CN116062921A - 一种去除酸性高盐废水中氨氮的光催化方法 - Google Patents

一种去除酸性高盐废水中氨氮的光催化方法 Download PDF

Info

Publication number
CN116062921A
CN116062921A CN202111244475.1A CN202111244475A CN116062921A CN 116062921 A CN116062921 A CN 116062921A CN 202111244475 A CN202111244475 A CN 202111244475A CN 116062921 A CN116062921 A CN 116062921A
Authority
CN
China
Prior art keywords
ammonia nitrogen
salt wastewater
acidic high
photocatalyst
acidic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111244475.1A
Other languages
English (en)
Inventor
冯春华
严樟
雷振超
郑文笑
戴宗仁
邱金文
旷文杰
黄伟俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN202111244475.1A priority Critical patent/CN116062921A/zh
Publication of CN116062921A publication Critical patent/CN116062921A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields
    • C02F1/484Treatment of water, waste water, or sewage with magnetic or electric fields using electromagnets
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/12Halogens or halogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Physical Water Treatments (AREA)
  • Catalysts (AREA)

Abstract

本发明属于废水处理技术领域,公开了一种去除酸性高盐废水中氨氮的光催化方法,包括以下步骤:将具有{001}晶面暴露的BiOCl纳米片分散在酸性高盐废水中,在搅拌条件下采用高压汞灯进行紫外照射,即可实现酸性高盐废水中氨氮的去除。该方法构建了简便的光催化氧化体系,用于处理高盐废水中的氨氮,以氮气为最终产物,具有转化速率快、反应选择性高且pH适用范围广的优点,特别在酸性条件下(pH=1‑6)都可以取得良好的降解效果,实现了高盐废水中低浓度氨氮的高效去除。

Description

一种去除酸性高盐废水中氨氮的光催化方法
技术领域
本发明属于废水处理技术领域,具体涉及一种通过紫外激发BiOCl光催化剂催化氧化废水中的氯离子形成强氧化、高选择性的活性氯物种去除酸性高盐废水中氨氮污染物的光催化方法。
背景技术
氨氮是生活废水和工业废水中普遍存在的污染物。由于水体中过量的氨氮对人类健康和水生生态***存在极大危害,因此废水中氨氮的去除引起世界范围内的关注。各种方法包括相分离技术(例如,离子交换和吸附)、氮转化技术(例如,硝化/反硝化和折点氯化)以及这些方法的组合,已被开发并应用于废水中氨氮的去除。然而,目前的氨氮去除技术,对pH值具有高度的敏感性。在高酸性条件下,通过生物或化学法去除氨氮是极其困难的。但事实上,在电镀、光伏、冶金和采矿等行业排放的许多酸性废水中经常检测到氨氮的存在。在低pH值下选择性将氨氮转化为氮气在技术上极具挑战性,并且对设计酸性废水中的脱氮工艺具有指导意义。
近年来,由于光催化技术可将污染物快速降解为具有较低环境足迹的无害化产物,并且能够在环境条件下运行,而不受介质的影响,光催化技术的应用受到了广泛的科学关注。目前,光催化技术也被用于降解废水中的氨氮。但是,目前用光催化降解废水中的氨氮还存在着一些缺点和挑战。例如,副产物的产生,即用光催化降解氨氮反应的选择性不高;应用的催化剂种类较为单一;已有的氨氮降解技术基本上都是在碱性或者弱碱性条件下才能达到一个比较好的效果,而在酸性条件下基本没有效果,在运行过程中可操作性受到局限。所以,在利用光催化高效、高选择性降解水中的氨氮的研究上仍然有许多挑战。
发明内容
为了克服上述现有技术的缺点与不足,本发明的首要目的在于提供一种去除酸性高盐废水中氨氮的光催化方法。
本发明的目的通过下述方案实现:
一种去除酸性高盐废水中氨氮的光催化方法,包括以下步骤:将光催化剂分散在酸性高盐废水中,在搅拌条件下采用高压汞灯进行紫外照射,即可实现酸性高盐废水中氨氮的去除;所述的光催化剂为具有{001}晶面暴露的BiOCl纳米片。
所述的光催化剂,由以下方法制备得到:室温下连续搅拌的水中加入Bi(NO3)3·5H2O和KCl,调节pH=1-6,然后转移至Teflon内衬的不锈钢高压釜中进行水热反应,反应结束后自然冷却,洗涤干燥即得光催化剂。
所述的Bi(NO3)3·5H2O和KCl的摩尔质量比为1-5∶1-5,优选为1∶1;
所述水仅作为反应介质,并不参与反应,因此可以不用限定水的用量。优选的,所述水的用量满足每1mol Bi(NO3)3·5H2O对应使用100mL水;
所述的调节pH优选为调节pH=1;
所述的水热反应是指在160~260℃反应6~24h,优选为在220℃条件下加热12h;
所述的洗涤干燥是指经过水热反应后,待催化剂冷却至室温后,用乙醇洗涤三次后,再用水洗涤三次,然后在60℃干燥;
所述的酸性高盐废水的pH<7,优选为pH=1-6;
所述的酸性高盐废水中氯离子含量在0.1-10g/L;
所述的光催化剂和高盐废水的用量满足:废水中氯离子(Cl-)的浓度(mg/L)与光催化剂的浓度(mg/L)比,Cl-:BiOCl≥0.1;同时光催化剂的浓度(mg/L)与废水中氨氮的浓度(mg/L)的比值为10-100;
所述的紫外照射中紫外光源波长范围在220nm~380nm;同时所述的紫外照射的紫外光光照强度为10-100mW·cm-2
所述的紫外照射的辐照方式可以为液面外辐照,也可以是浸没式辐照;
所述的紫外照射的时间为180~240min(氨氮浓度<50mg/L时);
所述的搅拌只是为了使光催化剂充分与酸性高盐废水接触,所有的搅拌速度都可以,因此并不需要限定搅拌速度。
本发明的机理为:
BiOCl有典型的四方层状结构,其空间群为P4/nmm。{001}晶面暴露的BiOCl光催化剂,其层状结构的特征是在卤氧化铋的[Bi2O2]2+层的由两个氯层交错而成,通过范德华力相互作用进行堆叠。但是这种范德华力比较弱,而[Bi-O]层内存在较强的Bi-O共价键,这两种作用力的差距能够诱导静电场的生成,从而有利于光生电子与空穴分离。在紫外线照射下,光催化剂产生光生电子,由于内电场和BiOCl中氧空位的存在,电子与空穴对被有效分离,由于原子Cl比原子O更具电负性,因此价带(VB)最大值附近的态密度由Cl 3p轨道组成。因此,VB h+会优先氧化BiOCl中间层的Cl-,导致形成氯自由基(Cl·),进而介导废水中的氯离子生成多种含氯自由基物种,实现氨氮的高效选择性氧化。
其反应过程如方程1-15所示:
BiOCl+hv→h++e-                         (1)
BiIIIOCl+h+→BiIIIO++Cl·                     (2)
2Cl·→Cl2                          (3)
2H2O+4h+→O2+4H+              (4)
2BiIIIO++2H2O+2h+→BiIIIBiVO4+4H+         (5)
BiIIIO++2H++3e-→2Bi0+H2O                    (6)
Cl·+Cl-→Cl2 ·-                             (7)
Cl2 ·-+Cl2 ·-→Cl2+2Cl-                      (8)
Cl2 ·-+HO·→HClO+Cl-                     (9)
Figure BDA0003319944140000031
HClO/Cl2+hv→HO·/O·-+Cl·                  (11)
Cl-+HO·→Cl·+OH-                    (12)
·Cl+HOCl→ClO·+H++Cl-            (13)
HO·+HOCl→ClO·+H2O                   (14)
2NH4 ++2ClO·→N2+4H++2C1-+2H2O             (15)
本发明相对于现有技术,具有如下的优点及有益效果:
(1)构建反应体系简便的光催化氧化体系处理高盐废水中的氨氮,以氮气为最终产物,转化速率快且反应选择性高,实现了高盐废水中低浓度氨氮的高效去除。
(2)针对目前氨氮处理技术具有pH依赖性,普遍在pH 6-9范围内才能取得比较好的处理效果。本发明构建的UV/BiOCl体系,pH适用范围广,特别在酸性条件下(pH=1-6)都可以取得良好的降解效果。
(3)本发明构建的UV/BiOCl体系,相较于传统的光催化体系产生的界面光生空穴或氧化水分子形成的羟基自由基对氨氮氧化的选择性低,且酸性条件下无法氧化氨氮;而构建的UV/BiOCl体系在紫外光激发光催化剂产生的光生空穴优先氧化BiOCl层间氯离子,形成氯自由基,进而与废水中的氯离子形成链式反应生成一系列含氯自由基,构成氨氮降解的主要活性物种,并与氨氮反应的选择性高,从而不受溶液pH的影响。
附图说明
图1是本发明所述具有{001}暴露晶面的BiOCl纳米片扫描电镜图;
图2是本发明所述具有{001}暴露晶面的BiOCl纳米片的XRD图谱;
图3是本发明所述具有{001}暴露晶面的BiOCl纳米片的漫反射紫外可见光谱。
具体实施方式
下面结合实施例和附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
实施例中所用试剂如无特殊说明均可从市场常规购得。
实施例1
BiOCl光催化剂的制备:
(1)室温下连续搅拌的蒸馏水中加入1mmol Bi(NO3)3·5H2O和1mmol KCl,用1mol/L的HCl或KOH溶液将pH调至1;
(2)将混匀的溶液转移至Teflon内衬的不锈钢高压釜中,在220℃条件下加热12h;
(3)自然冷却后,制得的样品先用乙醇洗涤三遍,再用清水洗涤三遍,最后放入到烘箱中在60℃条件下干燥。
BiOCl光催化剂性能检测:
(a)利用扫描电镜(SEM)分析BiOCl样品的微观形貌,利用X-射线衍射仪(XRD)分析晶体结构;由图1可见,BiOCl样品呈片状结构,每个片的宽度为0.2-2μm,厚度为10-100nm,侧面近似圆形或弧形,说明合成的BiOCl具有良好的形貌结构;由图2可见,{001}晶面的峰值强度明显高于{002}和{003}晶面,表明BiOCl沿{001}晶面定向生长;
(b)通过UV-VIS DRS可以测试光催化材料的光吸收范围,采用BaSO4为背景,产生波长范围为200-800nm,对光催化剂进行光学吸收性能分析:由图3可知,BiOCl光催化材料光吸收范围主要集中在紫外区段;
(c)BiOCl光催化剂的耐酸碱性性能检测:用浓硫酸和氢氧化钠配制pH为1.0、3.0、5.0、7.0、9.0、10.0、11.0、12.0的水溶液,将制备的100mg BiOCl光催化剂分别置于不同pH的50mL溶液中,考察BiOCl光催化剂在不同pH条件下是否有溶解现象。经过4.0h浸泡,在所有pH条件下均未发现溶解现象;过滤称重后,催化剂质量未发生明显变化,表明BiOCl光催化剂具有较强的耐酸碱性能;
(d)BiOCl光催化剂的机械强度检测:称取一定重量制备好的BiOCl光催化剂浸泡在水中,放置在超声波清洗器(300w,40KHz)中超声震荡,静置30min后,水溶液中BiOCl光催化剂颗粒稳定沉淀于烧杯底部,将超声后的BiOCl光催化剂进行称重,对比超声前后BiOCl光催化剂重量,超声前后BiOCl光催化剂重量几乎没有发生变化,此结果表明,所制备的BiOCl光催化剂具有很好的机械强度。
应用实施例:
构建的UV/BiOCl光催化体系去除高盐废水中氨氮的实验:
用(NH4)2SO4配制模拟废水,模拟废水中投加一定量的NaCl作为高盐废水中的氯源。。实验装置为传统的光催化***。此***中,采用BiOCl纳米颗粒作为光催化剂,高压汞灯为光源。以低温水浴磁力搅拌器来保持反应溶液的恒温性和均匀性。溶液pH用稀硫酸和氢氧化钠溶液调节。实验中,光催化处理时间为180~240min,采样方式为间隔采样,采样时间分别为0、30、60、90、120、150、180min,采用纳氏试剂光度法(HJ 535-2009)测定模拟废水中的氨氮含量。
应用实施例1:
BiOCl光催化剂的制备:同实施例1。
将50ml含氨氮的废水(含氨氮:初始浓度为30mg/L;氯离子浓度为2g/L;催化剂用量2g/L)引入光催化***装置的反应器中,用稀硫酸和氢氧化钠溶液进行调节,控制反应器中溶液pH=1。用高压汞灯作为光源,光源距液面20cm,对应光强度为30mW·cm-2。光催化氧化时间为240min,采样方式为间隔采样,采样时间分别为0、30、60、90、120、150、180min。
本实施例使用的含氨氮的废水为模拟废水。
含氨氮废水经该装置处理180min后,氨氮浓度约降为0mg/L,去除率接近100%,该值远远低于我国污水处理污染物排放(GB18918-2002)一级A标准的氨氮含量(5mg/L)。
应用实施例2
BiOCl光催化剂的制备:同实施例1。
构建的UV/BiOCl光催化体系去除高盐废水中氨氮的实验:
将50ml含氨氮的废水(含氨氮:初始浓度为30mg/L;氯离子浓度为2g/L;催化剂用量2g/L)引入光催化***装置的反应器中,用稀硫酸和氢氧化钠溶液进行调节,控制反应器中的pH=3。用高压汞灯作为光源,光源距液面20cm,对应光强度为30mW·cm-2。光催化氧化时间为180min,采样方式为间隔采样,采样时间分别为0、30、60、90、120、150、180min。
本实施例使用的含氨氮的废水为模拟废水。
含氨氮废水经该装置处理120min后,氨氮浓度约降为0mg/L,去除率接近100%,该至远远低于我国污水处理污染物排放(GB18918-2002)一级A标准的氨氮含量(5mg/L)。
应用实施例3
BiOCl光催化剂的制备:同实施例1。
构建的UV/BiOCl光催化体系去除高盐废水中氨氮的实验:
将50ml含氨氮的废水(含氨氮:初始浓度为30mg/L;氯离子浓度为2g/L;催化剂用量2g/L)引入光催化***装置的反应器中,用稀硫酸和氢氧化钠溶液进行调节,控制反应器中的pH=6。用高压汞灯作为光源,光源距液面20cm,对应光强度为30mW·cm-2。光催化氧化时间为180min,采样方式为间隔采样,采样时间分别为0、30、60、90、120、150、180min。
本实施例使用的含氨氮的废水为模拟废水。
含氨氮废水经该装置处理120min后,氨氮浓度约降为0mg/L,去除率接近100%,该至远远低于我国污水处理污染物排放(GB18918-2002)一级A标准的氨氮含量(5mg/L)。同时采用紫外分光光度法(HJ 636-2012)测定反应后溶液的总氮浓度,反应后溶液总氮值约为0mg/L,表明该体系氨氮氧化过程中氮气选择性高,而不产生过氧化的副产物,如硝氮和亚硝氮等。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.一种去除酸性高盐废水中氨氮的光催化方法,其特征在于包括以下步骤:将光催化剂分散在酸性高盐废水中,在搅拌条件下采用高压汞灯进行紫外照射,即可实现酸性高盐废水中氨氮的去除;所述的光催化剂为具有{001}晶面暴露的BiOCl纳米片。
2.根据权利要求1所述一种去除酸性高盐废水中氨氮的光催化方法,其特征在于:
所述的光催化剂制备方法具体如下:室温下连续搅拌的水中加入Bi(NO3)3·5H2O和KCl,调节pH,然后进行水热反应,待冷却后,洗涤干燥即得光催化剂。
3.根据权利要求2所述一种去除酸性高盐废水中氨氮的光催化方法,其特征在于:
所述的Bi(NO3)3·5H2O和KCl的摩尔质量比为1-5∶1-5,优选为1∶1;
所述的pH为1-6,优选为pH=1。
4.根据权利要求2所述一种去除酸性高盐废水中氨氮的光催化方法,其特征在于:
所述的水热反应是指在160~260℃反应6~24h,优选为在220℃条件下加热12h。
5.根据权利要求1所述一种去除酸性高盐废水中氨氮的光催化方法,其特征在于:所述的酸性高盐废水的pH<7,优选为pH=1-6。
6.根据权利要求1所述一种去除酸性高盐废水中氨氮的光催化方法,其特征在于:所述的酸性高盐废水中氯离子含量在0.1-10g/L。
7.根据权利要求1所述一种去除酸性高盐废水中氨氮的光催化方法,其特征在于:所述的光催化剂和高盐废水的用量满足:废水中氯离子Cl-的浓度与光催化剂的浓度比,Cl-:BiOCl≥0.1;同时光催化剂的浓度与废水中氨氮的浓度的比值为10-100,其中浓度的单位均为mg/L。
8.根据权利要求1所述一种去除酸性高盐废水中氨氮的光催化方法,其特征在于:所述的紫外照射中紫外光源波长范围在220nm~380nm;同时所述的紫外照射的紫外光光照强度为10-100mW·cm-2
9.根据权利要求1所述一种去除酸性高盐废水中氨氮的光催化方法,其特征在于:所述的紫外照射的辐照方式为液面外辐照或者浸没式辐照。
10.根据权利要求1所述一种去除酸性高盐废水中氨氮的光催化方法,其特征在于:所述的紫外照射的时间为180~240min。
CN202111244475.1A 2021-10-25 2021-10-25 一种去除酸性高盐废水中氨氮的光催化方法 Pending CN116062921A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111244475.1A CN116062921A (zh) 2021-10-25 2021-10-25 一种去除酸性高盐废水中氨氮的光催化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111244475.1A CN116062921A (zh) 2021-10-25 2021-10-25 一种去除酸性高盐废水中氨氮的光催化方法

Publications (1)

Publication Number Publication Date
CN116062921A true CN116062921A (zh) 2023-05-05

Family

ID=86177200

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111244475.1A Pending CN116062921A (zh) 2021-10-25 2021-10-25 一种去除酸性高盐废水中氨氮的光催化方法

Country Status (1)

Country Link
CN (1) CN116062921A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104475131A (zh) * 2014-11-20 2015-04-01 辽宁石油化工大学 可见光响应型纳米片状氯氧化铋催化剂及其制备方法
CN106984339A (zh) * 2017-04-27 2017-07-28 武汉纺织大学 一种BiOCl光催化材料的制备方法及制得的光催化材料和应用
US20210106982A1 (en) * 2019-10-14 2021-04-15 Harbin Normal University Method for preparing biocl photocatalyst with super strong degradation effect

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104475131A (zh) * 2014-11-20 2015-04-01 辽宁石油化工大学 可见光响应型纳米片状氯氧化铋催化剂及其制备方法
CN106984339A (zh) * 2017-04-27 2017-07-28 武汉纺织大学 一种BiOCl光催化材料的制备方法及制得的光催化材料和应用
US20210106982A1 (en) * 2019-10-14 2021-04-15 Harbin Normal University Method for preparing biocl photocatalyst with super strong degradation effect

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG YAN ET AL.: "Facile ammonium oxidation to nitrogen gas in acid wastewater by in situ photogenerated chlorine radicals", WATER RESEARCH, vol. 205, 22 September 2021 (2021-09-22), pages 1 - 10, XP086835238, DOI: 10.1016/j.watres.2021.117678 *

Similar Documents

Publication Publication Date Title
CN111604077B (zh) 一种降解氨氮的g-C3N4/Gr/TiO2 Z体系光催化材料及其制备方法和应用
Moradi et al. Performance and reaction mechanism of MgO/ZnO/Graphene ternary nanocomposite in coupling with LED and ultrasound waves for the degradation of sulfamethoxazole and pharmaceutical wastewater
Su et al. Acid Orange II degradation through a heterogeneous Fenton-like reaction using Fe–TiO 2 nanotube arrays as a photocatalyst
Moradi et al. Photocatalytic degradation of azo dye using nano-ZrO 2/UV/Persulfate: Response surface modeling and optimization
Neppolian et al. Degradation of textile dye by solar light using TiO2 and ZnO photocatalysts
Al-Rasheed et al. Photocatalytic degradation of humic acid in saline waters: Part 2. Effects of various photocatalytic materials
de Oliveira et al. Coupling photocatalytic degradation using a green TiO2 catalyst to membrane bioreactor for petroleum refinery wastewater reclamation
Tian et al. ZnAl2O4/BiPO4 composites as a heterogeneous catalyst for photo-Fenton treatment of textile and pulping wastewater
Syoufian et al. Degradation of methylene blue in aqueous dispersion of hollow titania photocatalyst: study of reaction enhancement by various electron scavengers
Fu et al. Kinetics of aqueous photocatalytic oxidation of fulvic acids in a photocatalysis–ultrafiltration reactor (PUR)
Pugazhenthiran et al. Green synthesis of porous Au–N x-TiO 2 nanospheres for solar light induced photocatalytic degradation of diazo and triazo dyes and their eco-toxic effects
CN110589950A (zh) 一种Cu/Fe-HT-CM类水滑石催化膜、制备方法及应用
Yan et al. Efficient degradation of antibiotics by photo-Fenton reactive ceramic membrane with high flux by a facile spraying method under visible LED light
Han et al. Effect of thickness of photocatalyst film immobilized on a buoyant substrate on the degradation of methyl orange dye in aqueous solutions under different light irradiations
Ni et al. Efficient degradation of orange II by ZnMn 2 O 4 in a novel photo-chemical catalysis system
Bukhari et al. Effects of Different Parameters on Photocatalytic Oxidation of Slaughterhouse Wastewater Using TiO
CN116062921A (zh) 一种去除酸性高盐废水中氨氮的光催化方法
CN111545211A (zh) 一种氧化石墨烯-氧化镧-氢氧化钴复合材料、合成方法及其应用
Su et al. Sustainable hydrogen production from electroplating wastewater over a solar light responsive photocatalyst
Al Mashari et al. Characterization and Photocatalytic Treatment of Oil Produced Water Using TiO2
Petrović et al. Plasma modified electrosynthesized cerium oxide catalyst for plasma and photocatalytic degradation of RB 19 dye
Prajapati et al. Visible Light Induced Photocatalytic Degradation Of Malachite Green Using Nanosized Barium Chromate
JP6854478B2 (ja) 溶液中のヒ素の酸化方法
You et al. Study on Fenton-like degradation of bisphenol A by α-MnO2 and α-MnO2/AC (1: 1, w/w)
Luo et al. Photocatalyst degradation of perfluorooctanoic acid in water: Mechanisms, approaches, and perspectives

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination