CN115998742A - 一种bms-833923及其衍生物的应用及药物 - Google Patents

一种bms-833923及其衍生物的应用及药物 Download PDF

Info

Publication number
CN115998742A
CN115998742A CN202111226018.XA CN202111226018A CN115998742A CN 115998742 A CN115998742 A CN 115998742A CN 202111226018 A CN202111226018 A CN 202111226018A CN 115998742 A CN115998742 A CN 115998742A
Authority
CN
China
Prior art keywords
bms
colistin
derivatives
bacteria
gram
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111226018.XA
Other languages
English (en)
Inventor
郑军
张年
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Macau
Original Assignee
University of Macau
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Macau filed Critical University of Macau
Priority to CN202111226018.XA priority Critical patent/CN115998742A/zh
Priority to PCT/CN2021/140984 priority patent/WO2023065526A1/zh
Publication of CN115998742A publication Critical patent/CN115998742A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/517Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with carbocyclic ring systems, e.g. quinazoline, perimidine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/12Cyclic peptides, e.g. bacitracins; Polymyxins; Gramicidins S, C; Tyrocidins A, B or C
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Abstract

本发明公开了一种BMS‑833923及其衍生物的应用及药物,属于抗生素技术领域。BMS‑833923及其衍生物可用作粘菌素佐剂对革兰氏阴性菌进行联合抑制或清除,也可独立地对革兰氏阳性菌进行抑制或清除。其中,革兰氏阴性菌可包括大肠杆菌、肺炎克雷伯氏菌、鲍曼不动杆菌、铜绿假单胞菌、泛耐药菌株BAA‑1800、BAA‑1794和BAA‑1792中,革兰氏阳性菌可包括金黄色葡萄球菌和枯草芽孢杆菌中的至少一种。通过将BMS‑833923及其衍生物作为粘菌素的佐剂,可有效扩大粘菌素的治疗指数,允许较低的、无毒剂量的粘菌素在临床上用于抗药性细菌感染的有效治疗。

Description

一种BMS-833923及其衍生物的应用及药物
技术领域
本发明涉及抗生素技术领域,具体而言,涉及一种BMS-833923及其衍生物的应用及药物。
背景技术
许多常见细菌病原体对抗生素的耐药性日益增强,已成为威胁人类生命的全球性危机。“ESKAPE”病原体,即屎肠球菌、金黄色葡萄球菌、肺炎克雷伯菌、鲍曼不动杆菌、铜绿假单胞菌和大肠杆菌,代表了这些多重耐药病原体中的主要挑战。
目前,细菌已经对临床上几乎所有可用的抗生素都产生了耐药性,很多时候,缺乏能够有效控制和治疗细菌感染的有效手段。因此,迫切需要开发新的抗生素来缓解这种危机。然而,近年来新型抗生素的发现变得越来越困难,处在开发阶段的新型抗生素越来越少。一些因具有毒副作用而被抛弃的旧抗生素不得不被重新引入临床而作为治疗感染的手段。
多粘菌素是20世纪40年代开发的聚阳离子肽抗生素,这类抗生素通过破坏细菌细胞膜来杀死细菌。多粘菌素中的阳离子电荷与革兰氏阴性细菌外膜的带负电荷的脂多糖静电结合,然后置换稳定细胞膜的钙离子和镁离子,最终破坏细菌膜的完整性。尽管多粘菌素(如粘菌素)能够有效地杀死细菌,但由于其具有显著的肾毒性和神经毒性,此前在临床已经被放弃使用。最近,由于缺乏对多重耐药菌(例如鲍曼不动杆菌、铜绿假单胞菌和肺炎克雷伯菌)的有效治疗手段,被这些细菌感染的患者的发病率和死亡率高起。作为有效的治疗手段,粘菌素近年来被重新引入临床来治疗超级细菌的感染,尤其是革兰氏阴性超级菌的感染,并成为治疗的最后手段。然而,有研究显示,平均30%接受粘菌素治疗方案的患者出现至少轻度肾毒性。
因此,急需一种方法能扩大粘菌素的治疗指数以使其能够以较低的、无毒的剂量在临床上使用从而降低其毒副作用。
鉴于此,特提出本发明。
发明内容
本发明的目的之一在于提供一种BMS-833923及其衍生物用作粘菌素佐剂的应用,如用于与粘菌素对抗药性细菌进行联合处理,可有效扩大粘菌素的治疗指数,允许较低的、无毒剂量的粘菌素在临床上用于抗药性细菌感染的有效治疗。
本发明的目的之二在于提供一种抗菌药物,其功效成分包括BMS-833923及其衍生物与粘菌素,可起到通过增强抗生素(粘菌素)的杀菌活性从而降低具有毒副作用的抗生素在临床上的使用浓度,避免其对患者产生副作用。
本申请可这样实现:
第一方面,本申请提供一种BMS-833923及其衍生物的应用,具体为BMS-833923及其衍生物用作粘菌素佐剂。
第二方面,本申请提供BMS-833923及其衍生物用于与粘菌素对细菌进行联合处理的应用。
在可选的实施方式中,细菌为革兰氏阴性菌。
在可选的实施方式中,革兰氏阴性菌处于对数生长期。
在可选的实施方式中,1×MIC50粘菌素处理的革兰氏阴性菌中添加5-15μg/mL的BMS-833923及其衍生物。
在可选的实施方式中,1×MIC50粘菌素处理的革兰氏阴性菌中添加10μg/mL的BMS-833923及其衍生物。
在可选的实施方式中,BMS-833923及其衍生物与粘菌素用于对大肠杆菌进行联合抑制或联合清除。
在可选的实施方式中,BMS-833923及其衍生物与粘菌素用于对肺炎克雷伯氏菌进行联合抑制或联合清除。
在可选的实施方式中,BMS-833923及其衍生物与粘菌素用于对鲍曼不动杆菌进行联合抑制或联合清除。
在可选的实施方式中,BMS-833923及其衍生物与粘菌素用于对铜绿假单胞菌进行联合抑制或联合清除。
在可选的实施方式中,BMS-833923及其衍生物与粘菌素用于对泛耐药菌株BAA-1800、BAA-1794和BAA-1792中的至少一种进行联合抑制或联合清除。
第三方面,本申请提供BMS-833923及其衍生物用于独立地对革兰氏阳性菌进行抑制或清除的应用。
在可选的实施方式中,革兰氏阳性菌包括金黄色葡萄球菌和枯草芽孢杆菌中的至少一种。
第四方面,本申请提供一种抗菌药物,其功效成分包括BMS-833923及其衍生物与粘菌素。
申请抗菌药物为对大肠杆菌、肺炎克雷伯氏菌、鲍曼不动杆菌、铜绿假单胞菌、金黄色葡萄球菌、枯草芽孢杆菌、泛耐药菌株BAA-1800、BAA-1794和BAA-1792中的至少一种进行抑制或清除的药物。
本申请的有益效果包括:
通过将BMS-833923及其衍生物作为粘菌素的佐剂,使其与粘菌素对抗药性细菌进行联合处理,可有效扩大粘菌素的治疗指数,允许较低的、无毒剂量的粘菌素在临床上用于抗药性细菌感染的有效治疗。功效成分同时含有BMS-833923及其衍生物与粘菌素的抗菌药物,可起到通过增强抗生素(粘菌素)的杀菌活性从而降低具有毒副作用的抗生素在临床上的使用浓度,避免其对患者产生副作用。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为实施例1中鉴定增强粘菌素抑制细菌生长的化合物以及实施例2中通过checkerboard实验来测量BMS-833923(简称BMS,下同)和粘菌素的联合使用时对大肠杆菌生长抑制的协同作用的相关测试结果;
图2为实施例3中BMS-833923促进粘菌素的杀菌活性以及实施例4中BMS直接杀死革兰氏阳性菌且不产生耐药性的相关测试结果;
图3为实施例5中粘菌素和BMS-833923联合处理细菌大肠杆菌时相应的细胞凋亡测试结果图;
图4为实施例5中BMS-833923单独处理金黄色葡萄球菌时相应的细胞凋亡测试结果图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将对本发明实施例中的技术方案进行清楚、完整地描述。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
下面对本申请提供的BMS-833923及其衍生物的应用及药物进行具体说明。
本申请提出一种BMS-833923及其衍生物的应用,具体为BMS-833923及其衍生物用作粘菌素佐剂。其中,BMS-833923为现有的公知物质,通常用作Hedgehog通路抑制剂,本申请所声称的BMS-833923衍生物可参照现有技术,在此不对其衍生物的结构过多赘述。
本申请通过将BMS-833923及其衍生物用作粘菌素佐剂,可以使病原体对抗生素(粘菌素)敏感,扩大粘菌素的治疗指数,允许较低的、无毒剂量的粘菌素获得有效杀死细菌病原体的能力,不仅可减缓抗生素耐药性危机,而且还能有效降低对患者产生的副作用。
可参考地,本申请提供的BMS-833923及其衍生物可用于与粘菌素对细菌进行联合处理。
其中,细菌主要为革兰氏阴性菌,优选为处于对数生长期的革兰氏阴性菌。
在可选的实施方式中,1×MIC50粘菌素处理的革兰氏阴性菌中添加5-15μg/mL的BMS-833923及其衍生物,优选地,1×MIC50粘菌素处理的革兰氏阴性菌中添加10μg/mL的BMS-833923及其衍生物。
可参考地,BMS-833923及其衍生物与粘菌素可用于对大肠杆菌进行联合抑制或联合清除,也可用于对肺炎克雷伯氏菌进行联合抑制或联合清除,也可用于对鲍曼不动杆菌进行联合抑制或联合清除,也可用于对铜绿假单胞菌进行联合抑制或联合清除,还可用于对泛耐药菌株BAA-1800、BAA-1794和BAA-1792中的至少一种进行联合抑制或联合清除。
需要说明的是,BMS-833923及其衍生物和粘菌素的联合使用时对大肠杆菌生长抑制的协同作用。相比之下,在BMS-833923及其衍生物与β-内酰胺抗生素氨苄青霉素、喹诺酮类抗生素诺氟沙星或氨基糖苷类抗生素卡那霉素之间未观察到这种作用。在其它病原菌中也观察到BMS-833923及其衍生物对粘菌素抑制细菌的增强作用,包括肺炎克雷伯氏菌、鲍曼不动杆菌和铜绿假单胞菌,BMS-833923及其衍生物通过协同作用能够对粘菌素作用增强高达8-512倍。由此表明BMS-833923及其衍生物可以增强粘菌素的细菌抑制活性。
此外,本申请还提供了BMS-833923及其衍生物用于独立地对革兰氏阳性菌进行抑制或清除的应用。
其中,革兰氏阳性菌可包括金黄色葡萄球菌和枯草芽孢杆菌中的至少一种,此外,也可包括其它革兰氏阳性菌。
需要说明的是,与对革兰氏阴性菌的作用不同,BMS-833923及其衍生物单独能够直接抑制革兰氏阳性菌的生长,而不需要其他抗生素的协助。也即,BMS-833923及其衍生物可直接杀死革兰氏阳性菌且不产生耐药性。
承上,本申请提供的化合物BMS-833923能够把粘菌素对不同革兰氏阴性细菌的活性增强高达8-512倍。用低浓度粘菌素和BMS-833923及其衍生物联合处理对数生长期细菌可快速有效地清除细菌。值得注意的是,BMS-833923及其衍生物本身能够直接杀死革兰氏阳性菌,无需与其它任何抗生素连用。而且,细菌在BMS-833923及其衍生物存在下连续传代30天内未产生明显的耐药突变体。初步机理研究发现,被BMS-833923及其衍生物杀死的细菌表现出细菌凋亡的特征,其中磷脂酰丝氨酸(PS)暴露、DNA断裂、染色体浓缩、膜去极化和类半胱天冬酶蛋白结合活性显着增加。也即,BMS是一种有效的佐剂,可以扩大粘菌素的治疗指数,以允许较低的、无毒剂量粘菌素在临床上用于抗药性细菌感染的有效治疗。
进一步地,本申请还提供了一种抗菌药物,其功效成分包括BMS-833923及其衍生物与粘菌素。
上述抗菌药物例如可以为对大肠杆菌、肺炎克雷伯氏菌、鲍曼不动杆菌、铜绿假单胞菌、金黄色葡萄球菌、枯草芽孢杆菌、泛耐药菌株BAA-1800、BAA-1794和BAA-1792中的至少一种进行抑制或清除的药物。
以下结合实施例对本发明的特征和性能作进一步的详细描述。
实施例中使用的菌株与试剂:以下实施例中所用菌株均列于表1中。所有抗生素均购于Sigma公司。细胞凋亡化合物库(货号L3300)购自SelleckChem公司。MHB和LB培养基购自Becton Dickinson(BD)公司。化合物BMS-833923购自上海DC Chemicals公司。细胞凋亡检测试剂盒FITC Annexin V Apoptosis Detection Kit(货号556547)及APO-DIRECTTMKit(货号556381)购自BD公司。CaspACETMFITC-VAD-FMK In SituMarker(货号G7401)购自Promega公司。膜电位检测试剂DiBAC4(货号B438)购自Invitrogen公司。Hoechst 33342(货号H1339)购自Thermo Fisher公司。
表1细菌菌株
菌株 描述
革兰氏阳性
金黄色葡萄球菌ATCC 25904 野生型
金黄色葡萄球菌ATCC 43300 MRSA
枯草芽孢杆菌168(trpC2) 野生型
革兰氏阴性
大肠杆菌MG1655 野生型
大肠杆菌BW25113 野生型
大肠杆菌MG1655/pACYC184-mcr-1 mcr-1阳性
大肠杆菌Y8 尿路病原
霍乱弧菌SCE223 野生型
溶藻弧菌ATCC33787 野生型
柠檬酸杆菌DBS100 野生型
沙门氏菌13076 野生型
副溶血性弧菌RIMD 2210633 临床
铜绿假单胞菌PAO1 野生型
肺炎克雷伯菌ATCC13883 类型应变
鲍曼不动杆菌ATCC 19606 类型应变
鲍曼不动杆菌ATCC 17978 野生型
鲍曼不动杆菌ATCC BAA-1791 多重耐药
鲍曼不动杆菌ATCC BAA-1800 多重耐药
鲍曼不动杆菌ATCC BAA-1794 多重耐药
鲍曼不动杆菌ATCC BAA-1792 多重耐药
实施例1
鉴定增强粘菌素抑制细菌生长的化合物
通过测量96孔板中的细菌生长来测试化合物与粘菌素联合使用对细菌的作用,得到可以增强低浓度粘菌素抑制细菌生长的化合物。
待测化合物共计689种。
在细菌培养基中加入1/4最小抑制浓度(MIC50)的粘菌素和40μM的单个化合物,并在细菌培养16小时后检查生长情况。设定OD600=0.2为临界值,找出导致细菌生长OD600<0.2的化合物进一步研究(如图1A所示),共有17种化合物在初步筛选中被鉴定出来(如表1所示)。
当进一步降低化合物的最终浓度到20μM时,17种化合物中的15种在1/4MIC的粘菌素存在时仍然完全抑制细菌生长(OD600<0.2)。
此外,进一步结果显示,这些化合物中的5种可以在与1/8MIC50粘菌素的组合时完全有效抑制细菌生长。其中,BMS-833923(XL139,BMS)为Hedgehog信号通路的人SMO受体抑制剂(化学式如图1B所示),具有潜在的治疗晚期或转移性癌症活性。其临床试验表明,受试者对该药物具有出良好的耐受性,证明BMS的具有良好的安全性。因此,BMS具有潜在临床使用的可能。
其中,相关培养和检测方法如下:
①细菌生长培养:
对于大多数实验,挑取单克隆菌落置于2mLMHB培养基中,37℃,220rpm过夜培养。然后以1:100比例稀释到25mL新鲜MHB中继续培养。处理前培养细菌至生长对数中期(OD600=0.35~0.45)(约2h)。使用SpectraMaxM5酶标仪(MolecularDevices)进行OD600测量。对于菌落形成单位(CFU)/mL测量方法如下,在每个时间点收集200μL菌液,用无菌的1×PBS,pH7.2(SantaCruzBiotechnology)洗涤两次,然后在1×PBS中连续稀释。取每个稀释度中5μL的稀释液滴于LB-琼脂平板上,并在37℃温箱中过夜培养。仅对产生20-100个菌落的稀释液进行计数,并使用以下公式计算CFU/mL值:CFU/mL值=[菌落数×稀释因子]/(以mL为单位的体积)。每个实验独立重复三次并计算三次实验所得数据的平均值及标准差。
②粘菌素佐剂高通量筛选方法:
粘菌素佐剂高通量筛选方法参考文献:An WF,Tolliday NJ:Introduction:cell-based assays for high-throughput screening.Methods MolBiol2009,486:1-12。简而言之,大肠杆菌MG1655通过上述方法在LB培养基中培养至OD600=0.4。然后,将2μL的化合物(浓度为2mM)分装到含有48μL的LB培养基的96孔板中。接下来,用LB培养基将细菌培养物稀释至OD600=0.04并添加粘菌素至1μg/mL的浓度。将含有1μg/mL粘菌素的50μL稀释后细菌加入已含有化合物的96孔板中。100μL混合物中各组分的终浓度如下:稀释后细菌OD600=0.02、0.5μg/mL粘菌素、40μM化合物、2%DMSO。通过添加2μL纯DMSO和相同数量的细菌,将4个阴性对照设置到A12、B12、C12、D12孔中。通过将诺氟沙星添加到最终浓度为1μg/mL和相同数量的细菌,将4个阳性对照设置到E12、F12、G12、H12孔中。添加每种化合物后立即读取OD600。将96孔板在37℃下孵育,24h后再次读取OD600。最好在读数前摇动平板5秒,以获得更准确的数据。高通量筛选方法的有效性通过计算Z′值进行评估。数据通过基于四分位数平均值的方法进行标准化。若化合物所在孔OD值低于0.2则选取化合物作为“primary hit”并进行后续验证。
实施例2
通过checkerboard实验来测量BMS和粘菌素的联合使用时对大肠杆菌生长抑制的协同作用
结果显示:BMS与粘菌素的联合使用时展现出显著的协同效应(如图1C所示,该图为BMS和粘菌素与大肠杆菌MG1655协同抗菌作用的棋盘分析结果图)。相比之下,在BMS与β-内酰胺抗生素氨苄青霉素、喹诺酮类抗生素诺氟沙星或氨基糖苷类抗生素卡那霉素之间未观察到这种作用(数据未示)。
在其它病原菌中也观察到BMS对粘菌素抑制细菌的增强作用,包括肺炎克雷伯氏菌、鲍曼不动杆菌和铜绿假单胞菌,BMS通过协同作用能够对粘菌素作用增强高达8至512倍(如图1D所示)。结果表明:BMS可以增强粘菌素的细菌抑制活性。
其中,相关测试方法如下:
最小抑菌浓度(MIC)测定和Checkerboard实验参照美国临床实验室标准协会(CLSI)指南进行。简而言之,通过前面描述的方法在MHB培养基中将细菌菌株培养至OD600=0.4。然后将BMS和抗生素在MHB中进行两倍稀释,并与MHB中含有约1.5×106CFU/mL的细菌悬液混合在96孔微量滴定板中。在37℃下孵育24h后,MIC被定义为BMS或抗生素抑制细菌生长的最低浓度。无法确定准确MIC值时,例如BMS单独作用于革兰氏阴性菌时,则将测试最高浓度的两倍视为其MIC值。分数抑制浓度指数(FICI)由以下公式计算:FICI=A/MICA+B/MICB,其中A和B分别是两种药物联合抑制细菌生长的MIC值,MICA和MICB是药物单独抑菌时的MIC值。协同作用定义为FICI≤0.5。
以下实施例中涉及的MIC等相关测试参照实施例2,后续不做赘述。
实施例3
BMS促进粘菌素的杀菌活性
为了证明BMS对粘菌素的协同抑制作用可以转化为对粘菌素的杀菌的增强作用,检测了在BMS存在下粘菌素的杀菌动力学。如图2A所示,对指数期大肠杆菌用1×MIC50的粘菌素、10μg/ml的BMS、或二者联合使用对细菌进行处理来研究其对大肠杆菌的杀菌情况。
单独使用粘菌素、BMS处理对数期细菌对其存活几乎没有影响。然而,BMS有效地增强了粘菌素的杀菌活性。二者联合使用时,细菌在处理后1小时,几乎没有能够从处理过的培养物中检测到存活的细菌。此外,BMS还能够使对粘菌素具有抗性的细菌重新获得药物的敏感性。用粘菌素和BMS一起处理含有mcr-1的MG1655能在2小时内有效地清除对数生长的耐药细菌,而单独使用粘菌素对细菌存活几乎没有影响(如图2B所示)。
同样,在鲍曼不动杆菌中也检测了BMS对粘菌素杀菌的增强作用,结果表明:在1×MIC50粘菌素处理的细菌中添加10μg/ml BMS导致各种细菌菌株的快速被清除,包括泛耐药菌株BAA-1800、BAA-1794和BAA-1792(如图2C所示,其中CT+BMS的值为0)。
总之,这些结果表明BMS可以增强粘菌素的杀菌活性,并且在BMS存在的情况下,较低的粘菌素浓度足以清除细菌,从而达到与高浓度粘菌素的杀菌相一致的效果。
实施例4
BMS直接杀死革兰氏阳性菌且不产生耐药性
与对革兰氏阴性菌的作用不同,BMS单独能够直接抑制革兰氏阳性菌的生长,而不需要其他抗生素的协助。BMS单独对革兰氏阴性菌(如大肠杆菌或鲍曼不动杆菌)的MIC50高于100μg/mL。然而,BMS对金黄色葡萄球菌和枯草芽孢杆菌的MIC50分别为5和2.5μg/mL(如表2所示)。
表2BMS对不同菌株的MIC50
菌株 BMS MIC(μg/mL)
革兰氏阳性
金黄色葡萄球菌ATCC 25904(Non-MRSA) 5
金黄色葡萄球菌ATCC 43300(MRSA) 5
枯草芽孢杆菌168(trpC2) 2.5
革兰氏阴性
大肠杆菌MG1655 >100
大肠杆菌BW25113 >100
鲍曼不动杆菌ATCC 17978 >100
鲍曼不动杆菌ATCC BAA-1800(多重耐药) >100
此外,用10μg/mL BMS处理对数期金黄色葡萄球菌ATCC 25904或金黄色葡萄球菌ATCC 43300(MRSA),8小时后培养物中的所用细菌被清除(如图2D和2E所示)。
为了进一步研究BMS对细菌的杀伤作用,尝试分离出一个对BMS具有抗性的突变体。按照之前的方案,金黄色葡萄球菌ATCC 25904在不同浓度的BMS(0.25~4倍MIC50)中传代30天,以确定金黄色葡萄球菌进化出对BMS具有表型抗性的潜力。
数据显示:金黄色葡萄球菌在连续培养30天后没有出现BMS抗性的突变体(如图2F所示)。相比之下,细菌对诺氟沙星的抗性产生迅速,培养细菌的MIC50在这段时间内提高了400倍以上(如图2F所示)。
通过上述数据表明:细菌无法在不失去生理适应性的情况下进化为对BMS产生抗性。
其中,相关测试方法如下:
耐药性形成测定:
为了通过连续传代产生抗性,将在指数生长期的金黄色葡萄球菌ATCC25904以1:100比例稀释到含有不同浓度BMS的1mL MHB培养基中,同时以不同浓度的诺氟沙星作为阳性对照。细菌在37℃、200rpm下孵育,并在不同浓度(0.25、0.5、1、2、4×MIC)的BMS或诺氟沙星中每隔24h进行传代。将允许生长的第二高浓度(OD600≥1)的培养物用1ml的PBS洗涤一次,然后以1:100的比例稀释到含有不同浓度(0.25、0.5、1、2、4×MIC)的相应抗菌剂中继续传代。如果观察到MIC值的变化,则调整相应抗菌剂的浓度以用于随后的传代。这种连续传代重复了30天,并进行三次独立重复。MIC变化的计算方法是将各自的每日MIC除以第1天的初始MIC值。
实施例5
BMS引发的细菌死亡表现出类似细胞凋亡的特征
通过显微镜研究比较在BMS存在和不存在情况下粘菌素处理后的细菌的变化。用低浓度粘菌素(1×MIC50)单独,或与BMS联合处理大肠杆菌,然后使用Hochest 33342对处理的细菌进行染色,研究细菌染色体的形态变化。
结果发现:当使用粘菌素和BMS联合处理细菌时,大部分细菌细胞中间显示了强烈的荧光(如图3A所示),表明细菌的染色体发生了聚集。观察到的这种形态变化类似于先前报道的细菌凋亡。因此,推测BMS可能通过促进细菌细胞凋亡来增强细菌杀伤。
通过流式细胞术检测处理的细菌是否具有细菌凋亡的其它典型特征
用粘菌素或粘菌素和BMS联合处理大肠杆菌,并检测了四种细菌凋亡标志物:使用Annex V检测磷脂酰丝氨酸(PS)的暴露;用TUNNEL来检测DNA断裂;使用BiDAC4来检测细菌细胞膜的去极化;使用FITC-Z-VD-FMK检测类半胱天冬酶底物结合能力。
结果显示:单独使用粘菌素或BMS处理大肠杆菌时,很少能够检测到这四种标记物为阳性的细菌。然而,当粘菌素和BMS联合处理大肠杆菌时,细菌中四种标记物为阳性的细菌细胞在群体中的比例大大升高,分别达到了30%到90%(如图3B到3E所示,纵坐标分别代表10μg/ml BMS和1×MIC50粘菌素(1μg/ml)联合处理4.5h的大肠杆菌MG1655中Annexin V、FITC-VAD-F-FMK、DiBAC4(3)和TUNNEL阳性细菌细胞百分比)。
与BMS单独能够杀死***相一致,单独使用BMS处理的金黄色葡萄球菌也发现了明显的细菌染色体浓缩聚集(如图4A所示)。流式细胞术分析表明:BMS处理的金黄色葡萄球菌中Annex V、TUNNEL、BiDAC4及FITC-Z-VD-FMK阳性的细菌细胞与对照组比较具有显著的增加(如图4B至图4E所示,纵坐标分别代表10μg/ml BMS联合处理4.5h的金黄色葡萄球菌ATCC25904中Annexin V、FITC-VAD-F-FMK、DiBAC4(3)和TUNNEL阳性细菌细胞百分比)。
该结果表明:BMS通过促进细菌凋亡来增强细菌杀伤力。
其中,相关测试方法如下:
①流式细胞术检测磷脂酰丝氨酸暴露:
对于磷脂酰丝氨酸(PS)暴露的检测,细菌如上所述培养并用指定浓度的药物处理。使用FITC Annexin V细胞凋亡检测试剂盒(BD PharmingenTM,货号556547)进行Annexin V染色。为了识别死细胞,使用PI作为复染剂。
在药物处理后的每个时间点,通过4℃离心机以8K离心5mins收集大约105个细胞,并用1mL冷1×PBS洗涤两次。然后将样品重新悬浮在100μL1×结合缓冲液(试剂盒成分)中。接下来,每个样品用5μLFITC偶联的Annexin V和5μLPI(两种试剂盒成分)处理,并在室温(25℃)下避光孵育15分钟。孵育后在每个样品中加入400μL1×结合缓冲液,并在1小时内通过流式细胞术分析样品。
荧光分析由CytoFLEX流式细胞仪(Beckman Coulter Life Sciences)进行,该仪器配备了488nm氩激光器用于激发,以及525±40nm(FITC介导荧光的FITC通道)和585±42nm(PE通道用于PI介导的荧光)荧光滤片用于检测荧光信号。检测采用以下PMT电压:77(FSC)、72(SSC)、162(FITC)和192(PI)。为消除细胞碎片的干扰,一级阈值设为FSC-H>100,二级阈值设为SSC-H>1000。每个样本至少采集10,000个细胞,使用FITC通道测定AnnexinV-阳性细胞,用PE通道以确定Annexin V阳性细胞是否仍然存活(PI阴性)或已经死亡(PI阳性)。实验独立重复三次,并使用GraphPadPrism8处理数据和生成图片。
②TUNEL法和流式细胞术检测DNA碎片:
对于DNA碎片化的检测,细菌如上所述培养并用指定浓度的药物处理。使用APO-DIRECTTM试剂盒(BD Biosciences,货号556381)进行TUNEL检测。该试剂盒使用FITC偶联的脱氧尿苷三磷酸(FITC-dUTP)对DNA碎片进行染色,并使用PI作为复染剂。
在药物处理后的每个时间点,通过4℃离心机以8K离心5mins收集大约105个细胞,并用1mL冷1×PBS洗涤两次。然后将样品重新悬浮在1mL4%多聚甲醛(Santa CruzBiotechnology)中,并将细胞悬液置于冰上30-60mins。然后将细胞在4℃离心机中以8K离心5分钟,洗涤一次并重悬于300μL冷1×PBS中。向每个样品中加入1mL 70%(v/v,在dH2O中)冰冷的乙醇,并将样品在-20℃下储存过夜。
对于染色,样品在4℃离心机中以8K离心5mins,并通过抽吸去除乙醇。细胞在1mL洗涤缓冲液(试剂盒成分)中洗涤两次,然后重悬于50μL的DNA标记溶液(按试剂盒中所述制备)中。将细胞在温控振荡培养箱中在37℃、300rmp避光培养60mins。孵育结束时,向每个样品中加入1mL漂洗缓冲液(试剂盒成分),样品在8K下离心5mins。细胞再次用1mL漂洗缓冲液洗涤并重悬于500μLPI/RNase A溶液中(如果细胞密度低,将PI/RNase Staining Buffer的用量调整为0.3mL)。样品在室温下避光孵育30mins。最后添加500μL1×PBS稀释样品并用流式细胞术进行分析。
通过CytoFLEX流式细胞仪(Beckman Coulter Life Sciences)进行荧光分析。参数设置与PS暴露检测的相关参数设置相同。实验独立重复三次,并使用GraphPad Prism8处理数据和生成图片。
③荧光显微镜观察染色体聚集:
对于染色体聚集观察,细菌如上所述培养并用指定浓度的药物处理。使用DNA特异性染料Hoechst33342(Invitrogen,货号H1339)对染色体进行荧光染色,将其溶解在去离子水中并制备10mg/mL(16.23mM)储备溶液。PI用作复染剂溶解在去离子水中制备1mg/mL(1.5mM)储备溶液。
在药物处理后的每个时间点,通过4℃离心机以8K离心5mins收集大约105个细胞,并用1mL冷1×PBS洗涤两次。将细胞重新悬浮在1mL过滤的1×PBS中,并将1μL的10mg/mLHoechst 33342和1mg/mL的PI添加到每个样品中,在室温下避光孵育30分钟。孵育后,将细胞点在载玻片上并使用带有APOTOME荧光显微镜的Carl Zeiss Axio Observer进行分析,该显微镜配备有CoolSnap HQ CCD相机(Roper Scientific),使用IPLab软件(Scanalytics)进行操作。对于荧光图像,使用UV/488nm双激发分析细胞,使用标准Hoechst和PI过滤器测量荧光信号。
④流式细胞术检测膜去极化:
对于膜去极化的检测,细菌如上所述培养并用指定浓度的药物处理。使用DiBAC4(3)(Invitrogen,货号B438)进行细胞染色,将其溶解在70%乙醇(v/v)中并制备1mg/mL储备溶液。DiBAC4(3)是一种膜电位(ΔΨ)敏感染料,可用于监测药物处理细胞的膜去极化。DiBAC4(3)可以穿过去极化但仍然完整的细胞膜,并与细胞内脂质成分结合,表现出增强的荧光信号。
对于DiBAC4(3)染色,在药物处理后的每个时间点,通过4℃离心机以8K离心5mins收集大约105个细胞,并用1mL冷1×PBS洗涤两次。将细胞重新悬浮在1mL过滤的1×PBS中,并向每个样品中加入1μL 1mg/mL DiBAC4(3),在室温避光孵育10分钟。孵育后,用1mL过滤的1×PBS洗涤细胞3次。将样品重新悬浮在1mL过滤的1×PBS中,并通过CytoFLEX流式细胞仪(Beckman Coulter Life Sciences)进行分析。参数设置与PS暴露检测相关的参数设置相同。实验独立重复三次,并使用GraphPad Prism8处理数据和生成图片。
⑤流式细胞术检测细菌caspase样蛋白:
半胱天冬酶(caspase)被认为是负责真核生物细胞凋亡的机制的核心成分。为了检测药物处理过的细菌中有无caspase样蛋白的表达,采用了CaspACETMFITC-VAD-FMK原位标记染料(Promega,货号G7462),它是泛caspase抑制剂Z-VAD-FMK的荧光类似物。
对于caspase样蛋白检测实验,细菌如上所述培养。当细菌在MHB中生长至对数中期(OD600=0.4)时,用指定浓度的药物处理进行处理,同时以1:1000的比例加入CaspACETMFITC-VAD-FMK In Situ Marker(终浓度为5μM)。样品避光并在温箱中37℃、220rmp进行培养。在药物处理后的每个时间点,通过4℃离心机以8K离心5mins收集大约105个细胞,并用1mL冷1×PBS洗涤两次。将样品重新悬浮在1mL过滤的1×PBS中,并通过CytoFLEX流式细胞仪(Beckman Coulter Life Sciences)进行分析。参数设置与PS暴露检测相关的参数设置相同。实验独立重复三次,并使用GraphPad Prism8处理数据和生成图片。
综上所述,本研究中鉴定出的BMS可以有效增强粘菌素的活性并降低其杀死细菌病原体的有效浓度。这种促进杀菌活性很可能是通过激活细菌凋亡来实现的。考虑到临床试验已证明BMS使用的安全性,BMS具有作为粘菌素佐剂的潜力。
以上仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.BMS-833923及其衍生物用作粘菌素佐剂。
2.一种BMS-833923及其衍生物的应用,其特征在于,所述BMS-833923及其衍生物用于与粘菌素对细菌进行联合处理;
优选地,所述细菌为革兰氏阴性菌;
优选地,所述革兰氏阴性菌处于对数生长期;
优选地,1×MIC50MIC50粘菌素处理的革兰氏阴性菌中添加5-15μg/mL的BMS-833923;
更优地,1×MIC50MIC50粘菌素处理的革兰氏阴性菌中添加10μg/mL的BMS-833923及其衍生物。
3.根据权利要求2所述的应用,其特征在于,所述BMS-833923及其衍生物与所述粘菌素用于对大肠杆菌进行联合抑制或联合清除。
4.根据权利要求2所述的应用,其特征在于,所述BMS-833923及其衍生物与所述粘菌素用于对肺炎克雷伯氏菌进行联合抑制或联合清除。
5.根据权利要求2所述的应用,其特征在于,所述BMS-833923及其衍生物与所述粘菌素用于对鲍曼不动杆菌进行联合抑制或联合清除。
6.根据权利要求2所述的应用,其特征在于,所述BMS-833923及其衍生物与所述粘菌素用于对铜绿假单胞菌进行联合抑制或联合清除。
7.根据权利要求2所述的应用,其特征在于,所述BMS-833923及其衍生物与所述粘菌素用于对泛耐药菌株BAA-1800、BAA-1794和BAA-1792中的至少一种进行联合抑制或联合清除。
8.一种BMS-833923及其衍生物的应用,其特征在于,所述BMS-833923及其衍生物用于独立地对革兰氏阳性菌进行抑制或清除。
9.根据权利要求8所述的应用,其特征在于,所述革兰氏阳性菌包括金黄色葡萄球菌和枯草芽孢杆菌中的至少一种。
10.一种抗菌药物,其特征在于,所述抗菌药物的功效成分包括BMS-833923及其衍生物和粘菌素;
优选地,所述抗菌药物为对大肠杆菌、肺炎克雷伯氏菌、鲍曼不动杆菌、铜绿假单胞菌、金黄色葡萄球菌、枯草芽孢杆菌、泛耐药菌株BAA-1800、BAA-1794和BAA-1792中的至少一种进行抑制或清除的药物。
CN202111226018.XA 2021-10-21 2021-10-21 一种bms-833923及其衍生物的应用及药物 Pending CN115998742A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202111226018.XA CN115998742A (zh) 2021-10-21 2021-10-21 一种bms-833923及其衍生物的应用及药物
PCT/CN2021/140984 WO2023065526A1 (zh) 2021-10-21 2021-12-23 一种bms-833923及其衍生物的应用及药物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111226018.XA CN115998742A (zh) 2021-10-21 2021-10-21 一种bms-833923及其衍生物的应用及药物

Publications (1)

Publication Number Publication Date
CN115998742A true CN115998742A (zh) 2023-04-25

Family

ID=86019678

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111226018.XA Pending CN115998742A (zh) 2021-10-21 2021-10-21 一种bms-833923及其衍生物的应用及药物

Country Status (2)

Country Link
CN (1) CN115998742A (zh)
WO (1) WO2023065526A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116459240A (zh) * 2023-05-06 2023-07-21 华中科技大学协和深圳医院 Kl-2及其衍生物用于制备抗细菌感染药物中的应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090130051A (ko) * 2007-03-14 2009-12-17 엑셀리시스, 인코포레이티드 헤지호그 경로의 억제제
WO2016094730A1 (en) * 2014-12-12 2016-06-16 Synereca Pharmaceuticals, Inc. Heterocyclic compounds as antibiotic potentiators
JP2018534303A (ja) * 2015-11-12 2018-11-22 ザ・トラスティーズ・オブ・コロンビア・ユニバーシティ・イン・ザ・シティ・オブ・ニューヨーク ポリミキシン系抗生物質に対する耐性グラム陰性細菌感染を標的にする合理的薬物設計
US20220356147A1 (en) * 2019-11-01 2022-11-10 University Of Notre Dame Du Lac Compounds and methods for potentiating colistin activity

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116459240A (zh) * 2023-05-06 2023-07-21 华中科技大学协和深圳医院 Kl-2及其衍生物用于制备抗细菌感染药物中的应用
CN116459240B (zh) * 2023-05-06 2024-03-19 华中科技大学协和深圳医院 Kl-2及其衍生物用于制备抗细菌感染药物中的应用

Also Published As

Publication number Publication date
WO2023065526A1 (zh) 2023-04-27

Similar Documents

Publication Publication Date Title
Shu et al. Mannosylerythritol lipids: dual inhibitory modes against Staphylococcus aureus through membrane-mediated apoptosis and biofilm disruption
Zhu et al. Bactericidal efficiency and modes of action of the novel antimicrobial peptide T9W against Pseudomonas aeruginosa
Christiansen et al. The immunomodulatory drug glatiramer acetate is also an effective antimicrobial agent that kills Gram-negative bacteria
Siriyong et al. Holarrhena antidysenterica extract and its steroidal alkaloid, conessine, as resistance-modifying agents against extensively drug-resistant Acinetobacter baumannii
Zahran et al. Evidence for synergism of the antimicrobial peptide piscidin 2 with antiparasitic and antioomycete drugs
CN115998742A (zh) 一种bms-833923及其衍生物的应用及药物
Lu et al. Sanguinarine synergistically potentiates aminoglycoside‐mediated bacterial killing
WO2015171225A1 (en) Identification of novel anti-persister activity for borrelia burgdorferi
Amiss et al. Modified horseshoe crab peptides target and kill bacteria inside host cells
US20170058314A1 (en) Novel methodology for identifying anti-persister activity and antimicrobial susceptibility for borrelia burgdorferi and other bacteria
Kotzialampou et al. Synergistic antibacterial and antibiofilm activity of the MreB inhibitor A22 hydrochloride in combination with conventional antibiotics against Pseudomonas aeruginosa and Escherichia coli clinical isolates
Sarink et al. Acanthamoeba castellanii interferes with adequate chlorine disinfection of multidrug-resistant Pseudomonas aeruginosa
RU2505295C2 (ru) Комбинация, включающая фульвовую кислоту и антибиотики
Barker et al. Eukaryotic phosphatase inhibitors enhance colistin efficacy in gram‐negative bacteria
Lee et al. Periplanetasin-2 enhances the antibacterial properties of vancomycin or chloramphenicol in Escherichia coli
Dayal et al. Membrane acting Povarov-Doebner derived compounds potently disperse preformed multidrug resistant Gram-positive bacterial biofilms
JP2017055716A (ja) 多剤耐性菌スクリーニング用プレート、多剤耐性菌の検出方法、多剤耐性菌検出キットおよび多剤耐性菌スクリーニング用液体培地
Wojnicz et al. Influence of subinhibitory concentrations of amikacin and ciprofloxacin on morphology and adherence ability of uropathogenic strains
Zullkiflee et al. Antifungal and Antiamoebic Activities, Cytotoxicity, and Toxicity of Aqueous and Ethanolic Extracts of Propolis Produced by Brunei Stingless Bees.
Anes et al. Reversing antimicrobial resistance in multidrug-resistant Klebsiella pneumoniae of clinical origin using 1-(1-Naphthylmethyl)-Piperazine
EP0973533A1 (en) Methods for inhibiting bacterial cytotoxicity
Yilmaz et al. Impact of N-acetylcysteine and antibiotics against single and dual species biofilms of Pseudomonas aeruginosa and Achromobacter xylosoxidans
Maan et al. DP1, a multifaceted synthetic peptide: Mechanism of action, activity and clinical potential
CN114073771A (zh) 用于杀菌的组合物、其应用以及药物制剂
Salama Study the activity of conjugated antimicrobial peptide WW-185 against clinically important bacteria

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination