发现以气相沉积中织构碳做多孔C/C的碳基体时纤维存在不同程度的反应损伤。进一步的研究过程中发现,1400℃以下Si-Al粉料为主渗透剂、以树脂碳等技术要求低的碳做多孔碳基体时,尽管热力学上和气相沉积中织构碳呈现出相近的反应特征,但反应熔渗的动力学特性差异巨大,有效渗透深度不足1mm,同时多孔碳、Si-Al粉料和热处理炉的湿度等均显著影响渗透效果和材料性能。
发明内容
针对上述存在的技术不足,本发明提供了一种三维连续多孔碳基预制体及其在制备SiC基复合材料中的应用,本发明针对以多孔碳为单一碳基体、Si-Al为主渗透剂在1400℃以下反应熔渗制备SiC基复合材料时,出现的增强相存在高温反应损伤或有效渗透深度不足问题,提供一种多孔碳骨架-三维连续多孔碳基预制体,并将其应用于SiC基复合材料的制备中,目的在于解决增强相高温反应损伤、碳的动力学活性不足严重降低反应熔渗速率,以及湿热反应抑制反应熔渗的问题。
为解决上述技术问题,本发明采用如下技术方案:
一种三维连续多孔碳基预制体,所述三维连续多孔碳基预制体的微结构单元由自内向外依次设置的增强相、包覆增强相的第一层碳以及作为渗透孔壁的第二层碳组成;所述增强相为纤维、晶须、纳米线中的至少一种,所述增强相的成分选自碳、碳化硅、玄武岩或莫来石;
所述包覆增强相的第一层碳选自树脂碳、沥青碳或气相沉积各向同性碳,所述作为渗透孔壁的第二层碳选自气相沉积中织构碳、高织构碳或热解石墨。
优选的,所述三维连续多孔碳基预制体中,增强相的体积百分比为10-30vol.%,包覆增强相的第一层碳体积百分比为5-30vol.%,作为渗透孔壁的第二层碳体积百分比为5-50vol.%,余量为孔隙。
本发明还保护了三维连续多孔碳基预制体在制备SiC基复合材料中的应用,所述三维连续多孔碳基预制体用于在Si-Al做主渗透剂时,于900-1400℃反应温度下熔渗制备SiC基复合材料。
优选的,所述应用方法为:
(1)将三维连续多孔碳基预制体进行机械加工、打磨、清洗,烘干至恒重,得到干燥的待渗多孔碳试件,密封保存;
(2)均匀混合主渗透剂,烘干至恒重,得到干燥的待渗混合粉料,密封保存;
(3)将步骤(1)的待渗多孔碳试件置于步骤(2)的待渗混合粉料中,于干燥的热处理炉中,于900-1400℃、<1kPa的真空条件下保温30-180min后,经去应力退火降至室温或者经直接降温到室温,去除表面残留粉料,即得到SiC基复合材料。
优选的,所述步骤(2)的主渗透剂由如下重量份数的原料组成:Si粉5-9份、Al粉1-5份、X粉<2份;
其中X粉选自Mg、Cu、Fe、Ni、W、Cr、Mn、Mo、Ag、Ti、Zr、Hf、B,或者Mg、Cu、Fe、Ni、W、Cr、Mn、Mo、Ag、Ti、Zr、Hf、B的合金、碳化物、硼化物、氧化物,或者Al2O3粉中的至少一种。
优选的,所述步骤(1)的烘干条件为:在鼓风干燥箱中80-300℃下烘干24-48h;所述步骤(2)的烘干条件为:在鼓风干燥箱中80-300℃下烘干12-24h。
优选的,所述步骤(3)中所述去应力退火操作是随炉冷却至450-570℃并保温30-180min,之后随炉冷却至室温;或者是以在≤3℃/min的速率降温至450℃,之后随炉冷却至室温。
优选的,所述(3)中热处理炉的干燥方法为:将密闭的热处理炉升温至200-500℃并保温0.5-6h,全程抽真空至<1kPa,然后降温至室温。
与现有技术相比,本发明的有益效果在于:
1、本发明SiC基复合材料的制备全程低于1400℃、即可在硅碳棒和电阻丝等作为发热体的热处理炉中实施,制备温度的降低使可选增强相由碳和碳化硅拓展至玄武岩、莫来石等,较常规反应熔渗制备SiC基复合材料而言,能耗低、便于工业化大批量制造、材料可设计性强;
2、本发明的多孔碳基体为双碳层结构,由两种碳依次包覆增强相构成,第一层碳与Si-Al反应动力学活性很弱,可以避免Si-Al熔体在和碳基体反应熔渗时过度反应进而与增强相产生化学反应损伤增强相;第二层碳用于和Si-Al发生反应实现熔渗,相比于单一气相沉积中织构碳等基体可有效保护增强相避免其出现反应损伤,相比于单一树脂碳等基体可有效促渗;针对双层碳结构导致多孔碳的孔隙结构变差,再结合多孔碳、熔渗粉料和热处理炉的湿度控制,有效缓解了湿热反应形成氧化铝对Si-Al熔渗剂反应熔渗的抑制;从而实现了单边渗透深度可达5mm以上的SiC基复合材料的制备。
3、多孔碳、粉料很容易吸潮,过多的水汽会在高温下引发过量Al2O3陶瓷相形成,从而阻碍Si-Al熔体与碳的反应;此外,Al熔体在阴雨天等湿度较大环境中很容易溶解吸附含H的气体,冷却凝固时析出会形成针孔等铸造缺陷;制备材料时的干燥处理就是降低多孔碳、粉料和热处理炉中的水汽,进而避免Al吸收过量的水汽;此外降低水汽含量/湿度可避免Al凝固时形成针孔等缺陷,使复合材料性能降低;本发明多孔碳干燥与密封保存、粉料干燥与密封保存、热处理炉使用前的干燥处理,都是为了降低空气中水汽对熔渗的负面影响,实现对湿度的调控。
附图说明
图1为本发明实施例1-3的三维连续多孔碳基预制体双碳层结构示意图,其中左图为三维连续多孔碳基预制体的宏观形态图,右图为三维连续多孔碳基预制体的微结构示意图;
图2为本发明实施例1的三维连续多孔碳基预制体低温反应熔渗Si-Al-Cu后所得SiC基复合材料的宏观图;
图3为本发明对比例1单碳层、以及实施例1三维连续多孔碳基预制体双碳层分别经低温反应熔渗Si-Al-Cu后所得SiC基复合材料的微区SEM对照图,其中左图为以对比例1单碳层经低温反应熔渗Si-Al-Cu后所得SiC基复合材料,右图为以实施例1三维连续多孔碳基预制体经低温反应熔渗Si-Al-Cu后所得SiC基复合材料;
图4为本发明实施例2的三维连续多孔碳基预制体低温反应熔渗Si-Al-ZrB2所得复合材料的XRD图谱,XRD图谱中的小图为低温反应熔渗Si-Al-ZrB2所得复合材料的宏观图。
具体实施方式
下面对本发明的具体实施方式进行详细描述,但应当理解本发明的保护范围并不受具体实施方式的限制。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。本发明各实施例中所述实验方法,如无特殊说明,均为常规方法。
三维连续多孔碳基预制体的制备可通过对增强相织物进行树脂/沥青浸渍-碳化、化学气相沉积等领域熟知方法实现;三维连续多孔碳基预制体也可以通过增强相和树脂的酒精溶液混杂制成料浆,经抽滤成型-烘干-固化-碳化制得,也属于领域熟知方法。
实施例1
采用三维连续多孔碳基预制体制备SiC基复合材料的方法:
选用2.5D针刺碳纤维毡(增强相)、包覆于碳纤维上的气相沉积各向同性碳(包覆增强相的第一层碳)、气相沉积中织构碳(作为渗透孔壁的第二层碳)制成双碳层结构的三维连续多孔碳基预制体,Si-Al-Cu做渗透剂在1200℃、真空度低于10Pa下反应熔渗制备C/C-SiC复合材料,其中2.5D针刺碳纤维毡占比25vol.%,包覆于碳纤维上的气相沉积各向同性碳占比5vol.%,作为渗透孔壁的第二层碳的气相沉积中织构碳占比30vol.%,余量为孔隙;制备SiC基复合材料的具体步骤如下:
(1)三维连续多孔碳基预制体的制备:
采用热梯度化学气相沉积法制备碳基体,具体为:以天然气为碳源气体,将2.5D针刺碳纤维毡夹持于热梯度气相沉积炉的两电极之间,控制沉积温度1000℃、气体流速0.4m3/h沉积0.5h,完成第一层碳即气相沉积各向同性碳的制备;接着升温至1100℃、设置气体流速1.0m3/h沉积4h,完成第二层碳即气相沉积中织构碳的制备,从而制得三维连续多孔碳基预制体;
(2)采用三维连续多孔碳基预制体制备SiC基复合材料:
S1、将前述多孔碳锯成方块试样,在蒸馏水中超声清洗30min、并反复清洗三次,在湿度≤30%的鼓风干燥箱中150℃烘干24h以上,烘干至恒重,得到待渗多孔碳方块试样,放置于带干燥剂和瓶塞的广口瓶中;
S2、称取7份硅粉、3份铝粉及0.5份Cu粉,使用研钵和研磨棒手工搅拌4小时以上直至混合均匀,然后在湿度≤30%的鼓风干燥箱中100℃烘干12h以上,烘干至恒重,得到待渗的混合粉料,密封保存于真空干燥箱;
S3、将密闭的热处理炉升温至200℃保温60min,全程旋片式机械真空泵持续抽真空,然后降温至室温,得到干燥的热处理炉;
S4、使用步骤一所得的干燥多孔碳待渗试样置于步骤二所得的干燥混合粉体中,60min内放置于在步骤三所得的干燥热处理炉中,升温至1200℃,在低于10Pa的真空条件下保温120min,然后断电随炉冷却直接降温到室温,得到C/C-SiC-SiAlCu基复合材料。
实施例2
采用三维连续多孔碳基预制体制备SiC基复合材料的方法:
选用短切碳纤维针刺毡(增强相)、树脂碳(包覆增强相的第一层碳)、气相沉积高织构碳(作为渗透孔壁的第二层碳)制成双碳层结构的三维连续多孔碳基预制体,Si-Al-ZrB2做渗透剂在1400℃、真空低于1000Pa反应熔渗制备C/C-SiC复合材料,其中短切碳纤维针刺毡占比10vol.%,包覆于碳纤维上的树脂碳占比30vol.%,作为渗透孔壁的第二层碳的气相沉积高织构碳占比5vol.%,余量为孔隙;制备SiC基复合材料的具体步骤如下:
(1)三维连续多孔碳基预制体的制备:
第一层树脂碳的制备:以酚醛树脂为碳源,将短切碳纤维针刺毡置于真空罐中,抽真空至5kPa以下保持40min,之后向真空罐中通入30wt.%酚醛树脂的无水乙醇溶液至碳毡被完全覆盖,然后取出碳毡在80℃烘干24h后,将碳毡放置于热处理炉中,升温至220℃保温2h后继续升温至900℃保温2h,冷却至室温,即完成树脂碳层的制备;
第二层高织构碳的制备:采用等温化学气相沉积法,以天然气为碳源气体,将制备完树脂碳的多孔C/C放置于气相沉积炉中,石墨工装夹持,控制沉积温度1000-1200℃、气体流速0.6m3/h沉积2h,完成高织构碳层的制备;从而制得三维连续多孔碳基预制体;
(2)采用三维连续多孔碳基预制体制备SiC基复合材料:
S1、将前述多孔碳线切割成圆饼试样,在无水乙醇中超声清洗60min、并反复清洗三次,在湿度≤40%的鼓风干燥箱中300℃烘干24h以上,烘干至恒重,得到待渗多孔碳方块试样,放置于真空干燥箱中;
S2、称取9份硅粉、1份铝粉及1份ZrB2粉,使用行星式球磨机在聚四氟乙烯球磨罐中使用玛瑙球混合均匀,然后在湿度≤40%的鼓风干燥箱中300℃烘干12h以上,烘干至恒重,得到待渗的混合粉料,密封保存于真空干燥箱;
S3、将密闭的热处理炉升温至1000℃保温30min,全程旋片式机械真空泵持续抽粗真空,然后降温至室温,得到干燥的热处理炉;
S4、使用步骤一所得的干燥多孔碳待渗试样置于步骤二所得的干燥混合粉体中,30min内放置于在步骤三所得的干燥热处理炉中,升温至1400℃在低于1000Pa的真空条件下保温30min,然后随炉冷却至500℃保温120min,之后断电随炉冷却到室温,得到C/C-SiC-SiAl-ZrB2基复合材料。
实施例3
采用三维连续多孔碳基预制体制备SiC基复合材料的方法:
本实施例为莫来石纤维增强的SiC基复合材料,选用短切莫来石纤维(增强相)、树脂碳(包覆增强相的第一层碳)、气相沉积中织构碳(作为渗透孔壁的第二层碳)制成双碳层结构的三维连续多孔碳基预制体,Si-Al-Al2O3做渗透剂在1000℃真空低于500Pa反应熔渗制备C/C-SiC复合材料,其中莫来石纤维占比30vol.%,包覆于莫来石纤维上的树脂碳占比10vol.%,作为渗透孔壁的第二层碳的气相沉积中织构碳占比20vol.%,余量为孔隙;制备SiC基复合材料的具体步骤如下:
(1)三维连续多孔碳基预制体的制备:
将长度3-5mm的莫来石纤维与20wt.%呋喃树脂酒精溶液机械混合制成料浆,通过负压抽滤成型,然后将成型的胚体盛于刚玉坩埚放置到热处理炉中,在氮气气氛、大气压条件下850℃热处理2h,制得树脂碳包覆短切莫来石纤维的多孔碳;
采用热梯度化学气相沉积法,以天然气为碳源气体,将前述树脂碳包覆短切莫来石纤维的多孔碳夹持于热梯度气相沉积炉的两电极之间;控制沉积温度1050-1150℃、设置气体流速1.0m3/h沉积3h,完成第二层碳即气相沉积中织构碳的制备,从而制得三维连续多孔碳基预制体;
(2)采用三维连续多孔碳基预制体制备SiC基复合材料:
S1、将前述多孔碳车削成圆柱试样,在自来水中超声清洗40min、并反复清洗三次,在湿度≤40%的鼓风干燥箱中80℃烘干24h以上,烘干至恒重,得到待渗多孔碳方块试样,放置于真空干燥箱中;
S2、称取5份硅粉、5份铝粉及2份Al2O3粉,使用滚筒式球磨机在聚四氟乙烯球磨罐中使用刚玉球混合均匀,然后在湿度≤40%的鼓风干燥箱中80℃烘干12h以上,烘干至恒重,得到待渗的混合粉料,密封保存于真空干燥箱;
S3、将密闭的热处理炉升温至500℃保温30min,全程旋片式机械真空泵持续抽粗真空,然后降温至室温,得到干燥的热处理炉;
S4、使用步骤一所得的干燥多孔碳待渗试样置于步骤二所得的干燥混合粉体中,120min内放置于在步骤三所得的干燥热处理炉中,升温至1000℃在低于500Pa的真空条件下保温180min,然后以不大于3℃/min的速率降温至450℃,之后断电随炉冷却至室温,得到莫来石纤维增强的混杂SiC基复合材料。
实施例4
与实施例1的制备步骤相同,不同之处仅在于:
S3、将密闭的热处理炉升温至200℃保温6h,全程旋片式机械真空泵持续抽真空,然后降温至室温,得到干燥的热处理炉;
S4、使用步骤一所得的干燥多孔碳待渗试样置于步骤二所得的干燥混合粉体中,60min内放置于在步骤三所得的干燥热处理炉中,升温至900℃,在低于10Pa的真空条件下保温180min,然后断电随炉冷却直接降温到室温,得到C/C-SiC-SiAlCu基复合材料。
对比例1
与实施例1的制备步骤相同,不同之处仅在于,本对比例采用单层碳制备SiC基复合材料,即将实施例1的三维连续多孔碳基预制体替换为单层碳,单层碳按照如下步骤制备:采用热梯度化学气相沉积法,以天然气为碳源气体,将2.5D针刺碳纤维毡夹持于热梯度气相沉积炉的两电极之间,控制沉积温度1100℃、气体流速1.0m3/h沉积5h,完成气相沉积中织构碳单碳层结构的制备。
图1结果表明,三维连续多孔碳(三维连续多孔碳基预制体)是由两种碳依次包覆增强相的微结构单元构成的块状多孔体。
实施例1的C/C-SiC-SiAlCu基复合材料宏观形态如附图2所示;反应熔渗形成复合材料过程中包覆碳纤维的气相沉积各向同性碳阻碍了Al活化的Si的随机不定向反应,很好的保护了纤维,同时反应熔渗的单边渗透深度约10mm,与单一各向同性碳的多孔碳有效渗透深度不足1mm相比,显著改善;此外,压缩强度达到220MPa,较“MicrostructureandpropertiesofC/C–SiCcompositesprepared byreactivemeltinfiltrationatlowtemperatureinvacuum”公开的相同Si/Al比、相同工艺所得的C/C-SiC-SiAl强度提高约10%。
与单碳层多孔碳所制得的复合材料微结构对比图如附图3所示,图3结果表明,多孔碳为单碳层基体时纤维反应受损,而多孔碳为双碳层基体时纤维受到第一层低反应活性碳的保护、未出现反应损伤。
实施例2的C/C-SiC-SiAl-ZrB2基复合材料的XRD图谱如附图4所示,制得的复合材料密度大于2.0g/cm3,密度根据质量和体积测得,单边渗透深度达到5mm以上。
实施例3莫来石纤维增强的混杂SiC基复合材料的密度大于2.2g/cm3,单边渗透深度达到5mm以上,熔渗反应最前缘停止于双碳层界面,纤维无反应损伤。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,其保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内,本发明的保护范围以权利要求书为准。

Claims (8)

1.一种三维连续多孔碳基预制体,其特征在于,所述三维连续多孔碳基预制体的微结构单元由自内向外依次设置的增强相、包覆增强相的第一层碳以及作为渗透孔壁的第二层碳组成;所述增强相为纤维、晶须、纳米线中的至少一种,所述增强相的成分选自碳、碳化硅、玄武岩或莫来石;
所述包覆增强相的第一层碳选自树脂碳、沥青碳或气相沉积各向同性碳,所述作为渗透孔壁的第二层碳选自气相沉积中织构碳、高织构碳或热解石墨。
2.根据权利要求1所述的三维连续多孔碳基预制体,其特征在于,所述三维连续多孔碳基预制体中,增强相的体积百分比为10-30vol.%,包覆增强相的第一层碳体积百分比为5-30vol.%,作为渗透孔壁的第二层碳体积百分比为5-50vol.%,余量为孔隙。
3.一种权利要求1所述的三维连续多孔碳基预制体在制备SiC基复合材料中的应用,其特征在于,所述三维连续多孔碳基预制体用于在Si-Al做主渗透剂时,于900-1400℃反应温度下熔渗制备SiC基复合材料。
4.根据权利要求3所述的应用,其特征在于,所述应用方法为:
(1)将三维连续多孔碳基预制体进行机械加工、打磨、清洗,烘干至恒重,得到干燥的待渗多孔碳试件,密封保存;
(2)均匀混合主渗透剂,烘干至恒重,得到干燥的待渗混合粉料,密封保存;
(3)将步骤(1)的待渗多孔碳试件置于步骤(2)的待渗混合粉料中,于干燥的热处理炉中,于900-1400℃、<1kPa的真空条件下保温30-180min后,经去应力退火降至室温或者经直接降温到室温,去除表面残留粉料,即得到SiC基复合材料。
5.根据权利要求4所述的应用,其特征在于,所述步骤(2)的主渗透剂由如下重量份数的原料组成:Si粉5-9份、Al粉1-5份、X粉<2份;
其中X粉选自Mg、Cu、Fe、Ni、W、Cr、Mn、Mo、Ag、Ti、Zr、Hf、B,或者Mg、Cu、Fe、Ni、W、Cr、Mn、Mo、Ag、Ti、Zr、Hf、B的合金、碳化物、硼化物、氧化物,或者Al2O3粉中的至少一种。
6.根据权利要求4所述的应用,其特征在于,所述步骤(1)的烘干条件为:在鼓风干燥箱中80-300℃下烘干24-48h;所述步骤(2)的烘干条件为:在鼓风干燥箱中80-300℃下烘干12-24h。
7.根据权利要求4所述的应用,其特征在于,所述(3)中热处理炉的干燥方法为:将密闭的热处理炉升温至200-500℃并保温0.5-6h,全程抽真空至<1kPa,然后降温至室温。
8.根据权利要求4所述的应用,其特征在于,所述步骤(3)中所述去应力退火操作是随炉冷却至450-570℃并保温30-180min,之后随炉冷却至室温;或者是以在≤3℃/min的速率降温至450℃,之后随炉冷却至室温。
CN202310137104.6A 2023-02-20 2023-02-20 三维连续多孔碳基预制体及其在制备SiC基复合材料中的应用 Active CN116063091B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310137104.6A CN116063091B (zh) 2023-02-20 2023-02-20 三维连续多孔碳基预制体及其在制备SiC基复合材料中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310137104.6A CN116063091B (zh) 2023-02-20 2023-02-20 三维连续多孔碳基预制体及其在制备SiC基复合材料中的应用

Publications (2)

Publication Number Publication Date
CN116063091A true CN116063091A (zh) 2023-05-05
CN116063091B CN116063091B (zh) 2024-05-10

Family

ID=86169751

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310137104.6A Active CN116063091B (zh) 2023-02-20 2023-02-20 三维连续多孔碳基预制体及其在制备SiC基复合材料中的应用

Country Status (1)

Country Link
CN (1) CN116063091B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11130563A (ja) * 1997-10-23 1999-05-18 Agency Of Ind Science & Technol 高温用複合材料及びその製造方法
CN108083832A (zh) * 2018-01-17 2018-05-29 长沙理工大学 一种C/C-HfC复合材料的高效低成本近净成形制备方法
CN108623320A (zh) * 2018-04-08 2018-10-09 中南大学 一种汽车制动用C/C-SiC复合材料、其制备方法及应用
CN113045326A (zh) * 2021-04-16 2021-06-29 中南大学 一种改性碳/碳复合材料的制备方法
CN113999020A (zh) * 2021-10-22 2022-02-01 西北工业大学 环保高效低成本纤维增强陶瓷基复合材料碳界面层的制备方法
CN114645449A (zh) * 2022-03-10 2022-06-21 西北工业大学 一种聚酰亚胺树脂碳改性C/C-SiC摩擦材料的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11130563A (ja) * 1997-10-23 1999-05-18 Agency Of Ind Science & Technol 高温用複合材料及びその製造方法
CN108083832A (zh) * 2018-01-17 2018-05-29 长沙理工大学 一种C/C-HfC复合材料的高效低成本近净成形制备方法
CN108623320A (zh) * 2018-04-08 2018-10-09 中南大学 一种汽车制动用C/C-SiC复合材料、其制备方法及应用
CN113045326A (zh) * 2021-04-16 2021-06-29 中南大学 一种改性碳/碳复合材料的制备方法
CN113999020A (zh) * 2021-10-22 2022-02-01 西北工业大学 环保高效低成本纤维增强陶瓷基复合材料碳界面层的制备方法
CN114645449A (zh) * 2022-03-10 2022-06-21 西北工业大学 一种聚酰亚胺树脂碳改性C/C-SiC摩擦材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU LEI ET AL: "Particle erosion of C/C-SiC composites with different Al addition in reactive melt infiltrated Si", 《J. CENT. SOUTH UNIV.》, vol. 27, pages 2558 *

Also Published As

Publication number Publication date
CN116063091B (zh) 2024-05-10

Similar Documents

Publication Publication Date Title
CN112341235B (zh) 超高温自愈合陶瓷基复合材料的多相耦合快速致密化方法
CN109053207B (zh) 一种硅酸钇改性碳化硅纤维增强碳化硅复合材料及其制备方法
CN110922191B (zh) 一种碳化硅聚合物先驱体陶瓷缺陷愈合方法
CN109437943B (zh) 一种Cf/C-SiC-ZrB2复合材料及其制备方法
CN110963799B (zh) 一种液相硅辅助成形热防护类Z-pins硅化物陶瓷棒结构的制备方法
CN108484173B (zh) SiCf/SiC复合材料及其制备方法
CN109608218B (zh) 一种自愈合陶瓷基复合材料及其低温快速制备方法
CN112299865A (zh) 一种改性C/SiC复合材料及其制备方法
CN114524674B (zh) 一种防热-隔热-承载一体化轻质碳-陶复合材料及其制备方法
CN113735629B (zh) 一种碳材料宽温域防氧化抗冲刷复相陶瓷涂层及其制备方法
CN114573357A (zh) 一种SiC纳米线增强SiC陶瓷基复合材料及其制备方法
CN109020588A (zh) 一种耐高温结构吸波型陶瓷基复合材料的快速制备方法
CN106966749B (zh) 一种用Ti3Si(Al)C2改性热结构复合材料的方法
CN106565272B (zh) 一种碳化硅陶瓷泡沫的制备方法
CN112374901B (zh) 一种耐烧蚀改性C/SiC复合材料及其制备方法
CN114988901A (zh) 一种高致密SiC/SiC复合材料的快速制备方法
CN116063091B (zh) 三维连续多孔碳基预制体及其在制备SiC基复合材料中的应用
CN117534495A (zh) 前驱体浸渍裂解结合反应熔渗制备陶瓷基复合材料的方法
CN113582697A (zh) 一种梯度层状B4C-TiB2/Al复合材料及其制备方法
CN116120080B (zh) 一种ZrB2-ZrC-SiC改性碳/碳复合材料及其制备方法和应用
CN112079639A (zh) 一种采用聚合物前驱体制备多孔碳化锆陶瓷的方法
CN111606711A (zh) 一种多晶B4C—SiC双层复合材料及其制备方法
CN112194497A (zh) 一种低温热压高温无压两步法烧结制备c/c复合材料的方法
CN108558423B (zh) 一种低氧含量的连续碳化硅纤维增强Ni-Al/SiCp陶瓷基复合材料的制备方法
CN105669231A (zh) 一种碳纤维增强MoSi2-SiC陶瓷基复合材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant