CN115984512A - 一种平面场景三维重建装置及方法 - Google Patents

一种平面场景三维重建装置及方法 Download PDF

Info

Publication number
CN115984512A
CN115984512A CN202310282859.5A CN202310282859A CN115984512A CN 115984512 A CN115984512 A CN 115984512A CN 202310282859 A CN202310282859 A CN 202310282859A CN 115984512 A CN115984512 A CN 115984512A
Authority
CN
China
Prior art keywords
plane
laser ranging
module
dimensional
point cloud
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310282859.5A
Other languages
English (en)
Other versions
CN115984512B (zh
Inventor
毛靖宇
戴忠余
宋小亮
李杨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Liangxin Integrated Technology Co ltd
Original Assignee
Chengdu Liangxin Integrated Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Liangxin Integrated Technology Co ltd filed Critical Chengdu Liangxin Integrated Technology Co ltd
Priority to CN202310282859.5A priority Critical patent/CN115984512B/zh
Publication of CN115984512A publication Critical patent/CN115984512A/zh
Application granted granted Critical
Publication of CN115984512B publication Critical patent/CN115984512B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Processing Or Creating Images (AREA)

Abstract

本发明涉及三维重建技术领域,具体设计一种平面场景三维重建装置及方法,所述方法包括:设置五个激光测距模块,五个激光测距模块测距方向的延长线交于一点;五个激光测距模块的可见光斑射向左、下、右、上、前五个平面区域,同时移动五个激光测距模块并持续采集五个平面区域的三维点云数据;利用三维点云数据拟合平面方程参数,得到四个交点的三维坐标,基于四个交点得到拟合平面;当连续获得的两个三维点云数据的拟合平面发生变化,基于两个三维点云数据拼接新平面。本发明采用稀疏点云的平面重建装置及方法,测距模块精度为毫米级,既减少了设备制造成本,又增加了测量精度。

Description

一种平面场景三维重建装置及方法
技术领域
本发明涉及三维重建领域,具体是一种平面场景三维重建装置及方法。
背景技术
目前的三维重建***主要通过激光SLAM算法、视觉SALM算法、多视角点云拼接算法完成三维重建。但上述方法均要求稠密点云数据,该类设备通常非常昂贵,并且为了保证点云数据的稠密度,牺牲了测距精度,通常为厘米级,不满足毫米级精度的测绘领域。
基于上述缺点,本发明提出一种基于稀疏点云的平面重建装置及方法,以至少解决上述部分技术问题。
发明内容
本发明要解决的技术问题是:提供一种平面场景三位重建装置,以至少解决上述部分问题
为实现上述目的,本发明采用的技术方案如下:
一种平面场景三维重建装置,包括基座、设于基座上的控制模块、设于基座上的第一激光测距模块、设于基座上的第二激光测距模块、设于基座上的第三激光测距模块、设于基座上的第四激光测距模块、设于基座上的第五激光测距模块、设于基座上的手持结构;所述控制模块分别连接第一激光测距模块、第二激光测距模块、第三激光测距模块、第四激光测距模块、第五激光测距模块;所述第一激光测距模块固定于基座左侧;所述第二激光测距模块固定于基座下侧,所述第三激光测距模块固定于基座右侧,所述第四激光测距模块固定于基座上侧,所述第五激光测距模块固定于基座前侧,第一激光测距模块、第二激光测距模块、第三激光测距模块、第四激光测距模块和第五激光测距模块的测距方向的延长线交于一点。
进一步地,所述第一激光测距模块、第二激光测距模块、第三激光测距模块、第四激光测距模块、第五激光测距模块测距精度为毫米级。
进一步地,所述平面场景三维重建装置包含以下控制方法:
第一激光测距模块、第二激光测距模块、第三激光测距模块、第四激光测距模块和第五激光测距模块的可见光斑分别射向左、下、右、上、前五个平面区域,移动平面场景三维重建装置并持续采集五个平面区域的三维点云数据;
控制模块利用三维点云数据拟合平面方程参数,得到四个交点的三维坐标,基于四个交点得到拟合平面;当连续获得的两个三维点云数据的拟合平面发生变化,基于两个三维点云数据拼接新平面。
一种平面场景三维重建方法,其特征在于,包括以下步骤:
步骤1、设置五个激光测距模块,五个激光测距模块测距方向的延长线交于一点;
步骤2、五个激光测距模块的可见光斑射向左、下、右、上、前五个平面区域,同时移动五个激光测距模块并持续采集五个平面区域的三维点云数据;
步骤3、利用三维点云数据拟合平面方程参数,得到四个交点的三维坐标,基于四个交点得到拟合平面;
步骤4、当连续获得的两个三维点云数据的拟合平面发生变化,基于两个三维点云数据拼接新平面。
其中步骤1所述五个激光测距模块测距方向交于一点,这一点就是设备本身建立的坐标系原点。
进一步地,所述步骤2中,采集的五个平面区域的三维点云数据中,前一帧的三维点云数据和后一帧的三维点云数据具有共视图。
进一步地,所述步骤3包括:
步骤31、建立平面方程的表达式为ax+by+cz+d=0;
步骤32、将五个平面区域的三维点云数据代入ransac算法分别拟合出5个平面参数;
步骤33、将每一个平面参数分别代入平面方程得到拟合平面的4个交点的三维坐标;
步骤34、基于三维坐标得到拟合平面的面积、边长。
进一步地,所述步骤4包括:
步骤41、同时移动五个激光测距模块时,计算后一帧和前一帧各个交点三维坐标之间的欧式距离,根据欧式距离最小原则,找到后一帧和前一帧各个交点的对应关系,若欧式距离变化量大于10%,则出现新的平面;
当后一帧和前一帧的拟合平面的边长发生变化,则出现新的平面;
步骤42、当出现新的平面时,将后一帧的所有面方程统一到对应交点的坐标系,与前一帧平面方程拼接;
步骤43、联立步骤42中所有平面方程,求出拼接后新平面的交点三维坐标;
步骤44、重复步骤步骤41~步骤43,不断拼接新的平面,完成平面场景三维重建。
与现有技术相比,本发明具有以下有益效果:本发明采用ransac算法完成三维重建,降低了云数据的稠密度,减少了设备的制作成本;本发明激光测距模块精度达到毫米级,提高了装置测量精度,因此本发明提高了装置的经济性的同时还提高了平面场景三维重建的精确度。
本发明的控制模块可直接对数据进行处理,方便携带,增加了装置的灵活性与方便性。
附图说明
图1为本发明的结构示意图 。
图2为本发明三维重建的流程图。
图3为平面场景三维重建的房间俯视图。
图4为平面场景三维重建的房间内部观测到的正视面示意图。
图5为平面场景三维重建的房间内部观测到的右视面示意图。
1-基座、2-控制模块、3-第一激光测距模块、4-第二激光测距模块测距模块、5-手持结构、6-第三激光测距模块、7-第四激光测距模块、8-第五激光测距模块。
实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图,对本发明进一步详细说明。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,术语“前”、“上”、“下”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位或者以特定的方位构造和操作,因此其不能理解为对本发明的限制术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;当然的,还可以是机械连接,也可以是电连接;另外的,还可以是直接相连,也可以是通过中间媒介间接相连,或者可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
如图1所示,本发明提供了一种平面场景三维重建装置,包括基座1、设于基座1上的控制模块2、设于基座上的第一激光测距模块3、设于基座上的第二激光测距模块4、设于基座上的第三激光测距模块6、设于基座上的第四激光测距模块7、设于基座上的第五激光测距模块8、设于基座上的手持结构5;所述控制模块分别连接第一激光测距模块3、第二激光测距模块4、第三激光测距模块6、第四激光测距模块7、第五激光测距模块8;所述第一激光测3距模块固定于基座左侧;所述第二激光测距模块4固定于基座下侧,所述第三激光测距模块6固定于基座右侧,所述第四激光测距模块7固定于基座上侧,所述第五激光测距模块8固定于基座前侧,第一激光测距模块3、第二激光测距模块4、第三激光测距模块6、第四激光测距模块7和第五激光测距模块8的测距方向的延长线交于一点。
在部分实施例中,所述第一激光测距模块3、第二激光测距模块4、第三激光测距模块6、第四激光测距模块7、第五激光测距模块8测距精度为毫米级。提高了平面场景三维重建装置的测量精度,减小了三维重建的误差。
在部分实施例中,所述平面场景三维重建装置包含以下控制方法:
第一激光测距模块3、第二激光测距模块4、第三激光测距模块6、第四激光测距模块7和第五激光测距模块8的可见光斑分别射向左、下、右、上、前五个平面区域,移动平面场景三维重建装置并持续采集五个平面区域的三维点云数据;
控制模块2利用三维点云数据拟合平面方程参数,得到四个交点的三维坐标,基于四个交点得到拟合平面;当连续获得的两个三维点云数据的拟合平面发生变化,基于两个三维点云数据拼接新平面。
控制模块2直接与第一激光测距模块3、第二激光测距模块4、第三激光测距模块6、第四激光测距模块7、第五激光测距模块8相连,便于接收由第一激光测距模块3、第二激光测距模块44、第三激光测距模块6、第四激光测距模块7、第五激光测距模块8上传的三维点云数据,并处理三维点云数据。
如图2所示,一种平面场景三维重建方法,包括以下步骤:
步骤1、设置五个激光测距模块,五个激光测距模块测距方向的延长线交于一点;
步骤2、五个激光测距模块的可见光斑射向左、下、右、上、前五个平面区域,同时移动五个激光测距模块并持续采集五个平面区域的三维点云数据;
步骤3、利用三维点云数据拟合平面方程参数,得到四个交点的三维坐标,基于四个交点得到拟合平面;
步骤4、当连续获得的两个三维点云数据的拟合平面发生变化,基于两个三维点云数据拼接新平面。
上述一种平面场景三维重建方法可以应用在上述一种平面场景三维重建装置,本发明所述的方法中通过不断移动装置,利用测距精度为毫米级的激光测距模块,每个激光测距模块分别向左、下、右、上、前五个区域发出激光测距,每个区域发射九个激光测距,采集每个平面的三维点云数据,将三维点云数据上传到控制模块,控制模块通过ransac算法拟合平面方程,求出拟合平面的四个交点,确定拟合平面的面积和边长,所述ransac算法能产生高精度参数,提高了平面场景三维建模的精度。
其中步骤1所述的五个激光模块测距方向的延长线交于一点,这一点为平面场景三维重建装置建立坐标系的原点。
在部分实施例中,所述步骤2中,采集的五个平面区域的三维点云数据中,前一帧的三维点云数据和后一帧的三维点云数据具有共视图。
保证前一帧和后一帧具有共视图的目的在于增加地图点信息,以优化地图。
在部分实施例中,所述步骤3包括:
步骤31、建立平面方程的表达式为ax+by+cz+d=0;
步骤32、将五个平面区域的三维点云数据代入ransac算法分别拟合出5个平面参数;
步骤33、将每一个平面参数分别代入平面方程得到拟合平面的4个交点的三维坐标;
步骤34、基于三维坐标得到拟合平面的面积、边长。
控制模块通过ransac算法直接处理由激光测距模块传输过来的三维点云数据,不必与计算机相连进行计算,为平面场景的三维建模提供了便捷,同时ransac算法使用满足可行条件的尽量少的初始数据,并使用一致性数据集去扩大它,这是一种寻找模型去拟合数据的思想,减小了数据拟合的误差,能更精确的得到前方平面数据,提高了平面场景三维重建精确度。
在部分实施例中,所述步骤4包括:
步骤41、同时移动五个激光测距模块时,计算后一帧和前一帧各个交点三维坐标之间的欧式距离,根据欧式距离最小原则,找到后一帧和前一帧各个交点的对应关系,若欧式距离变化量大于10%,则出现新的平面;
当后一帧和前一帧的拟合平面的边长发生变化,则出现新的平面;
步骤42、当出现新的平面时,将后一帧的所有平面方程统一到对应交点的坐标系,与前一帧平面方程拼接;
步骤43、联立步骤42中所有平面方程,求出拼接后新平面的交点三维坐标;
步骤44、重复步骤步骤41~步骤43,不断拼接新的平面,完成平面场景三维重建。
如图3所示为平面场景三维重建的房间俯视图,如图4所示平面场景三维重建的房间的正视面,如图5所示为平面场景三维重建的房间的右视面,当拼接房间正视面和右视面时,平面场景三维重建的房间的正视面为所述步骤41的前一帧,平面场景三维重建的房间的右视面为所述步骤41的后一帧,根据步骤41判断后一帧是否为新的平面,找到前一帧和后一帧各个交点之间的对应关系,如图4所示平面场景三维重建正视面的右上角和图5所示平面场景三维重建右视面的左上角为对应共同点,平面场景三维重建正视面的右下角和图5所示平面场景三维重建右视面的左下角为对应共同点,平面场景三维重建装置基于这两个对应共同点,将前一帧和后一帧的平面拼接在一起,拼接完成后联合所有已出现的平面方程求出拼接后的所有交点,使得整个平面空间完整。当出现新的平面时,平面场景三维重建装置再基于拼接后的交点拼接新的平面。完成所有房间平面之间的拼接,例如房间顶面与正视面、房间顶面和右视面等,直到完成平面场景三维重建。
最后应说明的是:以上各实施例仅仅为本发明的较优实施例用以说明本发明的技术方案,而非对其限制,当然更不是限制本发明的专利范围;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围;也就是说,但凡在本发明的主体设计思想和精神上作出的毫无实质意义的改动或润色,其所解决的技术问题仍然与本发明一致的,均应当包含在本发明的保护范围之内;另外,将本发明的技术方案直接或间接的运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (7)

1.一种平面场景三维重建装置,其特征在于,包括基座(1)、设于基座(1)上的控制模块(2)、设于基座(1)上的第一激光测距模块(3)、设于基座(1)上的第二激光测距模块(4)、设于基座(1)上的第三激光测距模块(6)、设于基座(1)上的第四激光测距模块(7)、设于基座(1)上的第五激光测距模块(8)、设于基座(1)上的手持结构(5);所述控制模块(2)分别连接第一激光测距模块(3)、第二激光测距模块(4)、第三激光测距模块(6)、第四激光测距模块(7)、第五激光测距模块(8);所述第一激光测距模块(3)固定于基座(1)左侧;所述第二激光测距模块(4)固定于基座(1)下侧,所述第三激光测距模块(6)固定于基座(1)右侧,所述第四激光测距模块(7)固定于基座(1)上侧,所述第五激光测距模块(8)固定于基座(1)前侧,第一激光测距模块(3)、第二激光测距模块(4)、第三激光测距模块(6)、第四激光测距模块(7)和第五激光测距模块(8)的测距方向的延长线交于一点。
2.如权利要求1所述一种平面场景三维重建装置,其特征在于,所述第一激光测距模块(3)、第二激光测距模块(4)、第三激光测距模块(6)、第四激光测距模块(7)、第五激光测距模块(8)测距精度为毫米级。
3.如权利要求1所述一种平面场景三维重建装置,其特征在于,所述平面场景三维重建装置包含以下控制方法:
第一激光测距模块(3)、第二激光测距模块(4)、第三激光测距模块(6)、第四激光测距模块(7)和第五激光测距模块(8)的可见光斑分别射向左、下、右、上、前五个平面区域,移动平面场景三维重建装置并持续采集五个平面区域的三维点云数据;
控制模块利用三维点云数据拟合平面方程参数,得到四个交点的三维坐标,基于四个交点得到拟合平面;当连续获得的两个三维点云数据的拟合平面发生变化,基于两个三维点云数据拼接新平面。
4.一种平面场景三维重建方法,其特征在于,包括以下步骤:
步骤1、设置五个激光测距模块,五个激光测距模块测距方向的延长线交于一点;
步骤2、五个激光测距模块的可见光斑射向左、下、右、上、前五个平面区域,同时移动五个激光测距模块并持续采集五个平面区域的三维点云数据;
步骤3、利用三维点云数据拟合平面方程参数,得到四个交点的三维坐标,基于四个交点得到拟合平面;
步骤4、当连续获得的两个三维点云数据的拟合平面发生变化,基于两个三维点云数据拼接新平面。
5.如权利要求4所述的一种平面场景三维重建方法,其特征在于,所述步骤2中,采集的五个平面区域的三维点云数据中,前一帧的三维点云数据和后一帧的三维点云数据具有共视图。
6.如权利要求4所述的一种平面场景三维重建方法,其特征在于,所述步骤3包括:
步骤31、建立平面方程的表达式为ax+by+cz+d=0;
步骤32、将五个平面区域的三维点云数据代入ransac算法分别拟合出5个平面参数;
步骤33、将每一个平面参数分别代入平面方程得到拟合平面的4个交点的三维坐标;
步骤34、基于三维坐标得到拟合平面的面积、边长。
7.如权利要求5所述的一种平面场景三维重建方法,其特征在于,所述步骤4包括:
步骤41、同时移动五个激光测距模块时,计算后一帧和前一帧各个交点三维坐标之间的欧式距离,根据欧式距离最小原则,找到后一帧和前一帧各个交点的对应关系,若欧式距离变化量大于10%,则出现新的平面;
当后一帧和前一帧的拟合平面的边长发生变化,则出现新的平面;
步骤42、当出现新的平面时,将后一帧的所有平面方程统一到对应交点的坐标系,与前一帧平面方程拼接;
步骤43、联立步骤42中所有平面方程,求出拼接后新平面的交点三维坐标;
步骤44、重复步骤步骤41~步骤43,不断拼接新的平面,完成平面场景三维重建。
CN202310282859.5A 2023-03-22 2023-03-22 一种平面场景三维重建装置及方法 Active CN115984512B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310282859.5A CN115984512B (zh) 2023-03-22 2023-03-22 一种平面场景三维重建装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310282859.5A CN115984512B (zh) 2023-03-22 2023-03-22 一种平面场景三维重建装置及方法

Publications (2)

Publication Number Publication Date
CN115984512A true CN115984512A (zh) 2023-04-18
CN115984512B CN115984512B (zh) 2023-06-13

Family

ID=85963504

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310282859.5A Active CN115984512B (zh) 2023-03-22 2023-03-22 一种平面场景三维重建装置及方法

Country Status (1)

Country Link
CN (1) CN115984512B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116824067A (zh) * 2023-08-24 2023-09-29 成都量芯集成科技有限公司 一种室内三维重建方法及其装置
CN117115362A (zh) * 2023-10-20 2023-11-24 成都量芯集成科技有限公司 一种室内结构化场景三维重建方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102867304A (zh) * 2012-09-04 2013-01-09 南京航空航天大学 双目立体视觉***中场景立体深度与视差的关系建立方法
CN106441151A (zh) * 2016-09-30 2017-02-22 中国科学院光电技术研究所 一种基于视觉和主动光学融合的三维目标欧式空间重建的测量***
CN106652018A (zh) * 2016-09-29 2017-05-10 北京京东尚科信息技术有限公司 物品三维重建方法、装置和***
CN108732587A (zh) * 2018-06-07 2018-11-02 安徽理工大学 一种基于扫描点云测距、测角的定权方法
CN109708618A (zh) * 2018-12-29 2019-05-03 成都天佑智隧科技有限公司 一种组合式确定三维重建后摄影比例尺的标定方法
CN110148180A (zh) * 2019-04-22 2019-08-20 河海大学 一种激光雷达与相机融合装置与标定方法
US20190392598A1 (en) * 2017-07-17 2019-12-26 Shining 3D Tech Co., Ltd. Three-Dimensional Reconstruction Method and Device Based on Monocular Three-dimensional Scanning System
CN112378349A (zh) * 2020-09-28 2021-02-19 湖南海森格诺信息技术有限公司 基于双目结构光的匣钵平整度检测装置及其检测方法
CN113406604A (zh) * 2021-06-30 2021-09-17 山东新一代信息产业技术研究院有限公司 一种激光雷达和摄像机位置标定的装置和方法
WO2021208442A1 (zh) * 2020-04-14 2021-10-21 广东博智林机器人有限公司 一种三维场景的重建***、方法、设备及存储介质
CN114782636A (zh) * 2022-05-17 2022-07-22 江苏集萃深度感知技术研究所有限公司 三维重建方法、装置及***
CN115598626A (zh) * 2022-12-14 2023-01-13 成都量芯集成科技有限公司(Cn) 一种激光测距仪偏差校准装置及方法
CN115657061A (zh) * 2022-12-13 2023-01-31 成都量芯集成科技有限公司 一种室内墙面三维扫描装置及方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102867304A (zh) * 2012-09-04 2013-01-09 南京航空航天大学 双目立体视觉***中场景立体深度与视差的关系建立方法
CN106652018A (zh) * 2016-09-29 2017-05-10 北京京东尚科信息技术有限公司 物品三维重建方法、装置和***
CN106441151A (zh) * 2016-09-30 2017-02-22 中国科学院光电技术研究所 一种基于视觉和主动光学融合的三维目标欧式空间重建的测量***
US20190392598A1 (en) * 2017-07-17 2019-12-26 Shining 3D Tech Co., Ltd. Three-Dimensional Reconstruction Method and Device Based on Monocular Three-dimensional Scanning System
CN108732587A (zh) * 2018-06-07 2018-11-02 安徽理工大学 一种基于扫描点云测距、测角的定权方法
CN109708618A (zh) * 2018-12-29 2019-05-03 成都天佑智隧科技有限公司 一种组合式确定三维重建后摄影比例尺的标定方法
CN110148180A (zh) * 2019-04-22 2019-08-20 河海大学 一种激光雷达与相机融合装置与标定方法
WO2021208442A1 (zh) * 2020-04-14 2021-10-21 广东博智林机器人有限公司 一种三维场景的重建***、方法、设备及存储介质
CN112378349A (zh) * 2020-09-28 2021-02-19 湖南海森格诺信息技术有限公司 基于双目结构光的匣钵平整度检测装置及其检测方法
CN113406604A (zh) * 2021-06-30 2021-09-17 山东新一代信息产业技术研究院有限公司 一种激光雷达和摄像机位置标定的装置和方法
CN114782636A (zh) * 2022-05-17 2022-07-22 江苏集萃深度感知技术研究所有限公司 三维重建方法、装置及***
CN115657061A (zh) * 2022-12-13 2023-01-31 成都量芯集成科技有限公司 一种室内墙面三维扫描装置及方法
CN115598626A (zh) * 2022-12-14 2023-01-13 成都量芯集成科技有限公司(Cn) 一种激光测距仪偏差校准装置及方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
IOANNIS BRILAKIS 等: "Progressive 3D reconstruction of infrastructure with videogrammetry", AUTOMATION IN CONSTRUCTION, vol. 20, pages 884 - 895, XP028290277, DOI: 10.1016/j.autcon.2011.03.005 *
刘钦 等: "基于一维激光测距仪和云台的场景三维重建", 工具技术, vol. 45, no. 11, pages 76 - 79 *
胡芳侨: "基于深度学习的斜拉桥结构感知三维重建方法研究", 中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑, no. 03, pages 034 - 1045 *
闫阳阳 等: "三维激光点云联合无人机影像的三维场景重建研究", 测绘通报, no. 01, pages 84 - 87 *
黄凌潇: "基于三维激光扫描技术的点云滤波与平面拟合算法研究", 中国优秀硕士学位论文全文数据库 信息科技辑, no. 04, pages 135 - 92 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116824067A (zh) * 2023-08-24 2023-09-29 成都量芯集成科技有限公司 一种室内三维重建方法及其装置
CN116824067B (zh) * 2023-08-24 2023-11-24 成都量芯集成科技有限公司 一种室内三维重建方法及其装置
CN117115362A (zh) * 2023-10-20 2023-11-24 成都量芯集成科技有限公司 一种室内结构化场景三维重建方法
CN117115362B (zh) * 2023-10-20 2024-04-26 成都量芯集成科技有限公司 一种室内结构化场景三维重建方法

Also Published As

Publication number Publication date
CN115984512B (zh) 2023-06-13

Similar Documents

Publication Publication Date Title
CN115984512A (zh) 一种平面场景三维重建装置及方法
CN108663681B (zh) 基于双目摄像头与二维激光雷达的移动机器人导航方法
CN108227929B (zh) 基于bim技术的增强现实放样***及实现方法
CN102425991B (zh) 一种自动化堆场激光测量装置及其使用方法
CN102184563B (zh) 植物器官形态的三维扫描方法及扫描***和装置
CN103110429B (zh) 超声波探头的光学标定方法
CN107764270A (zh) 一种激光扫描式室内地图生成和更新装置及方法
CN108090959A (zh) 室内外一体建模方法及装置
CN112945137B (zh) 一种基于单线激光雷达与测距仪装备的仓储矿堆扫描方法
CN114998499A (zh) 一种基于线激光振镜扫描的双目三维重建方法及***
CN101504275A (zh) 一种基于空间无线定位的手持式线激光三维测量***
CN109751992B (zh) 面向室内三维空间的定位校正方法、定位方法及其设备
CN102506825B (zh) 一种输变电设备外绝缘防污参数摄影测量方法
CN112258590A (zh) 一种基于激光的深度相机外参标定方法、设备及其存储介质
CN112161622B (zh) 一种机器人足迹规划方法、装置、可读存储介质及机器人
CN111640156A (zh) 针对室外弱纹理目标的三维重建方法、设备及存储设备
WO2023226574A1 (zh) 一种煤矿机械手扫描观测***
CN114543787B (zh) 基于条纹投影轮廓术的毫米级室内建图定位方法
CN111308495B (zh) 一种雷达测距生成室内户型3d数据的方法
CN104180756A (zh) 激光位移传感器测对接件相对位移的方法
CN108151717A (zh) 一种基于bim***的全自动放样方法
KR20180126475A (ko) 다중 측량 모드의 3차원 측량 시스템 및 측량방법
CN113781576B (zh) 多自由度位姿实时调整的双目视觉检测***、方法、装置
CN112016157B (zh) 一种高展弦比飞机数字化整机坐标构建的方法
Zhou et al. Sparse point cloud generation based on turntable 2D LiDAR and point cloud assembly in augmented reality environment

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant