CN115915798A - 发光器件、发光装置、受发光装置、电子设备及照明装置 - Google Patents

发光器件、发光装置、受发光装置、电子设备及照明装置 Download PDF

Info

Publication number
CN115915798A
CN115915798A CN202210853246.8A CN202210853246A CN115915798A CN 115915798 A CN115915798 A CN 115915798A CN 202210853246 A CN202210853246 A CN 202210853246A CN 115915798 A CN115915798 A CN 115915798A
Authority
CN
China
Prior art keywords
light
layer
organic compound
emitting
ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210853246.8A
Other languages
English (en)
Inventor
川上祥子
吉安唯
大泽信晴
铃木恒德
佐佐木俊毅
桥本直明
久保田朋广
濑尾哲史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Publication of CN115915798A publication Critical patent/CN115915798A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/166Electron transporting layers comprising a multilayered structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/346Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising platinum
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/27Combination of fluorescent and phosphorescent emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

提供一种耐热性良好的发光器件、发光装置、受发光装置、电子设备及照明装置。该发光器件中包括阳极、阴极以及阳极与阴极之间的EL层,EL层包括发光层及第一层,第一层位于发光层与阴极之间,发光层与第一层接触,发光层包含第一有机化合物及发光物质,第一层包含第二有机化合物,发光物质为发射蓝光的物质,第一有机化合物为具有稠合芳香烃环的有机化合物,第二有机化合物为具有选自吡啶环、二嗪环和三嗪环中的一个的杂芳环骨架及联咔唑骨架的有机化合物。

Description

发光器件、发光装置、受发光装置、电子设备及照明装置
技术领域
本发明的一个方式涉及一种发光器件、发光装置、受发光装置、显示装置、电子设备、照明装置及电子器件。注意,本发明的一个方式不局限于上述技术领域。本说明书等所公开的发明的一个方式的技术领域涉及一种物体、方法或制造方法。此外,本发明的一个方式涉及一种工序(process)、机器(machine)、产品(manufacture)或者组合物(compositionof matter)。由此,更具体而言,作为本说明书所公开的本发明的一个方式的技术领域的例子可以举出半导体装置、显示装置、液晶显示装置、发光装置、照明装置、蓄电装置、存储装置、摄像装置、这些装置的驱动方法或者这些装置的制造方法。
背景技术
使用有机化合物且利用电致发光(EL:Electroluminescence)的发光器件(有机EL器件)的实用化非常活跃。在这些发光器件的基本结构中,在一对电极之间夹有包含发光材料的有机化合物层(EL层)。通过对该器件施加电压,注入载流子,利用该载流子的再结合能量,可以获得来自发光材料的发光。
因为这种发光器件是自发光型发光器件,所以当用于显示器的像素时比起液晶有可见度更高、不需要背光源等优势。因此,该发光器件适合于平板显示器元件。此外,使用这种发光器件的显示器可以被制造成薄而轻,这也是极大的优点。而且,非常快的响应速度也是其特征之一。
此外,因为这种发光器件的发光层可以在二维上连续地形成,所以可以获得面发光。因为该特征是在利用以白炽灯或LED为代表的点光源或者以荧光灯为代表的线光源中难以得到的,所以作为可应用于照明等的面光源的利用价值也高。
如上所述,可以将使用发光器件的显示器或照明装置适合用于各种各样的电子设备,为了追求具有更良好的特性的发光器件的研究开发日益活跃。
作为发光器件的制造方法,已知各种各样的方法。作为形成高清晰发光器件的方法之一,已知有不用精细金属掩模也可以形成发光层的方法。作为其一个例子,有一种有机EL显示器的制造方法,包括:在形成在绝缘衬底上方的包括第一及第二像素电极的电极阵列的上方沉积包含主体材料和掺杂剂材料的混合物的第一发光性有机材料,来形成第一发光层作为设置在包括电极阵列的显示区域整体上的连续膜的工序;不向第一发光层中位于第一像素电极的上方的部分而向第一发光层中位于第二像素电极的上方的部分照射紫外光的工序;在第一发光层上沉积包含主体材料和掺杂剂材料的混合物并与第一发光性有机材料不同的第二发光性有机材料,来形成第二发光层作为设置在显示区域整体上的连续膜的工序;以及在第二发光层的上方形成对置电极的工序(专利文献1)。
此外,在非专利文献1中公开作为有机EL器件之一使用标准的UV光刻技术的有机光电子器件的制造方法(非专利文献1)。
[专利文献1]日本专利申请公开第2012-160473号公报
[非专利文献1]B.Lamprecht et al.,“Organic optoelectronic devicefabrication using standard UV photolithography”phys.stat.sol.(RRL)2,No.1,p.16-18(2008)
发明内容
本发明的一个方式的目的之一是提供一种耐热性高的发光器件。本发明的另一个方式的目的之一是提供一种制造工艺中的耐热性高的发光器件。本发明的另一个方式的目的之一是提供一种可靠性高的发光器件。本发明的另一个方式的目的之一是提供一种功耗低的发光器件、发光装置、电子设备、显示装置及电子器件。本发明的另一个方式的目的之一是提供一种功耗低且可靠性高的发光器件、发光装置、电子设备、显示装置及电子器件。
注意,这些目的的记载并不妨碍其他目的的存在。注意,本发明的一个方式并不需要实现所有上述目的。注意,可以从说明书、附图、权利要求书等的记载得知并抽出上述以外的目的。
通过在发光器件中使用高玻璃化转变点(Tg)的材料,可以提高发光器件的耐热性,为了提高Tg,一般可以举出增大分子量或者引入环数多的稠合环。具体而言,引入不容易影响到最低三重激发能级(T1)或最低单重激发能级(S1)的苯基等烃基是简单的。但是,这种增大分子量的材料与原来的Tg低的材料相比包括无助于载流子传输性的更多的骨格或取代基,载流子传输性有可能降低,有因该传输特性降低而导致的发光器件的元件特性降低的问题。但是,在本发明的一个方式的发光器件中,使用玻璃化转变点高且不容易降低发光器件的特性的结构及设法改变取代基的种类和配置的有机化合物。因此,可以提供一种在保持元件特性的同时具有高耐热性的发光器件。
本发明的一个方式是一种发光器件,包括:阳极;阴极;以及阳极与阴极之间的EL层,其中,EL层包括发光层及第一层,第一层位于发光层与阴极之间,发光层与第一层接触,发光层包含第一有机化合物及发光物质,第一层包含第二有机化合物,发光物质为发射蓝光的物质,第一有机化合物为具有稠合芳香烃环的有机化合物,并且,第二有机化合物为具有包含选自吡啶环、二嗪环和三嗪环中的一个的杂芳环骨架及联咔唑骨架的有机化合物。
本发明的一个方式是一种发光器件,包括:阳极;阴极;以及阳极与阴极之间的EL层,其中,EL层包括发光层及第一层,第一层位于发光层与阴极之间,发光层与第一层接触,发光层包含第一有机化合物及发光物质,第一层包含第二有机化合物,发光物质为发射蓝光的物质,第一有机化合物为具有稠合芳香烃环的有机化合物,稠合芳香烃环为只由苯环构成的稠环,并且,第二有机化合物为具有包含选自吡啶环、二嗪环和三嗪环中的一个的杂芳环骨架及联咔唑骨架的有机化合物。
本发明的一个方式是一种发光器件,包括:阳极;阴极;以及阳极与阴极之间的EL层,其中,EL层包括发光层及第一层,第一层位于发光层与阴极之间,发光层与第一层接触,发光层包含第一有机化合物及发光物质,第一层包含第二有机化合物,发光物质为发射蓝光的物质,第一有机化合物为具有蒽环、苯并蒽环、二苯并蒽环、
Figure BDA0003755485300000041
环、萘环、菲环和三亚苯环中的任一个的有机化合物,并且,第二有机化合物为具有包含选自吡啶环、二嗪环和三嗪环中的一个的杂芳环骨架及联咔唑骨架的有机化合物。
本发明的一个方式是一种具有上述结构的发光器件,其中第二有机化合物为具有包含吡啶环或二嗪环的稠合杂芳环骨架及联咔唑骨架的有机化合物。
本发明的一个方式是一种在阳极与阴极之间包括EL层的发光器件,其中,EL层至少包括发光层,与发光层接触的第一层位于发光层与阴极之间,发光层包含发光物质及第一有机化合物,第一层包含第二有机化合物,第二有机化合物为具有电子传输性的有机化合物,发光物质为发射蓝光的物质,第一有机化合物为由通式(G1)表示的有机化合物,并且,第二有机化合物为由通式(G300)表示的有机化合物。
[化学式1]
Figure BDA0003755485300000051
注意,在通式(G1)中,R1至R18分别独立地表示氢(包含氘)和碳原子数为1至25的芳基中的任意个。此外,相邻的取代基也可以彼此键合形成稠合芳香环。
[化学式2]
Figure BDA0003755485300000061
在通式(G300)中,A300表示具有吡啶骨架的杂芳环、具有二嗪骨架的杂芳环和具有三嗪骨架的杂芳环中的任意个。R301至R315分别独立地表示氢、取代或未取代的碳原子数为1至6的烷基、取代或未取代的碳原子数为5至7的环烷基、取代或未取代的形成骨架的碳原子数为6至13的芳基、取代或未取代的形成骨架的碳原子数为3至13的杂芳基中的任意个。Ar300表示取代或未取代的碳原子数为6至25的亚芳基或单键。
本发明的一个方式是具有上述结构的发光器件,其中第一有机化合物及第二有机化合物的玻璃化转变点为100℃以上且180℃以下。
本发明的一个方式是具有上述结构的发光器件,其中发光物质发射荧光。
本发明的一个方式是具有上述结构的发光器件,其中在阳极与发光层之间包括与阳极接触的第二层,第二层包含第三有机化合物及第四有机化合物,第四有机化合物对第三有机化合物具有电子接收性,并且第二层具有1×104[Ω·cm]以上且1×107[Ω·cm]以下的电阻率。
本发明的一个方式是一种包括具有上述结构的发光器件以及晶体管和衬底中的至少一个的发光装置。
本发明的一个方式是一种包括相邻的第一发光器件以及第二发光器件的发光装置,其中,第一发光器件在第一阳极上隔着第一EL层包括阴极,第一EL层至少包括第一发光层,与第一发光层接触的第一层位于第一发光层与阴极之间,第一发光层包含第一发光物质及第一有机化合物,第一层包含第二有机化合物,第一绝缘层与第一发光层的侧面及第一层的侧面接触,第一电子注入层位于第一层上,第一绝缘层位于第一电子注入层与第一发光层的侧面及第一层的侧面之间,第二发光器件在第二阳极上隔着第二EL层包括阴极,第二EL层至少包括第二发光层,与第二发光层接触的第二层位于第二发光层与阴极之间,第二发光层包含第二发光物质,第二层包含第二有机化合物,第二绝缘层与第二发光层的侧面及第二层的侧面接触,第二电子注入层位于第二层上,第二绝缘层位于第二电子注入层与第二发光层的侧面及第二层的侧面之间,第二有机化合物为具有电子传输性的有机化合物,第一发光物质为发射蓝光的物质,并且,第一有机化合物为由通式(G1)表示的有机化合物。
[化学式3]
Figure BDA0003755485300000071
在通式(G1)中,R1至R18分别独立地表示氢(包含氘)和碳原子数为1至25的芳基中的任意个。此外,相邻的取代基也可以彼此键合形成稠合芳香环。
本发明的一个方式是一种包括相邻的第一发光器件以及第二发光器件的发光装置,其中,第一发光器件在第一阳极上隔着第一EL层包括阴极,第一EL层至少包括第一发光层,与第一发光层接触的第一层位于第一发光层与阴极之间,第一发光层包含第一发光物质及第一有机化合物,第一层包含第二有机化合物,第一绝缘层与第一发光层的侧面及第一层的侧面接触,第一电子注入层位于第一层上,第一绝缘层位于第一电子注入层与第一发光层的侧面及第一层的侧面之间,第二发光器件在第二阳极上隔着第二EL层包括阴极,第二EL层至少包括第二发光层,在第二发光层与阴极之间包括与第二发光层接触的第二层,第二发光层包含第二发光物质,第二层包含第二有机化合物,第二绝缘层与第二发光层的侧面及第二层的侧面接触,第二电子注入层位于第二层上,第二绝缘层位于第二电子注入层与第二发光层的侧面及第二层的侧面之间,第二有机化合物为具有电子传输性的有机化合物,第一发光物质为发射蓝光的物质,并且,第二有机化合物为由通式(G300)表示的有机化合物。
[化学式4]
Figure BDA0003755485300000081
在通式(G300)中,A300表示具有吡啶骨架的杂芳环、具有二嗪骨架的杂芳环和具有三嗪骨架的杂芳环中的任意个。R301至R315分别独立地表示氢、取代或未取代的碳原子数为1至6的烷基、取代或未取代的碳原子数为5至7的环烷基、取代或未取代的形成骨架的碳原子数为6至13的芳基、取代或未取代的形成骨架的碳原子数为3至13的杂芳基中的任意个。Ar300表示取代或未取代的碳原子数为6至25的亚芳基或单键。
本发明的一个方式是一种包括相邻的第一发光器件以及第二发光器件的发光装置,其中,第一发光器件在第一阳极上隔着第一EL层包括阴极,第一EL层至少包括第一发光层,与第一发光层接触的第一层位于第一发光层与阴极之间,第一发光层包含第一发光物质及第一有机化合物,第一层包含第二有机化合物,第一绝缘层与第一发光层的侧面及第一层的侧面接触,在第一层上包括第一电子注入层,第一绝缘层位于第一电子注入层与第一发光层的侧面及第一层的侧面之间,第二发光器件在第二阳极上隔着第二EL层包括阴极,第二EL层至少包括第二发光层,在第二发光层与阴极之间包括与第二发光层接触的第二层,第二发光层包含第二发光物质,第二层包含第二有机化合物,第二绝缘层与第二发光层的侧面及第二层的侧面接触,在第二层上包括第二电子注入层,第二绝缘层位于第二电子注入层与第二发光层的侧面及第二层的侧面之间,第二有机化合物为具有电子传输性的有机化合物,第一发光物质为发射蓝光的物质,第一有机化合物为由通式(G1)表示的有机化合物,并且,第二有机化合物为由通式(G300)表示的有机化合物。
[化学式5]
Figure BDA0003755485300000101
在通式(G1)中,R1至R18分别独立地表示氢(包含氘)和碳原子数为1至25的芳基中的任意个。此外,相邻的取代基也可以彼此键合形成稠合芳香环。
[化学式6]
Figure BDA0003755485300000102
在通式(G300)中,A300表示具有吡啶骨架的杂芳环、具有二嗪骨架的杂芳环和具有三嗪骨架的杂芳环中的任意个。R301至R315分别独立地表示氢、取代或未取代的碳原子数为1至6的烷基、取代或未取代的碳原子数为5至7的环烷基、取代或未取代的形成骨架的碳原子数为6至13的芳基、取代或未取代的形成骨架的碳原子数为3至13的杂芳基中的任意个。Ar300表示取代或未取代的碳原子数为6至25的亚芳基或单键。
本发明的一个方式是具有上述结构的发光装置,其中第一有机化合物的玻璃化转变点为100℃以上且180℃以下。
本发明的一个方式是具有上述结构的发光装置,其中第二有机化合物的玻璃化转变点为100℃以上且180℃以下。
本发明的一个方式是具有上述结构的发光装置,其中第二发光物质为发射绿光或红光的物质。
本发明的一个方式是具有上述结构的发光装置,其中第一发光物质发射荧光。
本发明的一个方式是具有上述结构的发光装置,其中第二发光物质发射磷光。
本发明的一个方式是包括具有上述结构的发光装置以及检测部、输入部或通信部的电子设备。
本发明的一个方式是包括具有上述结构的发光装置及外壳的照明装置。
另外,本发明的一个方式不仅包括具有发光器件的发光装置或受发光装置,还包括具有发光装置或受发光装置的照明装置。因此,本说明书中的发光装置或受发光装置是指图像显示器件或光源(包括照明装置)。另外,发光装置及受发光装置还包括如下模块:发光装置安装有连接器诸如FPC(Flexible printed circuit:柔性印刷电路)或TCP(TapeCarrier Package:载带封装)的模块;在TCP端部设置有印刷线路板的模块;或者IC(集成电路)通过COG(Chip On Glass:玻璃覆晶封装)方式直接安装到发光器件的模块。
在本说明书中,晶体管所具有的源极和漏极的名称根据晶体管的极性及施加到各端子的电位的高低互相调换。一般而言,在n沟道型晶体管中,将被施加低电位的端子称为源极,而将被施加高电位的端子称为漏极。另外,在p沟道型晶体管中,将被施加低电位的端子称为漏极,而将被施加高电位的端子称为源极。在本说明书中,尽管为方便起见在一些情况下假定源极和漏极是固定的来描述晶体管的连接关系,但是实际上,源极和漏极的名称根据上述电位关系而相互调换。
在本说明书中,晶体管的源极是指用作活性层的半导体膜的一部分的源区或与上述半导体膜连接的源电极。与此同样,晶体管的漏极是指上述半导体膜的一部分的漏区或与上述半导体膜连接的漏电极。另外,栅极是指栅电极。
在本说明书中,晶体管串联连接的状态是指例如第一晶体管的源极和漏极中只有一个只与第二晶体管的源极和漏极中的一个连接的状态。另外,晶体管并联连接的状态是指第一晶体管的源极和漏极中的一个与第二晶体管的源极和漏极中的一个连接且第一晶体管的源极和漏极中的另一个与第二晶体管的源极和漏极中的另一个连接的状态。
在本说明书中,连接是指电连接,相当于能够供应或传送电流、电压或电位的状态。因此,连接状态不一定必须是指直接连接的状态,而在其范畴内还包括能够供应或传送电流、电压或电位的通过布线、电阻、二极管、晶体管等的电路元件间接地连接的状态。
即使在本说明书中电路图上独立的构成要素彼此连接时,实际上也有一个导电膜兼具有多个构成要素的功能的情况,例如布线的一部分用作电极的情况等。本说明书中的连接的范畴内包括这种一个导电膜兼具有多个构成要素的功能的情况。
本发明的一个方式可以提供一种耐热性高的发光器件。另外,本发明的一个方式可以提供一种制造工艺中的耐热性高的发光器件。另外,本发明的另一个方式可以提供一种可靠性高的发光器件。另外,本发明的一个方式可以提供一种功耗低的发光器件、发光装置、电子设备、显示装置及电子器件。此外,本发明的一个方式可以提供一种功耗低且可靠性高的发光器件、发光装置、电子设备、显示装置、电子器件及照明装置。
注意,这些效果的记载并不妨碍其他效果的存在。注意,本发明的一个方式并不需要具有所有上述效果。注意,可以从说明书、附图、权利要求书等的记载得知并抽出上述以外的效果。
附图说明
图1A至图1C是说明根据实施方式的发光器件的结构的图;
图2A至图2E是说明根据实施方式的发光器件的结构的图;
图3A至图3D是说明根据实施方式的发光装置的图;
图4A至图4C是说明根据实施方式的发光装置的制造方法的图;
图5A至图5C是说明根据实施方式的发光装置的制造方法的图;
图6A至图6C是说明根据实施方式的发光装置的制造方法的图;
图7A至图7C是说明根据实施方式的发光装置的制造方法的图;
图8是说明根据实施方式的发光装置的图;
图9A至图9F是说明根据实施方式的装置及像素布局的图;
图10A至图10C是说明根据实施方式的像素电路及晶体管的图;
图11A及图11B是说明根据实施方式的发光装置的图;
图12A至图12E是说明根据实施方式的电子设备的图;
图13A至图13E是说明根据实施方式的电子设备的图;
图14A及图14B是说明根据实施方式的电子设备的图;
图15A及图15B是说明根据实施方式的照明装置的图;
图16是说明根据实施方式的照明装置的图;
图17A至图17C是说明根据实施方式的发光器件及受光器件的图;
图18是说明根据实施例的发光器件的结构的图;
图19是示出发光器件1及比较发光器件2的电流-电压特性的图;
图20是示出发光器件1及比较发光器件2的蓝色指标-亮度特性的图;
图21是示出发光器件1及比较发光器件2的发射光谱的图;
图22是示出发光器件3及比较发光器件4的电流-电压特性的图;
图23是示出发光器件3及比较发光器件4的蓝色指标-亮度特性的图;
图24是示出发光器件3及比较发光器件4的发射光谱的图。
具体实施方式
以下,参照附图详细地说明本发明的实施方式。注意,本发明不局限于以下说明,而所属技术领域的普通技术人员可以很容易地理解一个事实就是其方式及详细内容在不脱离本发明的宗旨及其范围的情况下可以被变换为各种各样的形式。因此,本发明不应该被解释为仅限定在以下所示的实施方式所记载的内容中。
实施方式1
在本实施方式中,说明本发明的一个方式的发光器件。通过采用本实施方式所示的器件结构,可以提供其特性不易受到制造工艺中的包括热处理的工序的影响的发光器件,即可以提供耐热性高的发光器件。
图1A示出本发明的一个方式的发光器件100的结构。如图1A所示,发光器件100包括第一电极101及第二电极102,在第一电极101与第二电极102之间具有EL层103,其中依次层叠空穴注入/传输层104、发光层113、第一电子传输层108-1、第二电子传输层108-2及电子注入层109。也就是说,发光器件100的电子传输层具有层叠第一电子传输层108-1及第二电子传输层108-2的结构。
发光层113至少包括发光物质及第一有机化合物(以下,也称为第一主体材料)。
作为发光物质,可以使用发射蓝光的物质。此外,作为发光物质,可以使用发射荧光的物质。由此,EL层103可以发射蓝光。
注意,将后面在实施方式2中说明能够被用作发光物质的发射蓝光的物质及发射荧光的物质的具体例子。
在用于发光层113的发光物质是荧光发光物质的情况下,作为与发光物质组合而使用的有机化合物(主体材料),优选使用其单重激发态的能级大且其三重激发态的能级小的有机化合物或荧光量子产率高的有机化合物。因此,只要是满足上述条件的有机化合物就可以使用空穴传输性材料(上述)及电子传输性材料(后述)等。
此外,从与发光物质(荧光物质)的优选组合的观点来看,作为有机化合物(主体材料)可以举出蒽衍生物、并四苯衍生物、菲衍生物、芘衍生物、
Figure BDA0003755485300000151
(chrysene)衍生物、二苯并[g,p]
Figure BDA0003755485300000152
衍生物等稠合多环芳香化合物。
注意,在本实施方式所示的发光层113中,例如,作为第一有机化合物,优选使用具有稠合芳香烃环且玻璃化转变点(Tg)为100℃以上且180℃以下,优选为120℃以上且180℃以下,更优选为140℃以上且180℃以下的有机化合物。注意,该稠合芳香烃环优选为只由苯环构成的稠环。此外,该稠合芳香烃环更优选使用具有蒽环、苯并蒽环、二苯并蒽环、
Figure BDA0003755485300000161
环、萘环、菲环或三亚苯环且玻璃化转变点(Tg)为100℃以上,优选为120℃以上,更优选为140℃以上且180℃以下的有机化合物。此外,尤其优选使用具有电子传输性的有机化合物。
注意,通过作为第一有机化合物,使用Tg为100℃以上,优选为120℃以上,更优选为140℃以上的有机化合物,可以提高发光器件100的耐热性,所以是优选的。一般来说,通过在发光器件中使用Tg高的材料,有时如上那样发光器件的特性降低。但是,本发明的一个方式的发光器件作为第一有机化合物使用具有蒽环、苯并蒽环、二苯并蒽环、
Figure BDA0003755485300000162
环、萘环、菲环或三亚苯环的有机化合物。具有这些骨架的有机化合物由于具有平面性高的稠合芳香环骨架,材料分子彼此的堆积状态较容易出现,分子彼此的相互作用高,所以具有优异的电子传输性,且有Tg原来较高的倾向。此外,即使为了实现更高的Tg增大分子量,只要不采用大大阻碍分子间的稠合芳香环彼此的相互作用的结构,也可以认为能够抑制元件的驱动电压的上升。
作为第一有机化合物,具体而言,可以使用由下述通式(G1)表示的有机化合物。
[化学式7]
Figure BDA0003755485300000171
在上述通式(G1)中,R1至R18分别独立地表示氢(包含氘)、取代或未取代的碳原子数为1至6的烷基、取代或未取代的碳原子数为5至7的环烷基和取代或未取代的形成骨架的碳原子数为1至25的芳基中的任意个,相邻的取代基也可以彼此键合形成稠合芳香环。
另外,作为上述通式(G1)中的碳原子数为1至6的烷基,例如可以举出甲基、乙基、丙基、异丙基、丁基、异丁基、仲丁基、叔丁基、戊基、异戊基、己基等。另外,作为碳原子数为5至7的环烷基,例如可以举出环戊基、环己基、环庚基等。作为碳原子数为6至25的芳基,例如可以举出苯基、甲苯基、二甲苯基、联苯基、茚基、萘基、芴基等。另外,作为碳原子数为6至25的亚芳基,可以举出1,2-或1,3-或1,4-亚苯基、2,6-或3,5-或2,4-甲代亚苯基(toluylene)、4,6-二甲苯-1,3-二基、2,4,6-三甲苯-1,3-二基、2,3,5,6-四甲苯-1,4-二基、3,3’-或3,4’-或4,4’-联苯基、1,1’:3’,1”-三联苯(terbenzene)-3,3”-二基、1,1’:4’,1”-三联苯-3,3”-二基、1,1’:4’,1”-三联苯-4,4”-二基、1,1’:3’,1”:3”,1”’-联四苯-3,3”’-二基、1,1’:3’,1”:4”,1”’-联四苯-3,4”’-二基、1,1’:4’,1”:4”,1”’-联四苯-4,4”’-二基、1,4-或1,5-或2,6-或2,7-亚萘基、2,7-亚芴基、9,9-二甲基-2,7-亚芴基、9,9-二苯基-2,7-亚芴基、9,9-二甲基-1,4-亚芴基、螺-9,9’-二芴-2,7-二基、9,10-二氢-2,7-亚菲基(phenanthrenylene)、2,7-亚菲基、3,6-亚菲基、9,10-亚菲基、2,7-亚三亚苯基(triphenylenylene group)、3,6-亚三亚苯基、2,8-亚苯并[a]菲基、2,9-亚苯并[a]菲基、5,8-亚苯并[c]菲基、螺双亚芴基等。
另外,上述碳原子数为1至6的烷基、碳原子数为5至7的环烷基、碳原子数为6至25的芳基也可以具有取代基,作为该取代基,优选使用:甲基、乙基、丙基、异丙基、丁基、异丁基、仲丁基、叔丁基、戊基、异戊基、己基等碳原子数为1至6的烷基;环戊基、环己基、环庚基等碳原子数为5至7的环烷基;或者苯基、甲苯基、二甲苯基、联苯基、茚基、萘基、芴基、9,9’-二甲基芴基等形成环的碳原子数为6至13的芳基。
以下示出由上述通式(G1)表示的有机化合物的具体例子。
[化学式8]
Figure BDA0003755485300000191
由上述结构式(100)至结构式(107)表示的有机化合物的名称如下。
结构式(100):9-(1-萘基)-10-[4-(2-萘基)苯基]蒽(简称:OCFH-005)、结构式(101):2,9-二(1-萘基)-10-苯基蒽(简称:2αN-αNPhA)、结构式(102):9-(1-萘基)-10-[3-(1-萘基)苯基]蒽(简称:αN-mαNPAnth)、结构式(103):9-(2-萘基)-10-[3-(1-萘基)苯基]蒽(简称:βN-mαNPAnth)、结构式(104):9-(2-萘基)-10-[3-(2-萘基)苯基]蒽(简称:βN-mβNPAnth)、结构式(105):9-(1-萘基)-10-[4-(1-萘基)苯基]蒽(简称:αN-αNPAnth)、结构式(106):9-(2-萘基)-10-[4-(2-萘基)苯基]蒽(简称:βN-βNPAnth)、结构式(107):2-(1-萘基)-9-(2-萘基)-10-苯基蒽(简称:2αN-βNPhA)。
电子传输层(第一电子传输层108-1及第二电子传输层108-2)为通过电子注入层109将从第二电极102注入的电子传输到发光层113的层,可以使用具有电子传输性的有机化合物。电子传输层在此所示那样也可以具有叠层结构,此时,在与发光层113接触一侧的层(第一电子传输层108-1)使用耐热性高且具有电子传输性的有机化合物,可以提高发光器件100的耐热性。
在本实施方式所示的电子传输层中,例如,作为用于第一电子传输层108-1的具有电子传输性的有机化合物,例如优选使用玻璃化转变点(Tg)为100℃以上,优选为120℃以上的有机化合物,更优选使用杂芳族化合物。
注意,通过作为用于第一电子传输层108-1的具有电子传输性的有机化合物使用Tg为100℃以上,优选为120℃以上,更优选为140℃以上的有机化合物,优选可以提高发光器件100的耐热性。一般来说,通过在发光器件中使用Tg高的材料,有时如上那样发光器件的特性降低。本发明的一个方式的发光器件作为具有电子传输性的有机化合物使用具有三嗪、二苯并[f,h]喹喔啉、苯并呋喃并嘧啶(Bfpm)、菲并呋喃并吡嗪(phenanthrofuropyrazine)(Pnfpr)、萘并呋喃并吡嗪(Nfpr)、萘并呋喃并嘧啶(Nfpm)、菲并呋喃并嘧啶(Pnfpm)、苯并呋喃并吡嗪(Bfpr)、苯并呋喃并吡啶(Bfpy)、菲并呋喃并吡啶(Pnfpy)、萘并呋喃并吡啶(Nfpy)、嘧啶、吡啶、喹啉、苯并喹啉、喹唑啉、苯并喹唑啉、喹喔啉、苯并喹喔啉、三氮杂三亚苯(triazatriphenylene)、四氮杂三亚苯(tetraazatriphenylene)、六氮杂三亚苯、菲咯啉等的骨架的有机化合物。具有这些骨架的有机化合物具有优异的电子传输性,因此通过用于电子传输层,即使Tg较高也可以抑制发光器件的驱动电压的上升。
作为第一电子传输层108-1优选为具有包含选自吡啶环、二嗪环和三嗪环中的一个的杂芳环骨架及联咔唑骨架的有机化合物。在此,例如包含吡啶环的杂芳环被解释为包括吡啶环本身或吡啶环与苯环稠合的结构(就是说喹啉环或异喹啉环)。
作为第一电子传输层108-1,上述杂芳环骨架尤其优选为包含吡啶环或二嗪环的稠合杂芳环骨架。
联咔唑骨架是由下述通式(g300)表示的骨架。具有这种骨架的有机化合物具有高耐热性,通过将其用于第一电子传输层108-1可以得到具有优良的耐热性的发光器件。
[化学式9]
Figure BDA0003755485300000211
在上述通式(g300)中,R301至R315分别独立地表示氢、取代或未取代的碳原子数为1至6的烷基、取代或未取代的碳原子数为5至7的环烷基、取代或未取代的形成骨架的碳原子数为6至13的芳基和取代或未取代的形成骨架的碳原子数为3至13的杂芳基中的任意个。
第一电子传输层108-1可以使用由下述通式(G300)表示的有机化合物。由下述通式(G300)表示的有机化合物具有高玻璃化转变点(Tg)及优良的耐热性,由此发光器件的耐热性得到提高,所以是优选的。如此,第一电子传输层108-1优选具有联咔唑骨架及包含二嗪环之一种的吡嗪环的稠合芳香环。
[化学式10]
Figure BDA0003755485300000221
注意,在上述通式(G300)中,A300表示具有吡啶骨架的杂芳环、具有二嗪骨架的杂芳环和具有三嗪骨架的杂芳环中的任意个,R301至R315分别独立地表示氢、取代或未取代的碳原子数为1至6的烷基、取代或未取代的碳原子数为5至7的环烷基、取代或未取代的形成骨架的碳原子数为6至13的芳基和取代或未取代的形成骨架的碳原子数为3至13的杂芳基中的任意个,Ar300表示取代或未取代的碳原子数为6至25的亚芳基或单键。注意,作为Ar300的亚芳基,优选不包括亚蒽基。
第一电子传输层108-1可以使用由下述通式(G301)表示的有机化合物。
[化学式11]
Figure BDA0003755485300000231
注意,在上述通式(G301)中,R301至R324分别独立地表示氢、取代或未取代的碳原子数为1至6的烷基、取代或未取代的碳原子数为5至7的环烷基和取代或未取代的碳原子数为6至13的芳基中的任意个,Ar300表示取代或未取代的碳原子数为6至25的亚芳基或单键。注意,作为Ar300的亚芳基,优选不包括亚蒽基。
在第一电子传输层108-1中可以使用由下述通式(G302)表示的有机化合物。
[化学式12]
Figure BDA0003755485300000241
注意,在上述通式(G302)中,R301至R324分别独立地表示氢、取代或未取代的碳原子数为1至6的烷基、取代或未取代的碳原子数为5至7的环烷基和取代或未取代的碳原子数为6至13的芳基中的任意个,Ar300表示取代或未取代的碳原子数为6至25的亚芳基或单键。注意,作为Ar300的亚芳基,优选不包括亚蒽基。
在第一电子传输层108-1中可以使用由下述通式(G303)表示的有机化合物。
[化学式13]
Figure BDA0003755485300000242
注意,在上述通式(G303)中,R301至R324分别独立地表示氢、取代或未取代的碳原子数为1至6的烷基、取代或未取代的碳原子数为5至7的环烷基和取代或未取代的碳原子数为6至13的芳基中的任意个,Ar300表示取代或未取代的碳原子数为6至25的亚芳基或单键。注意,作为Ar300的亚芳基,优选不包括亚蒽基。
另外,作为上述通式(G300)、通式(G301)、通式(G302)及通式(G303)中的碳原子数为1至6的烷基,例如可以举出甲基、乙基、丙基、异丙基、丁基、异丁基、仲丁基、叔丁基、戊基、异戊基、己基等。另外,作为碳原子数为5至7的环烷基,例如可以举出环戊基、环己基、环庚基等。作为碳原子数为6至13的芳基,例如可以举出苯基、甲苯基、二甲苯基、联苯基、茚基、萘基、芴基等。另外,作为Ar中的碳原子数为6至25的亚芳基,可以举出1,2-或1,3-或1,4-亚苯基、2,6-或3,5-或2,4-甲代亚苯基(toluylene)、4,6-二甲苯-1,3-二基、2,4,6-三甲苯-1,3-二基、2,3,5,6-四甲苯-1,4-二基、3,3’-或3,4’-或4,4’-联苯基、1,1’:3’,1”-三联苯(terbenzene)-3,3”-二基、1,1’:4’,1”-三联苯-3,3”-二基、1,1’:4’,1”-三联苯-4,4”-二基、1,1’:3’,1”:3”,1”’-联四苯-3,3”’-二基、1,1’:3’,1”:4”,1”’-联四苯-3,4”’-二基、1,1’:4’,1”:4”,1”’-联四苯-4,4”’-二基、1,4-或1,5-或2,6-或2,7-亚萘基、2,7-亚芴基、9,9-二甲基-2,7-亚芴基、9,9-二苯基-2,7-亚芴基、9,9-二甲基-1,4-亚芴基、螺-9,9’-二芴-2,7-二基、9,10-二氢-2,7-亚菲基(phenanthrenylene)、2,7-亚菲基、3,6-亚菲基、9,10-亚菲基、2,7-亚三亚苯基(triphenylenylene group)、3,6-亚三亚苯基、2,8-亚苯并[a]菲基、2,9-亚苯并[a]菲基、5,8-亚苯并[c]菲基等。
另外,上述碳原子数为1至6的烷基、碳原子数为5至7的环烷基、碳原子数为6至13的芳基、碳原子数为6至25的亚芳基也可以具有取代基,作为该取代基,优选使用:甲基、乙基、丙基、异丙基、丁基、异丁基、仲丁基、叔丁基、戊基、异戊基、己基等碳原子数为1至6的烷基;环戊基、环己基、环庚基等碳原子数为5至7的环烷基;或者苯基、甲苯基、二甲苯基、联苯基、茚基、萘基、芴基、9,9’-二甲基芴基等形成环的碳原子数为6至13的芳基。
注意,作为由上述通式(G300)至通式(G303)表示的有机化合物,具体而言可以适当地使用由下述结构式(300)至(312)表示的2-{3-[3-(N-苯基-9H-咔唑-3-基)-9H-咔唑-9-基]苯基}二苯并[f,h]喹喔啉(简称:2mPCCzPDBq)(300)、2-{3-[2-(N-苯基-9H-咔唑-3-基)-9H-咔唑-9-基]苯基}二苯并[f,h]喹喔啉(简称:2mPCCzPDBq-02)(301)、2-{3-[3-(N-苯基-9H-咔唑-2-基)-9H-咔唑-9-基]苯基}二苯并[f,h]喹喔啉(简称:2mPCCzPDBq-03)(302)、2-{3-[3-(N-(3,5-二-叔丁基苯基-9H-咔唑-3-基)-9H-咔唑-9-基]苯基}二苯并[f,h]喹喔啉(303)、9-[3-(4,6-二苯基-1,3,5-三嗪-2-基)苯基]-9’-苯基-3,3’-联-9H-咔唑(简称:mPCCzPTzn)(304)、9-[3-(4,6-二苯基-1,3,5-三嗪-2-基)苯基]-9’-苯基-2,3’-联-9H-咔唑(简称:mPCCzPTzn-02)(305)、9-[4-(4,6-二苯基-1,3,5-三嗪-2-基)苯基]-9’-苯基-3,3’-联-9H-咔唑(简称:PCCzPTzn)(306)、9-(4,6-二苯基-1,3,5-三嗪-2-基)-9’-苯基-3,3’-联-9H-咔唑(简称:PCCzTzn(CzT))(307)、9-[3-(4,6-二苯基-嘧啶-2-基)苯基]-9’-苯基-3,3’-联-9H-咔唑(简称:2PCCzPPm)(308)、9-(4,6-二苯基-嘧啶-2-基)-9’-苯基-3,3’-联-9H-咔唑(简称:2PCCzPm)(309)、4-[2-(N-苯基-9H-咔唑-3-基)-9H-咔唑-9-基]苯并呋喃并[3,2-d]嘧啶(简称:4PCCzBfpm-02)(310)、4-{3-[3-(N-苯基-9H-咔唑-3-基)-9H-咔唑-9-基]苯基}苯并[h]喹唑啉(311)、9-[3-(2,6-二苯基-吡啶-4-基)苯基]-9’-苯基-3,3’-联-9H-咔唑(312)。
[化学式14]
Figure BDA0003755485300000271
[化学式15]
Figure BDA0003755485300000281
在用于第一电子传输层108-1的有机化合物的玻璃化转变点为100℃以上且180℃以下,优选为120℃以上且180℃以下,更优选为140℃以上且180℃以下时,可以提高发光器件100的耐热性,所以是优选的。由上述通式(G300)至通式(G303)表示的有机化合物具有高玻璃化转变点及优良的耐热性,所以是优选的。
注意,第一电子传输层108-1更优选具有阻挡从第一电极101一侧通过发光层113移动到第二电极102一侧的空穴的功能。因此,第一电子传输层108-1也可以被称为空穴阻挡层。
将后面在实施方式2中说明可以在第二电子传输层108-1中使用的具有电子传输性的有机化合物的具体例子。
图1B及图1C示出图1A所示的发光器件100的具体结构的一个例子。在图1B中,第一电极101上依次层叠有空穴注入/传输层104、发光层113、第一电子传输层108-1、第二电子传输层108-2及电子注入层109。注意,如图1B的截面图所示,与第一电极101的端部(或侧面)相比,空穴注入/传输层104、发光层113、第一电子传输层108-1及第二电子传输层108-2的端部(或侧面)更位于内侧。另外,空穴注入/传输层104、发光层113、第一电子传输层108-1及第二电子传输层108-2的端部(或侧面)以及第一电极101的顶面的一部分及端部(或侧面)与绝缘层107接触。
注意,通过设置绝缘层107,可以保护空穴注入/传输层104的端部(或侧面)、发光层113的端部(或侧面)、第一电子传输层108-1的端部(或侧面)及第二电子传输层108-2的端部(或侧面)。由此,可以在能够抑制工序中各层所受到的损伤的同时,防止因与不同层接触而形成的电连接。
电子注入层109是EL层103的一部分,如图1B所示,电子注入层109与EL层103中的其他层(空穴注入/传输层104、发光层113、第一电子传输层108-1及第二电子传输层108-2)具有不同的形状。但是,电子注入层109和第二电极102也可以采用相同的形状。由于可以在多个发光器件中共同使用电子注入层109和第二电极102,所以可以使发光器件100的制造工序简化,由此可以提高生产量。
此外,也可以采用具有图1C所示的结构的发光器件。第一电极101上以覆盖第一电极101的方式依次层叠有空穴注入/传输层104、发光层113、第一电子传输层108-1、第二电子传输层108-2及电子注入层109,在图1C所示的截面中,与第一电极101的端部(或侧面)相比,空穴注入/传输层104、发光层113、第一电子传输层108-1及第二电子传输层108-2的端部更位于外侧。另外,空穴注入/传输层104、发光层113、第一电子传输层108-1及第二电子传输层108-2的端部与绝缘层107接触。
绝缘层107与空穴注入/传输层104的端部(或侧面)、发光层113的端部(或侧面)、第一电子传输层108-1的端部(或侧面)及第二电子传输层108-2的端部(或侧面)接触。另外,绝缘层107位于空穴注入/传输层104的端部(或侧面)、发光层113的端部(或侧面)、第一电子传输层108-1的端部(或侧面)及第二电子传输层108-2端部(或侧面)与第二绝缘层140之间。电子注入层109位于第二绝缘层140、绝缘层107及第二电子传输层108-2上。注意,作为第二绝缘层140,可以使用有机化合物或无机化合物。
在作为第二绝缘层140使用有机化合物时,例如可以使用丙烯酸树脂、聚酰亚胺树脂、环氧树脂、聚酰胺树脂、聚酰亚胺酰胺树脂、硅氧烷树脂、苯并环丁烯类树脂、酚醛树脂及上述树脂的前体等。此外,也可以使用感光树脂。作为感光树脂,可以使用正型材料或负型材料。
通过作为第二绝缘层140使用感光树脂,可以仅通过制造工艺中的曝光及显影工序制造第二绝缘层140,因此可以减少干蚀刻或湿蚀刻等对其他层带来的影响。另外,通过使用负型的感光树脂,有时可以将其兼用作在其他工序中使用的光掩模(曝光掩模),所以是优选的。
在图1B及图1C所示的器件结构中,在为了使EL层103的一部分层成为所希望形状而在制造工序中途形成图案时,有时其加工表面被加热或暴露于大气,因此有时发生发光层113或电子传输层的晶化等问题,导致发光器件的可靠性及亮度下降。相对于此,在本实施方式1所示的发光器件100中,发光层113及第一电子传输层108-1使用耐热性高的材料,因此可以抑制其晶化等的问题。注意,此时,由于在形成电子传输层后形成EL层103的一部分的电子注入层109,所以仅有电子注入层109的结构与EL层103的其他层(空穴注入/传输层104、发光层113、第一电子传输层108-1及第二电子传输层108-2)不同。
注意,具有图1B及图1C所示的形状的发光器件100是能够通过上述制造方法形成图案的器件结构的一个例子,但是本发明的一个方式的发光器件的形状不局限于此。此外,通过采用这样的本发明的一个方式的器件结构,可以提供一种效率下降及可靠性恶化得到抑制的发光器件。
注意,若不需要,则也可以不设置图1B及图1C所示的绝缘层107。例如,在电子注入层109与空穴注入/传输层104之间的导通充分小时,发光器件100也可以不包括绝缘层107。
作为可用于第一电极101、第二电极102、空穴注入/传输层104、发光层113、电子注入层109及绝缘层107的材料,可以使用后述实施方式中所说明的材料。
本实施方式所示的结构可以与其他实施方式所示的结构适当地组合而实施。
实施方式2
在本实施方式中,参照图2A至图2E说明实施方式1所示的发光器件的其他结构。
<<发光器件的基本结构>>
对发光器件的基本结构进行说明。图2A示出一对电极间包括具有发光层的EL层的发光器件。具体而言,在第一电极101与第二电极102之间包括EL层103。
图2B示出在一对电极间包括多个(在图2B中为两层)EL层(103a、103b)且在EL层之间包括电荷产生层106的叠层结构(串联结构)的发光器件。具有串联结构的发光器件可以不改变电流量而实现高效率的发光装置。
电荷产生层106具有如下功能:在第一电极101与第二电极102之间产生电位差时,对一个EL层(103a或103b)注入电子并对另一个EL层(103b或103a)注入空穴。由此,在图2B中,当以使第一电极101的电位比第二电极102高的方式施加电压时,电荷产生层106将电子注入到EL层103a中并将空穴注入到EL层103b中。
另外,从光提取效率的观点来看,电荷产生层106优选对可见光具有透光性(具体而言,电荷产生层106的可见光透过率为40%以上)。另外,即使电荷产生层106的电导率比第一电极101及第二电极102低也能够发挥功能。
图2C示出本发明的一个方式的发光器件的EL层103的叠层结构。注意,在此情况下,第一电极101被用作阳极,第二电极102被用作阴极。EL层103具有第一电极101上依次层叠有空穴注入层111、空穴传输层112、发光层113、电子传输层114以及电子注入层115的结构。注意,发光层113也可以层叠发光颜色不同的多个发光层。例如,也可以隔着或不隔着包含载流子传输性材料的层层叠包含发射红光的发光物质的发光层、包含发射绿光的发光物质的发光层、包含发射蓝光的发光物质的发光层。或者,也可以组合包含发射黄光的发光物质的发光层和包含发射蓝光的发光物质的发光层。注意,发光层113的叠层结构不局限于上述结构。例如,发光层113也可以层叠发光颜色相同的多个发光层。例如,也可以隔着或不隔着包含载流子传输性材料的层层叠包含发射蓝光的发光物质的第一发光层、包含发射蓝光的发光物质的第二发光层。在层叠发光颜色相同的多个发光层时,有时与单层相比可以提高可靠性。此外,在如图2B所示的串联结构包括多个EL层时,各EL层从阳极一侧如上那样依次层叠。此外,在第一电极101为阴极且第二电极102为阳极时,EL层103的叠层顺序相反。具体而言,阴极的第一电极101上的111为电子注入层,112为电子传输层,113为发光层,114为空穴传输层,115为空穴注入层。
EL层(103、103a及103b)中的发光层113适当地组合发光物质及多个物质而能够获得所希望的发光颜色的荧光发光或磷光发光。另外,发光层113也可以具有发光颜色不同的叠层结构。在此情况下,作为用于层叠的各发光层的发光物质及其他物质使用不同材料即可。另外,也可以采用从图2B所示的多个EL层(103a及103b)获得彼此不同的发光颜色的结构。在此情况下,作为用于各发光层的发光物质及其他物质使用不同材料即可。
另外,在本发明的一个方式的发光器件中,例如,通过使图2C所示的第一电极101为反射电极、使第二电极102为半透射-半反射电极并采用光学微腔谐振器(微腔)结构,可以使从EL层103中的发光层113得到的光在上述电极之间发生谐振,从而可以增强从第二电极102射出的光。
在发光器件的第一电极101为由具有反射性的导电材料和具有透光性的导电材料(透明导电膜)的叠层结构构成的反射电极的情况下,可以通过控制透明导电膜的厚度来进行光学调整。具体而言,优选以如下方式进行调整:在从发光层113获得的光的波长为λ时,第一电极101与第二电极102的电极间的光学距离(厚度与折射率之积)为mλ/2(注意,m为自然数)或其附近值。
另外,为了使从发光层113获得的所希望的光(波长:λ)放大,优选调整为如下:从第一电极101到发光层113中的能够获得所希望的光的区域(发光区域)的光学距离及从第二电极102到发光层113中的能够获得所希望的光的区域(发光区域)的光学距离都成为(2m’+1)λ/4(注意,m’为自然数)或其附近值。注意,在此说明的“发光区域”是指发光层113中的空穴与电子的再结合区域。
通过进行上述光学调整,可以使能够从发光层113获得的特定的单色光的光谱变窄,由此获得色纯度良好的发光。
另外,在上述情况下,严格地说,第一电极101和第二电极102之间的光学距离可以说是从第一电极101中的反射区域到第二电极102中的反射区域的总厚度。但是,因为难以准确地决定第一电极101及第二电极102中的反射区域的位置,所以通过假定第一电极101及第二电极102中的任意的位置为反射区域可以充分得到上述效果。另外,严密地说,第一电极101和可以获得所希望的光的发光层之间的光学距离可以说是第一电极101中的反射区域和可以获得所希望的光的发光层中的发光区域之间的光学距离。但是,因为难以准确地决定第一电极101中的反射区域及可以获得所希望的光的发光层中的发光区域的位置,所以通过假定第一电极101中的任意的位置为反射区域且可以获得所希望的光的发光层的任意的位置为发光区域,可以充分得到上述效果。
图2D所示的发光器件为具有串联结构的发光器件,并具有微腔结构,所以可以从各EL层(103a、103b)提取不同波长的光(单色光)。由此,为了获得不同的发光颜色不需要分别涂布(例如涂布为R、G、B)。由此,可以容易实现高分辨率。另外,可以与着色层(滤色片)组合。并且,可以增强具有特定波长的正面方向上的发光强度,从而可以实现低功耗化。
图2E所示的发光器件是图2B所示的串联结构的发光器件的一个例子,如附图所示,具有三个EL层(103a、103b、103c)夹着电荷产生层(106a、106b)而叠层的结构。三个EL层(103a、103b、103c)分别包括发光层(113a、113b、113c),并且可以自由地组合各发光层的发光颜色。例如,发光层113a及发光层113c可以发射蓝光,发光层113b可以发射红光、绿光、黄光中的一种。另外,例如,发光层113a及发光层113c可以发射红光,发光层113b可以发射蓝光、绿光、黄光中的一种。
另外,在上述本发明的一个方式的发光器件中,第一电极101和第二电极102中的至少一个为具有透光性的电极(透明电极、半透射-半反射电极等)。在具有透光性的电极为透明电极的情况下,透明电极的可见光透过率为40%以上。另外,在该电极为半透射-半反射电极的情况下,半透射-半反射电极的可见光反射率为20%以上且80%以下,优选为40%以上且70%以下。另外,这些电极的电阻率优选为1×10-2Ωcm以下。
另外,在上述本发明的一个方式的发光器件中,在第一电极101和第二电极102中的一个为具有反射性的电极(反射电极)的情况下,具有反射性的电极的可见光反射率为40%以上且100%以下,优选为70%以上且100%以下。另外,该电极的电阻率优选为1×10-2Ωcm以下。
<<发光器件的具体结构>>
接着,说明本发明的一个方式的发光器件的具体结构。此外,这里参照具有串联结构的图2D进行说明。注意,图2A及图2C所示的具有单结构的发光器件也具有同样的EL层的结构。此外,在图2D所示的发光器件具有微腔结构的情况下,作为第一电极101形成反射电极,作为第二电极102形成半透射-半反射电极。由此,可以单独使用所希望的电极材料或者使用多个电极材料以单层或叠层形成上述电极。另外,第二电极102在形成EL层103b之后,适当地选择材料而形成。
<第一电极及第二电极>
作为形成第一电极101及第二电极102的材料,如果可以满足上述两个电极的功能则可以适当地组合下述材料。例如,可以适当地使用金属、合金、导电化合物以及它们的混合物等。具体而言,可以举出In-Sn氧化物(也称为ITO)、In-Si-Sn氧化物(也称为ITSO)、In-Zn氧化物、In-W-Zn氧化物。除了上述以外,还可以举出铝(Al)、钛(Ti)、铬(Cr)、锰(Mn)、铁(Fe)、钴(Co)、镍(Ni)、铜(Cu)、镓(Ga)、锌(Zn)、铟(In)、锡(Sn)、钼(Mo)、钽(Ta)、钨(W)、钯(Pd)、金(Au)、铂(Pt)、银(Ag)、钇(Y)、钕(Nd)等金属以及适当地组合它们的合金。除了上述以外,可以使用属于元素周期表中第1族或第2族的元素(例如,锂(Li)、铯(Cs)、钙(Ca)、锶(Sr))、铕(Eu)、镱(Yb)等稀土金属、适当地组合它们的合金以及石墨烯等。
在图2D所示的发光器件中第一电极101为阳极的情况下,通过真空蒸镀法在第一电极101上依次层叠EL层103a的空穴注入层111a及空穴传输层112a。在形成EL层103a及电荷产生层106之后,与上述同样,在电荷产生层106上依次层叠EL层103b的空穴注入层111b及空穴传输层112b。
<空穴注入层>
空穴注入层(111、111a、111b)为将空穴从阳极的第一电极101及电荷产生层(106、106a、106b)注入到EL层(103、103a、103b)的层,并包含有机受体材料及空穴注入性高的材料。
有机受体材料可以通过与其HOMO能级的值接近于LUMO能级(最低未占据分子轨道:Lowest Unoccupied Molecular Orbital)的值的其他有机化合物之间发生电荷分离,来在该有机化合物中产生空穴。因此,作为有机受体材料可以使用醌二甲烷衍生物、四氯苯醌衍生物及六氮杂三亚苯衍生物等具有吸电子基团(卤基或氰基)的化合物。例如,可以使用7,7,8,8-四氰基-2,3,5,6-四氟醌二甲烷(简称:F4-TCNQ)、3,6-二氟-2,5,7,7,8,8-六氰基对醌二甲烷、氯醌、2,3,6,7,10,11-六氰-1,4,5,8,9,12-六氮杂三亚苯(简称:HAT-CN)、1,3,4,5,7,8-六氟四氰(hexafluorotetracyano)-萘醌二甲烷(naphthoquinodimethane)(简称:F6-TCNNQ)、2-(7-二氰基亚甲基-1,3,4,5,6,8,9,10-八氟-7H-芘-2-亚基)丙二腈等。在有机受体材料中,吸电子基团键合于具有多个杂原子的稠合芳香环的化合物诸如HAT-CN等的受体性较高,膜质量具有热稳定性,所以是尤其优选的。除此以外,包括吸电子基团(尤其是如氟基等卤基或氰基)的[3]轴烯衍生物的电子接收性非常高所以是优选的,具体而言,可以使用:α,α’,α”-1,2,3-环丙烷三亚基(ylidene)三[4-氰-2,3,5,6-四氟苯乙腈]、α,α’,α”-1,2,3-环丙三亚基三[2,6-二氯-3,5-二氟-4-(三氟甲基)苯乙腈]、α,α’,α”-1,2,3-环丙烷三亚基三[2,3,4,5,6-五氟苯乙腈]等。
作为空穴注入性高的材料,可以使用属于元素周期表中第4族至第8族的金属的氧化物(钼氧化物、钒氧化物、钌氧化物、钨氧化物、锰氧化物等过渡金属氧化物等)。具体而言,可以举出氧化钼、氧化钒、氧化铌、氧化钽、氧化铬、氧化钨、氧化锰、氧化铼。其中尤其是氧化钼在大气中稳定,吸湿性低,并且容易处理,因此是优选的。除了上述以外,可以使用酞菁类化合物如酞菁(简称:H2Pc)或铜酞菁(CuPc)等。
此外,除了上述材料以外还可以使用如下低分子化合物的芳香胺化合物等,诸如4,4',4”-三(N,N-二苯基氨基)三苯胺(简称:TDATA)、4,4',4”-三[N-(3-甲基苯基)-N-苯基氨基]三苯胺(简称:MTDATA)、4,4'-双[N-(4-二苯基氨基苯基)-N-苯基氨基]联苯(简称:DPAB)、N-N’-双{4-[双(3-甲基苯基)氨基]苯基}-N,N’-二苯基-(1,1’-联苯)-4,4’-二胺(简称:DNTPD)、1,3,5-三[N-(4-二苯基氨基苯基)-N-苯基氨基]苯(简称:DPA3B)、3-[N-(9-苯基咔唑-3-基)-N-苯基氨基]-9-苯基咔唑(简称:PCzPCA1)、3,6-双[N-(9-苯基咔唑-3-基)-N-苯基氨基]-9-苯基咔唑(简称:PCzPCA2)、3-[N-(1-萘基)-N-(9-苯基咔唑-3-基)氨基]-9-苯基咔唑(简称:PCzPCN1)等。
另外,可以使用高分子化合物(低聚物、枝状聚合物或聚合物等),诸如聚(N-乙烯基咔唑)(简称:PVK)、聚(4-乙烯基三苯胺)(简称:PVTPA)、聚[N-(4-{N’-[4-(4-二苯基氨基)苯基]苯基-N’-苯基氨基}苯基)甲基丙烯酰胺](简称:PTPDMA)、聚[N,N’-双(4-丁基苯基)-N,N’-双(苯基)联苯胺](简称:Poly-TPD)等。或者,还可以使用添加有酸的高分子化合物,诸如聚(3,4-乙烯二氧噻吩)/聚(苯乙烯磺酸)(简称:PEDOT/PSS)、聚苯胺/聚(苯乙烯磺酸)(简称:PAni/PSS)等。
作为空穴注入性高的材料,也可以使用包含空穴传输性材料及上述有机受体材料(电子受体材料)的混合材料。在此情况下,由有机受体材料从空穴传输性材料抽出电子而在空穴注入层111中产生空穴,空穴通过空穴传输层112注入到发光层113中。另外,空穴注入层111可以采用由包含空穴传输性材料及有机受体材料(电子受体材料)的混合材料构成的单层,也可以采用分别使用空穴传输性材料及有机受体材料(电子受体材料)形成的层的叠层。
作为空穴传输性材料,优选使用电场强度[V/cm]的平方根为600时的空穴迁移率为1×10-6cm2/Vs以上的物质。另外,只要是空穴传输性高于电子传输性的物质,可以使用上述以外的物质。
作为空穴传输性材料,优选使用具有富π电子型杂芳环的化合物(例如,咔唑衍生物、呋喃衍生物或噻吩衍生物)及芳香胺(包含芳香胺骨架的有机化合物)等空穴传输性高的材料。
作为上述咔唑衍生物(具有咔唑环的有机化合物),可以举出联咔唑衍生物(例如,3,3’-联咔唑衍生物)、具有咔唑基的芳香胺等。
作为上述联咔唑衍生物(例如,3,3’-联咔唑衍生物),具体而言,可以举出3,3’-双(9-苯基-9H-咔唑)(简称:PCCP)、9,9’-双(联苯-4-基)-3,3’-联-9H-咔唑(简称:BisBPCz)、9,9’-双(1,1’-联苯-3-基)-3,3’-联-9H-咔唑(简称:BismBPCz)、9-(1,1’-联苯-3-基)-9’-(1,1’-联苯-4-基)-9H,9’H-3,3’-联咔唑(简称:mBPCCBP)、9-(2-萘基)-9’-苯基-9H,9’H-3,3’-联咔唑(简称:βNCCP)、9-(3-联苯)-9’(2-萘基)-3,3’-联-9H-咔唑(简称:βNCCmBP)、9,9’-二-2-萘基-3,3’-9H,9’H-联咔唑(简称:βNCCBP)、9-(2-萘基)-9’-[1,1’:4’,1”-三联苯]-3-基-3,3’-9H,9’H-联咔唑、9-(2-萘基)-9’-[1,1’:3’,1”-三联苯]-3-基-3,3’-9H,9’H-联咔唑、9-(2-萘基)-9’-[1,1’:3’,1”-三联苯]-5’-基-3,3’-9H,9’H-联咔唑、9-(2-萘基)-9’-[1,1’:4’,1”-三联苯]-4-基-3,3’-9H,9’H-联咔唑、9-(2-萘基)-9’-[1,1’:3’,1”-三联苯]-4-基-3,3’-9H,9’H-联咔唑、9-(2-萘基)-9’-(三亚苯-2-基)-3,3’-9H,9’H-联咔唑、9-苯基-9’-(三亚苯-2-基)-3,3’-9H,9’H-联咔唑(简称:PCCzTp)、9,9’-双(三亚苯-2-基)-3,3’-9H,9’H-联咔唑、9-(4-联苯)-9’-(三亚苯-2-基)-3,3’-9H,9’H-联咔唑、9-(三亚苯-2-基)-9’-[1,1’:3’,1”-三联苯]-4-基-3,3’-9H,9’H-联咔唑等。
作为具有上述咔唑基的芳香胺,具体而言,可以举出4-苯基-4’-(9-苯基-9H-咔唑-3-基)三苯基胺(简称:PCBA1BP)、N-(4-联苯)-N-(9,9-二甲基-9H-芴-2-基)-9-苯基-9H-咔唑-3-胺(简称:PCBiF)、N-(1,1’-联苯-4-基)-N-[4-(9-苯基-9H-咔唑-3-基)苯基]-9,9-二甲基-9H-芴-2-胺(简称:PCBBiF)、N-[4-(9-苯基-9H-咔唑-3-基)苯基]-双(9,9-二甲基-9H-芴-2-基)胺(简称:PCBFF)、N-(1,1’-联苯-4-基)-N-[4-(9-苯基-9H-咔唑-3-基)苯基]-9,9-二甲基-9H-芴-4-胺、N-[4-(9-苯基-9H-咔唑-3-基)苯基]-(9,9-二甲基-9H-芴-2-基)-9,9-二甲基-9H-芴-4-胺、N-(1,1’-联苯-4-基)-N-[4-(9-苯基-9H-咔唑-3-基)苯基]-9,9-二苯基-9H-芴-2-胺、N-(1,1’-联苯-4-基)-N-[4-(9-苯基-9H-咔唑-3-基)苯基]-9,9-二苯基-9H-芴-4-胺、N-(1,1’-联苯-4-基)-N-[4-(9-苯基-9H-咔唑-3-基)苯基]-9,9’-螺二(9H-芴)-2-胺、N-(1,1’-联苯-4-基)-N-[4-(9-苯基-9H-咔唑-3-基)苯基]-9,9’-螺二(9H-芴)-4-胺、N-[4-(9-苯基-9H-咔唑-3-基)苯基]-N-(1,1’:3’,1”-三联苯-4-基)-9,9-二甲基-9H-芴-2-胺、N-[4-(9-苯基-9H-咔唑-3-基)苯基]-N-(1,1’:4’,1”-三联苯-4-基)-9,9-二甲基-9H-芴-2-胺、N-[4-(9-苯基-9H-咔唑-3-基)苯基]-N-(1,1’:3’,1”-三联苯-4-基)-9,9-二甲基-9H-芴-4-胺、N-[4-(9-苯基-9H-咔唑-3-基)苯基]-N-(1,1’:4’,1”-三联苯-4-基)-9,9-二甲基-9H-芴-4-胺、4,4’-二苯基-4”-(9-苯基-9H-咔唑-3-基)三苯基胺(简称:PCBBi1BP)、4-(1-萘基)-4’-(9-苯基-9H-咔唑-3-基)三苯基胺(简称:PCBANB)、4,4’-二(1-萘基)-4”-(9-苯基-9H-咔唑-3-基)三苯基胺(简称:PCBNBB)、4-苯基二苯基-(9-苯基-9H-咔唑-3-基)胺(简称:PCA1BP)、N,N’-双(9-苯基咔唑-3-基)-N,N’-二苯基苯-1,3-二胺(简称:PCA2B)、N,N’,N”-三苯基-N,N’,N”-三(9-苯基咔唑-3-基)苯-1,3,5-三胺(简称:PCA3B)、9,9-二甲基-N-苯基-N-[4-(9-苯基-9H-咔唑-3-基)苯基]芴-2-胺(简称:PCBAF)、N-苯基-N-[4-(9-苯基-9H-咔唑-3-基)苯基]螺-9,9’-二芴-2-胺(简称:PCBASF)、3-[N-(9-苯基咔唑-3-基)-N-苯基氨基]-9-苯基咔唑(简称:PCzPCA1)、3,6-双[N-(9-苯基咔唑-3-基)-N-苯基氨基]-9-苯基咔唑(简称:PCzPCA2)、3-[N-(1-萘基)-N-(9-苯基咔唑-3-基)氨基]-9-苯基咔唑(简称:PCzPCN1)、3-[N-(4-二苯基氨基苯基)-N-苯基氨基]-9-苯基咔唑(简称:PCzDPA1)、3,6-双[N-(4-二苯基氨基苯基)-N-苯基氨基]-9-苯基咔唑(简称:PCzDPA2)、3,6-双[N-(4-二苯基氨基苯基)-N-(1-萘基)氨基]-9-苯基咔唑(简称:PCzTPN2)、2-[N-(9-苯基咔唑-3-基)-N-苯基氨基]螺-9,9’-二芴(简称:PCASF)、N-[4-(9H-咔唑-9-基)苯基]-N-(4-苯基)苯基苯胺(简称:YGA1BP)、N,N’-双[4-(咔唑-9-基)苯基]-N,N’-二苯基-9,9-二甲基芴-2,7-二胺(简称:YGA2F)、4,4’,4”-三(咔唑-9-基)三苯基胺(简称:TCTA)等。
注意,作为咔唑衍生物,除了上述以外,还可以举出3-[4-(9-菲基)-苯基]-9-苯基-9H-咔唑(简称:PCPPn)、3-[4-(1-萘基)-苯基]-9-苯基-9H-咔唑(简称:PCPN)、1,3-双(N-咔唑基)苯(简称:mCP)、4,4’-二(N-咔唑基)联苯(简称:CBP)、3,6-双(3,5-二苯基苯基)-9-苯基咔唑(简称:CzTP)、1,3,5-三[4-(N-咔唑基)苯基]苯(简称:TCPB)、9-[4-(10-苯基-9-蒽基)苯基]-9H-咔唑(简称:CzPA)等。
作为上述呋喃衍生物(具有呋喃环的有机化合物),具体而言,可以举出4,4’,4”-(苯-1,3,5-三基)三(二苯并呋喃)(简称:DBF3P-II)、4-{3-[3-(9-苯基-9H-芴-9-基)苯基]苯基}二苯并呋喃(简称:mmDBFFLBi-II)等。
作为上述噻吩衍生物(具有噻吩环的有机化合物),具体而言,可以举出4,4’,4”-(苯-1,3,5-三基)三(二苯并噻吩)(简称:DBT3P-II)、2,8-二苯基-4-[4-(9-苯基-9H-芴-9-基)苯基]二苯并噻吩(简称:DBTFLP-III)、4-[4-(9-苯基-9H-芴-9-基)苯基]-6-苯基二苯并噻吩(简称:DBTFLP-IV)等具有噻吩环的有机化合物等。
作为上述芳香胺,具体而言,可以举出4,4’-双[N-(1-萘基)-N-苯基氨基]联苯(简称:NPB或α-NPD)、N,N’-双(3-甲基苯基)-N,N’-二苯基-[1,1’-联苯]-4,4’-二胺(简称:TPD)、4,4’-双[N-(螺-9,9’-二芴-2-基)-N-苯基氨基]联苯(简称:BSPB)、4-苯基-4’-(9-苯基芴-9-基)三苯胺(简称:BPAFLP)、4-苯基-3’-(9-苯基芴-9-基)三苯胺(简称:mBPAFLP)、N-(9,9-二甲基-9H-芴-2-基)-N-{9,9-二甲基-2-[N’-苯基-N’-(9,9-二甲基-9H-芴-2-基)氨基]-9H-芴-7-基}苯基胺(简称:DFLADFL)、N-(9,9-二甲基-2-二苯基氨基-9H-芴-7-基)二苯基胺(简称:DPNF)、2-[N-(4-二苯基氨基苯基)-N-苯基氨基]螺-9,9’-二芴(简称:DPASF)、2,7-双[N-(4-二苯基氨基苯基)-N-苯基氨基]螺-9,9’-二芴(简称:DPA2SF)、4,4’,4”-三[N-(1-萘基)-N-苯基氨基]三苯胺(简称:1’-TNATA)、4,4’,4”-三(N,N-二苯基氨基)三苯胺(简称:TDATA)、4,4’,4”-三[N-(3-甲基苯基)-N-苯基氨基]三苯胺(简称:m-MTDATA)、N,N’-二(对甲苯基)-N,N’-二苯基-对苯二胺(简称:DTDPPA)、4,4’-双[N-(4-二苯基氨基苯基)-N-苯基氨基]联苯(简称:DPAB)、DNTPD、1,3,5-三[N-(4-二苯基氨基苯基)-N-苯基氨基]苯(简称:DPA3B)、N-(4-联苯)-6,N-二苯基苯并[b]萘并[1,2-d]呋喃-8-胺(简称:BnfABP)、N,N-双(4-联苯)-6-苯基苯并[b]萘并[1,2-d]呋喃-8-胺(简称:BBABnf)、4,4’-双(6-苯基苯并[b]萘并[1,2-d]呋喃-8-基)-4”-苯基三苯基胺(简称:BnfBB1BP)、N,N-双(4-联苯)苯并[b]萘并[1,2-d]呋喃-6-胺(简称:BBABnf(6))、N,N-双(4-联苯)苯并[b]萘并[1,2-d]呋喃-8-胺(简称:BBABnf(8))、N,N-双(4-联苯)苯并[b]萘并[2,3-d]呋喃-4-胺(简称:BBABnf(II)(4))、N,N-双[4-(二苯并呋喃-4-基)苯基]-4-氨基-p-三联苯(简称:DBfBB1TP)、N-[4-(二苯并噻吩-4-基)苯基]-N-苯基-4-联苯胺(简称:ThBA1BP)、4-(2-萘基)-4’,4”-二苯基三苯基胺(简称:BBAβNB)、4-[4-(2-萘基)苯基]-4’,4”-二苯基三苯基胺(简称:BBAβNBi)、4,4’-二苯基-4”-(6;1’-联萘基-2-基)三苯基胺(简称:BBAαNβNB)、4,4’-二苯基-4”-(7;1’-联萘基-2-基)三苯基胺(简称:BBAαNβNB-03)、4,4’-二苯基-4”-(7-苯基)萘基-2-基三苯基胺(简称:BBAPβNB-03)、4,4’-二苯基-4”-(6;2’-联萘基-2-基)三苯基胺(简称:BBA(βN2)B)、4,4’-二苯基-4”-(7;2’-联萘基-2-基)-三苯基胺(简称:BBA(βN2)B-03)、4,4’-二苯基-4”-(4;2’-联萘基-1-基)三苯基胺(简称:BBAβNαNB)、4,4’-二苯基-4”-(5;2’-联萘基-1-基)三苯基胺(简称:BBAβNαNB-02)、4-(4-联苯基)-4’-(2-萘基)-4”-苯基三苯基胺(简称:TPBiAβNB)、4-(3-联苯基)-4’-[4-(2-萘基)苯基]-4”-苯基三苯基胺(简称:mTPBiAβNBi)、4-(4-联苯基)-4’-[4-(2-萘基)苯基]-4”-苯基三苯基胺(简称:TPBiAβNBi)、4-苯基-4’-(1-萘基)三苯基胺(简称:αNBA1BP)、4,4’-双(1-萘基)三苯基胺(简称:αNBB1BP)、4,4’-二苯基-4”-[4’-(咔唑-9-基)联苯-4-基]三苯基胺(简称:YGTBi1BP)、4’-[4-(3-苯基-9H-咔唑-9-基)苯基]三(1,1’-联苯-4-基)胺(简称:YGTBi1BP-02)、4-[4’-(咔唑-9-基)联苯-4-基]-4’-(2-萘基)-4”-苯基三苯基胺(简称:YGTBiβNB)、N-[4-(9-苯基-9H-咔唑-3-基)苯基]-N-[4-(1-萘基)苯基]-9,9'-螺双[9H-芴]-2-胺(简称:PCBNBSF)、N,N-双([1,1'-联苯]-4-基)-9,9’-螺双[9H-芴]-2-胺(简称:BBASF)、N,N-双([1,1’-联苯]-4-基)-9,9’-螺双[9H-芴]-4-胺(简称:BBASF(4))、N-(1,1’-联苯-2-基)-N-(9,9-二甲基-9H-芴-2-基)-9,9’-螺双[9H-芴]-4-胺(简称:oFBiSF)、N-(4-联苯)-N-(9,9-二甲基-9H-芴-2-基)二苯并呋喃-4-胺(简称:FrBiF)、N-[4-(1-萘基)苯基]-N-[3-(6-苯基二苯并呋喃-4-基)苯基]-1-萘基胺(简称:mPDBfBNBN)、4-苯基-4’-[4-(9-苯基芴-9-基)苯基]三苯基胺(简称:BPAFLBi)、N,N-双(9,9-二甲基-9H-芴-2-基)-9,9’-螺双-9H-芴-4-胺、N,N-双(9,9-二甲基-9H-芴-2-基)-9,9’-螺双-9H-芴-3-胺、N,N-双(9,9-二甲基-9H-芴-2-基)-9,9’-螺双-9H-芴-2-胺、N,N-双(9,9-二甲基-9H-芴-2-基)-9,9’-螺双-9H-芴-1-胺等。
除此以外,作为空穴传输性材料,可以使用高分子化合物(低聚物、枝状聚合物、聚合物等),诸如聚(N-乙烯基咔唑)(简称:PVK)、聚(4-乙烯基三苯胺)(简称:PVTPA)、聚[N-(4-{N’-[4-(4-二苯基氨基)苯基]苯基-N’-苯基氨基}苯基)甲基丙烯酰胺](简称:PTPDMA)、聚[N,N’-双(4-丁基苯基)-N,N’-双(苯基)联苯胺](简称:Poly-TPD)等。或者,还可以使用添加有酸的高分子化合物,诸如聚(3,4-乙烯二氧噻吩)/聚(苯乙烯磺酸)(简称:PEDOT/PSS)或聚苯胺/聚(苯乙烯磺酸)(PAni/PSS)等。
注意,空穴传输性材料不局限于上述材料,可以将已知的各种材料中的一种或多种的组合作为空穴传输性材料。
注意,空穴注入层(111、111a、111b)可以利用已知的各种成膜方法形成,例如可以利用真空蒸镀法形成。
<空穴传输层>
空穴传输层(112、112a、112b)是将从第一电极101由空穴注入层(111、111a、111b)注入的空穴传输到发光层(113、113a、113b)中的层。另外,空穴传输层(112、112a、112b)是包含空穴传输性材料的层。因此,作为空穴传输层(112、112a、112b),可以使用能够用于空穴注入层(111、111a、111b)的空穴传输性材料。
注意,在本发明的一个方式的发光器件中,可以将与空穴传输层(112、112a、112b)相同的有机化合物用于发光层(113、113a、113b)。在空穴传输层(112、112a、112b)和发光层(113、113a、113b)使用相同的有机化合物时,可以高效地将空穴从空穴传输层(112、112a、112b)传输到发光层(113、113a、113b),因此是优选的。
<发光层>
发光层(113、113a、113b)是包含发光物质的层。对于可用于发光层(113、113a、113b)的发光物质,可以适当地使用呈现蓝色、紫色、蓝紫色、绿色、黄绿色、黄色、橙色、红色等发光颜色的物质。另外,在包括多个发光层时通过在各发光层中分别使用不同的发光物质,可以成为呈现不同发光颜色的结构(例如,可以组合处于补色关系的发光颜色获得白光)。再者,也可以采用一个发光层包含不同的发光物质的叠层结构。
另外,发光层(113、113a、113b)除了发光物质(客体材料)以外还可以包含一种或多种有机化合物(主体材料等)。
注意,在发光层(113、113a、113b)中使用多个主体材料时,作为新加的第二主体材料,优选使用具有比现有的客体材料及第一主体材料的能隙大的能隙的物质。此外,优选的是,第二主体材料的最低单重激发能级(S1能级)比第一主体材料的S1能级高,第二主体材料的最低单重激发能级(T1能级)比客体材料的T1能级高。此外,优选的是,第二主体材料的最低三重激发能级(T1能级)比第一主体材料的T1能级高。通过采用上述结构,可以由两种主体材料形成激基复合物。注意,为了高效地形成激基复合物,特别优选组合容易接收空穴的化合物(空穴传输性材料)与容易接收电子的化合物(电子传输性材料)。此外,通过采用上述结构,可以同时实现高效率、低电压以及长寿命。
注意,作为用作上述主体材料(包括第一主体材料及第二主体材料)的有机化合物,只要满足用于发光层的主体材料的条件,就可以使用如可以用于上述空穴传输层(112、112a、112b)的空穴传输性材料或可以用于后述电子传输层(114、114a、114b)的电子传输性材料等有机化合物,也可以使用由多种有机化合物(上述第一主体材料及第二主体材料)形成的激基复合物。此外,以多种有机化合物形成激发态的激基复合物(Exciplex)因S1能级和T1能级之差极小而具有可以将三重激发能转换为单重激发能的TADF材料的功能。作为形成激基复合物的多种有机化合物的组合,例如,优选的是,一个具有缺π电子杂芳环,另一个具有富π电子杂芳环。此外,作为形成激基复合物的组合中的一个,也可以使用铱、铑、铂类有机金属配合物或金属配合物等的磷光发光物质。
对可用于发光层(113、113a、113b)的发光物质没有特别的限制,可以使用将单重激发能量转换为可见光区域的光的发光物质或将三重激发能转换为可见光区域的光的发光物质。
<<将单重激发能量转换为发光的发光物质>>
作为能够用于发光层(113、113a、113b)的将单重激发能量转换为发光的发光物质,可以举出发射荧光的物质(荧光发光物质),例如可以举出芘衍生物、蒽衍生物、三亚苯衍生物、芴衍生物、咔唑衍生物、二苯并噻吩衍生物、二苯并呋喃衍生物、二苯并喹喔啉衍生物、喹喔啉衍生物、吡啶衍生物、嘧啶衍生物、菲衍生物、萘衍生物等。尤其是芘衍生物的发光量子产率高,所以是优选的。作为芘衍生物的具体例子,可以举出N,N’-双(3-甲基苯基)-N,N’-双[3-(9-苯基-9H-芴-9-基)苯基]芘-1,6-二胺(简称:1,6mMemFLPAPrn)、N,N’-二苯基-N,N’-双[4-(9-苯基-9H-芴-9-基)苯基]芘-1,6-二胺(简称:1,6FLPAPrn)、N,N’-双(二苯并呋喃-2-基)-N,N’-二苯基芘-1,6-二胺(简称:1,6FrAPrn)、N,N’-双(二苯并噻吩-2-基)-N,N’-二苯基芘-1,6-二胺(简称:1,6ThAPrn)、N,N’-(芘-1,6-二基)双[(N-苯基苯并[b]萘并[1,2-d]呋喃)-6-胺](简称:1,6BnfAPrn)、N,N’-(芘-1,6-二基)双[(N-苯基苯并[b]萘并[1,2-d]呋喃)-8-胺](简称:1,6BnfAPrn-02)、N,N’-(芘-1,6-二基)双[(6,N-二苯基苯并[b]萘并[1,2-d]呋喃)-8-胺](简称:1,6BnfAPrn-03)等。
此外,可以使用5,6-双[4-(10-苯基-9-蒽基)苯基]-2,2’-联吡啶(简称:PAP2BPy)、5,6-双[4’-(10-苯基-9-蒽基)联苯-4-基]-2,2’-联吡啶(简称:PAPP2BPy)、N,N’-双[4-(9H-咔唑-9-基)苯基]-N,N’-二苯基二苯乙烯-4,4’-二胺(简称:YGA2S)、4-(9H-咔唑-9-基)-4’-(10-苯基-9-蒽基)三苯胺(简称:YGAPA)、4-(9H-咔唑-9-基)-4’-(9,10-二苯基-2-蒽基)三苯胺(简称:2YGAPPA)、N,9-二苯基-N-[4-(10-苯基-9-蒽基)苯基]-9H-咔唑-3-胺(简称:PCAPA)、4-(10-苯基-9-蒽基)-4’-(9-苯基-9H-咔唑-3-基)三苯胺(简称:PCBAPA)、4-[4-(10-苯基-9-蒽基)苯基]-4’-(9-苯基-9H-咔唑-3-基)三苯胺(简称:PCBAPBA)、二萘嵌苯、2,5,8,11-四-(叔丁基)二萘嵌苯(简称:TBP)、N,N”-(2-叔丁基蒽-9,10-二基二-4,1-亚苯基)双[N,N’,N’-三苯基-1,4-苯二胺](简称:DPABPA)、N,9-二苯基-N-[4-(9,10-二苯基-2-蒽基)苯基]-9H-咔唑-3-胺(简称:2PCAPPA)、N-[4-(9,10-二苯基-2-蒽基)苯基]-N,N’,N’-三苯基-1,4-苯二胺(简称:2DPAPPA)等。
此外,可以使用N-[9,10-双(1,1'-联苯-2-基)-2-蒽基]-N,9-二苯基-9H-咔唑-3-胺(简称:2PCABPhA)、N-(9,10-二苯基-2-蒽基)-N,N',N'-三苯基-1,4-苯二胺(简称:2DPAPA)、N-[9,10-双(1,1'-联苯-2-基)-2-蒽基]-N,N',N'-三苯基-1,4-苯二胺(简称:2DPABPhA)、9,10-双(1,1'-联苯-2-基)-N-[4-(9H-咔唑-9-基)苯基]-N-苯基蒽-2-胺(简称:2YGABPhA)、N,N,9-三苯基蒽-9-胺(简称:DPhAPhA)、香豆素545T、N,N'-二苯基喹吖啶酮(简称:DPQd)、红荧烯、5,12-双(1,1’-联苯-4-基)-6,11-二苯基并四苯(简称:BPT)、2-(2-{2-[4-(二甲氨基)苯基]乙烯基}-6-甲基-4H-吡喃-4-亚基)丙二腈(简称:DCM1)、2-{2-甲基-6-[2-(2,3,6,7-四氢-1H,5H-苯并[ij]喹嗪-9-基)乙烯基]-4H-吡喃-4-亚基}丙二腈(简称:DCM2)、N,N,N’,N’-四(4-甲基苯基)并四苯-5,11-二胺(简称:p-mPhTD)、7,14-二苯基-N,N,N’,N’-四(4-甲基苯基)苊并[1,2-a]荧蒽-3,10-二胺(简称:p-mPhAFD)、2-{2-异丙基-6-[2-(1,1,7,7-四甲基-2,3,6,7-四氢-1H,5H-苯并[ij]喹嗪-9-基)乙烯基]-4H-吡喃-4-亚基}丙二腈(简称:DCJTI)、2-{2-叔丁基-6-[2-(1,1,7,7-四甲基-2,3,6,7-四氢-1H,5H-苯并[ij]喹嗪-9-基)乙烯基]-4H-吡喃-4-亚基}丙二腈(简称:DCJTB)、2-(2,6-双{2-[4-(二甲氨基)苯基]乙烯基}-4H-吡喃-4-亚基)丙二腈(简称:BisDCM)、2-{2,6-双[2-(8-甲氧基-1,1,7,7-四甲基-2,3,6,7-四氢-1H,5H-苯并[ij]喹嗪-9-基)乙烯基]-4H-吡喃-4-亚基}丙二腈(简称:BisDCJTM)、1,6BnfAPrn-03、3,10-双[N-(9-苯基-9H-咔唑-2-基)-N-苯基氨基]萘并[2,3-b;6,7-b’]双苯并呋喃(简称:3,10PCA2Nbf(IV)-02)、3,10-双[N-(二苯并呋喃-3-基)-N-苯氨基]萘并[2,3-b;6,7-b’]双苯并呋喃(简称:3,10FrA2Nbf(IV)-02)等。尤其是,可以使用1,6FLPAPrn、1,6mMemFLPAPrn、1,6BnfAPrn-03等芘二胺化合物等。
<<将三重激发能转换为发光的发光物质>>
接着,作为能够用于发光层113的将三重激发能转换为发光的发光物质,例如可以举出发射磷光的物质(磷光发光物质)或呈现热活化延迟荧光的热活化延迟荧光(Thermally activated delayed fluorescence:TADF)材料。
磷光发光物质是指在低温(例如77K)以上且室温以下的温度范围(即,77K以上且313K以下)的任一温度下发射磷光而不发射荧光的化合物。该磷光发光物质优选包含自旋轨道相互作用大的金属元素,可以使用有机金属配合物、金属配合物(铂配合物)、稀土金属配合物等。具体而言,优选包含过渡金属元素,尤其优选包含铂族元素(钌(Ru)、铑(Rh)、钯(Pd)、锇(Os)、铱(Ir)或铂(Pt)),特别优选包含铱。铱可以提高单重基态与三重激发态之间的直接跃迁的概率,所以是优选的。
<<磷光发光物质(450nm以上且570nm以下:蓝色或绿色)>>
作为发射蓝光或绿光且其发射光谱的峰波长为450nm以上且570nm以下的磷光发光物质,可以举出如下物质。
例如,可以举出三{2-[5-(2-甲基苯基)-4-(2,6-二甲基苯基)-4H-1,2,4-***-3-基-κN2]苯基-κC}铱(III)(简称:[Ir(mpptz-dmp)3])、三(5-甲基-3,4-二苯基-4H-1,2,4-***)铱(III)(简称:[Ir(Mptz)3])、三[4-(3-联苯)-5-异丙基-3-苯基-4H-1,2,4-***]铱(III)(简称:[Ir(iPrptz-3b)3])、三[3-(5-联苯)-5-异丙基-4-苯基-4H-1,2,4-***]铱(III)(简称:[Ir(iPr5btz)3])等具有4H-***环的有机金属配合物;三[3-甲基-1-(2-甲基苯基)-5-苯基-1H-1,2,4-***]铱(III)(简称:[Ir(Mptz1-mp)3])、三(1-甲基-5-苯基-3-丙基-1H-1,2,4-***)铱(III)(简称:[Ir(Prptz1-Me)3])等具有1H-***环的有机金属配合物;fac-三[1-(2,6-二异丙基苯基)-2-苯基-1H-咪唑]铱(III)(简称:[Ir(iPrpmi)3])、三[3-(2,6-二甲基苯基)-7-甲基咪唑并[1,2-f]菲啶根(phenanthridinato)]铱(III)(简称:[Ir(dmpimpt-Me)3])等具有咪唑环的有机金属配合物;以及双[2-(4’,6’-二氟苯基)吡啶根-N,C2’]铱(III)四(1-吡唑基)硼酸盐(简称:FIr6)、双[2-(4’,6’-二氟苯基)吡啶根-N,C2’]铱(III)吡啶甲酸盐(简称:FIrpic)、双{2-[3’,5’-双(三氟甲基)苯基]吡啶根-N,C2’}铱(III)吡啶甲酸盐(简称:[Ir(CF3ppy)2(pic)])、双[2-(4’,6’-二氟苯基)吡啶根-N,C2’]铱(III)乙酰丙酮(简称:FIr(acac))等以具有吸电子基团的苯基吡啶衍生物为配体的有机金属配合物等。
<<磷光发光物质(495nm以上且590nm以下:绿色或黄色)>>
作为发射绿光或黄光且其发射光谱的峰波长为495nm以上且590nm以下的磷光发光物质,可以举出如下物质。
例如,可以举出三(4-甲基-6-苯基嘧啶)铱(III)(简称:[Ir(mppm)3])、三(4-叔丁基-6-苯基嘧啶)铱(III)(简称:[Ir(tBuppm)3])、(乙酰丙酮根)双(6-甲基-4-苯基嘧啶)铱(III)(简称:[Ir(mppm)2(acac)])、(乙酰丙酮根)双(6-叔丁基-4-苯基嘧啶)铱(III)(简称:[Ir(tBuppm)2(acac)])、(乙酰丙酮根)双[6-(2-降莰基)-4-苯基嘧啶]铱(III)(简称:[Ir(nbppm)2(acac)])、(乙酰丙酮根)双[5-甲基-6-(2-甲基苯基)-4-苯基嘧啶]铱(III)(简称:[Ir(mpmppm)2(acac)])、(乙酰丙酮根)双{4,6-二甲基-2-[6-(2,6-二甲基苯基)-4-嘧啶基-κN3]苯基-κC}铱(III)(简称:[Ir(dmppm-dmp)2(acac)])、(乙酰丙酮根)双(4,6-二苯基嘧啶)铱(III)(简称:[Ir(dppm)2(acac)])等具有嘧啶环的有机金属铱配合物;(乙酰丙酮根)双(3,5-二甲基-2-苯基吡嗪)铱(III)(简称:[Ir(mppr-Me)2(acac)])、(乙酰丙酮根)双(5-异丙基-3-甲基-2-苯基吡嗪)铱(III)(简称:[Ir(mppr-iPr)2(acac)])等具有吡嗪环的有机金属铱配合物;三(2-苯基吡啶根-N,C2’)铱(III)(简称:[Ir(ppy)3])、双(2-苯基吡啶根-N,C2’)铱(III)乙酰丙酮(简称:[Ir(ppy)2(acac)])、双(苯并[h]喹啉)铱(III)乙酰丙酮(简称:[Ir(bzq)2(acac)])、三(苯并[h]喹啉)铱(III)(简称:[Ir(bzq)3])、三(2-苯基喹啉-N,C2’)铱(III)(简称:[Ir(pq)3])、双(2-苯基喹啉-N,C2’)铱(III)乙酰丙酮(简称:[Ir(pq)2(acac)])、双[2-(2-吡啶基-κN)苯基-κC][2-(4-苯基-2-吡啶基-κN)苯基-κC]铱(III)(简称:[Ir(ppy)2(4dppy)])、双[2-(2-吡啶基-κN)苯基-κC][2-(4-甲基-5-苯基-2-吡啶基-κN)苯基-κC]、[2-d3-甲基-8-(2-吡啶基-κN)苯并呋喃[2,3-b]吡啶-κC]双[2-(5-d3-甲基-2-吡啶基-κN2)苯基-κC]铱(III)(简称:Ir(5mppy-d3)2(mbfpypy-d3))、[2-(甲基-d3)-8-[4-(1-甲基乙基-1-d)-2-吡啶基-κN]苯并呋喃并[2,3-b]吡啶-7-基-κC]双[5-(甲基-d3)-2-[5-(甲基-d3)-2-吡啶基-κN]苯基-κC]铱(III)(简称:Ir(5mtpy-d6)2(mbfpypy-iPr-d4))、[2-d3-甲基-(2-吡啶基-κN)苯并呋喃并[2,3-b]吡啶-κC]双[2-(2-吡啶基-κN)苯基-κC]铱(III)(简称:Ir(ppy)2(mbfpypy-d3))、[2-(4-甲基-5-苯基-2-吡啶基-κN)苯基-κC]双[2-(2-吡啶基-κN)苯基-κC]铱(III)(简称:Ir(ppy)2(mdppy))等具有吡啶环的有机金属铱配合物;双(2,4-二苯基-1,3-噁唑-N,C2’)铱(III)乙酰丙酮(简称:[Ir(dpo)2(acac)])、双{2-[4’-(全氟苯基)苯基]吡啶-N,C2’}铱(III)乙酰丙酮(简称:[Ir(p-PF-ph)2(acac)])、双(2-苯基苯并噻唑-N,C2’)铱(III)乙酰丙酮(简称:[Ir(bt)2(acac)])等有机金属配合物、三(乙酰丙酮根)(单菲咯啉)铽(III)(简称:[Tb(acac)3(Phen)])等稀土金属配合物。
<<磷光发光物质(570nm以上且750nm以下:黄色或红色)>>
作为发射黄光或红光且其发射光谱的峰波长为570nm以上且750nm以下的磷光发光物质,可以举出如下物质。
例如,可以举出(二异丁酰甲烷根)双[4,6-双(3-甲基苯基)嘧啶根]铱(III)(简称:[Ir(5mdppm)2(dibm)])、双[4,6-双(3-甲基苯基)嘧啶根](二新戊酰甲烷)铱(III)(简称:[Ir(5mdppm)2(dpm)])、(二新戊酰甲烷)双[4,6-二(萘-1-基)嘧啶根]铱(III)(简称:[Ir(d1npm)2(dpm)])等具有嘧啶环的有机金属配合物;(乙酰丙酮)双(2,3,5-三苯基吡嗪)铱(III)(简称:[Ir(tppr)2(acac)])、双(2,3,5-三苯基吡嗪)(二新戊酰甲烷)铱(III)(简称:[Ir(tppr)2(dpm)])、双{4,6-二甲基-2-[3-(3,5-二甲基苯基)-5-苯基-2-吡嗪基-κN]苯基-κC}(2,6-二甲基-3,5-庚二酮-κ2O,O’)铱(III)(简称:[Ir(dmdppr-P)2(dibm)])、双{4,6-二甲基-2-[5-(4-氰-2,6-二甲基苯基)-3-(3,5-二甲基苯基)-2-吡嗪基-κN]苯基-κC}(2,2,6,6-四甲基-3,5-庚二酮-κ2O,O’)铱(III)(简称:[Ir(dmdppr-dmCP)2(dpm)])、双[2-(5-(2,6-二甲基苯基)-3-(3,5-二甲基苯基)-2-吡嗪基-κN)-4,6-二甲基苯基-κC](2,2’,6,6’-四甲基-3,5-庚二酮根-κ2O,O’)铱(III)(简称:[Ir(dmdppr-dmp)2(dpm)])、(乙酰丙酮)双[2-甲基-3-苯基喹喔啉合(quinoxalinato)]-N,C2’]铱(III)(简称:[Ir(mpq)2(acac)])、(乙酰丙酮)双(2,3-二苯基喹喔啉合(quinoxalinato)-N,C2’]铱(III)(简称:[Ir(dpq)2(acac)])、(乙酰丙酮)双[2,3-双(4-氟苯基)喹喔啉合(quinoxalinato)]铱(III)(简称:[Ir(Fdpq)2(acac)])等具有吡嗪环的有机金属配合物;三(1-苯基异喹啉-N,C2’)铱(III)(简称:[Ir(piq)3])、双(1-苯基异喹啉-N,C2’)铱(III)乙酰丙酮(简称:[Ir(piq)2(acac)])及双[4,6-二甲基-2-(2-喹啉-κN)苯基-κC](2,4-戊二酮根-κ2O,O’)铱(III)(简称:[Ir(dmpqn)2(acac)])等具有吡啶环的有机金属配合物;2,3,7,8,12,13,17,18-八乙基-21H,23H-卟啉铂(II)(简称:[PtOEP])等铂配合物;或者三(1,3-二苯基-1,3-丙二酮(propanedionato)(单菲咯啉)铕(III)(简称:[Eu(DBM)3(Phen)])及三[1-(2-噻吩甲酰基)-3,3,3-三氟丙酮](单菲咯啉)铕(III)(简称:[Eu(TTA)3(Phen)])等稀土金属配合物。
<<TADF材料>>
此外,作为TADF材料,可以使用如下材料。TADF材料是指S1能级与T1能级的能量差小(优选为0.2eV以下)且能够利用微小的热能量将三重激发态上转换(up-convert)为单重激发态(逆系间窜越)并高效率地发射来自单重激发态的发光(荧光)的材料。可以高效率地获得热活化延迟荧光的条件为如下:三重激发能级和单重激发能级之间的能量差为0eV以上且0.2eV以下,优选为0eV以上且0.1eV以下。TADF材料所发射的延迟荧光是指具有与一般的荧光同样的光谱但寿命非常长的发光。其寿命为1×10-6秒以上,优选为1×10-3秒以上。
作为TADF材料,例如可以举出富勒烯以及其衍生物、普鲁黄素等吖啶衍生物、伊红等。另外,可以举出包含镁(Mg)、锌(Zn)、镉(Cd)、锡(Sn)、铂(Pt)、铟(In)或钯(Pd)等的含金属卟啉。作为含金属卟啉,例如,也可以举出原卟啉-氟化锡配合物(简称:SnF2(ProtoIX))、中卟啉-氟化锡配合物(简称:SnF2(Meso IX))、血卟啉-氟化锡配合物(简称:SnF2(Hemato IX))、粪卟啉四甲酯-氟化锡配合物(简称:SnF2(Copro III-4Me))、八乙基卟啉-氟化锡配合物(简称:SnF2(OEP))、初卟啉-氟化锡配合物(简称:SnF2(Etio I))以及八乙基卟啉-氯化铂配合物(简称:PtCl2OEP)等。
[化学式16]
Figure BDA0003755485300000531
除了上述以外,可以使用2-(联苯-4-基)-4,6-双(12-苯基吲哚并[2,3-a]咔唑-11-基)-1,3,5-三嗪(简称:PIC-TRZ)、2-{4-[3-(N-苯基-9H-咔唑-3-基)-9H-咔唑-9-基]苯基}-4,6-二苯基-1,3,5-三嗪(简称:PCCzPTzn)、2-[4-(10H-吩恶嗪-10-基)苯基]-4,6-二苯基-1,3,5-三嗪(简称:PXZ-TRZ)、3-[4-(5-苯基-5,10-二氢吩嗪-10-基)苯基]-4,5-二苯基-1,2,4-***(简称:PPZ-3TPT)、3-(9,9-二甲基-9H-吖啶-10-基)-9H-氧杂蒽-9-酮(简称:ACRXTN)、双[4-(9,9-二甲基-9,10-二氢吖啶)苯基]砜(简称:DMAC-DPS)、10-苯基-10H,10’H-螺[吖啶-9,9’-蒽]-10’-酮(简称:ACRSA)、4-(9’-苯基-3,3’-联-9H-咔唑-9-基)苯并呋喃并[3,2-d]嘧啶(简称:4PCCzBfpm)、4-[4-(9’-苯基-3,3’-联-9H-咔唑-9-基)苯基]苯并呋喃并[3,2-d]嘧啶(简称:4PCCzPBfpm)、9-[3-(4,6-二苯基-1,3,5-三嗪-2-基)苯基]-9’-苯基-2,3’-联-9H-咔唑(简称:mPCCzPTzn-02)等具有富π电子型杂芳族化合物及缺π电子型杂芳族化合物的杂芳族化合物。
另外,在富π电子型杂芳族化合物和缺π电子型杂芳族化合物直接键合的物质中,富π电子型杂芳族化合物的供体性和缺π电子型杂芳族化合物的受体性都强,单重激发态与三重激发态之间的能量差变小,所以是尤其优选的。此外,作为TADF材料,也可以使用单重激发态和三重激发态间处于热平衡状态的TADF材料(TADF100)。这种TADF材料由于发光寿命(激发寿命)短,所以可以抑制发光元件的高亮度区域中的效率降低。
[化学式17]
Figure BDA0003755485300000551
另外,除了上述以外,作为具有能够将三重激发能转换为发光的功能的材料,可以举出具有钙钛矿结构的过渡金属化合物的纳米结构体。金属卤素钙钛矿类纳米结构体是特别优选的。作为该纳米结构体,纳米粒子和纳米棒是优选的。
在发光层(113、113a、113b、113c)中,作为组合上述发光物质(客体材料)的有机化合物(主体材料等),可以使用选择一种或多种其能隙比发光物质(客体材料)大的物质。
<<荧光发光主体材料>>
在用于发光层(113、113a、113b、113c)的发光物质是荧光发光物质的情况下,作为与发光物质组合而使用的有机化合物(主体材料),优选使用其单重激发态的能级大且其三重激发态的能级小的有机化合物或荧光量子产率高的有机化合物。因此,只要是满足上述条件的有机化合物就可以使用在本实施方式中示出的空穴传输性材料(上述)及电子传输性材料(后述)等。
虽然一部分内容与上述具体例子重复,但是从优选与发光物质(荧光发光物质)组合而使用的观点来看,作为有机化合物(主体材料)可以举出蒽衍生物、并四苯衍生物、菲衍生物、芘衍生物、
Figure BDA0003755485300000561
(chrysene)衍生物、二苯并[g,p]
Figure BDA0003755485300000562
衍生物等稠合多环芳香化合物。
作为优选与荧光发光物质组合而使用的有机化合物(主体材料)的具体例子,可以举出9-苯基-3-[4-(10-苯基-9-蒽基)苯基]-9H-咔唑(简称:PCzPA)、3,6-二苯基-9-[4-(10-苯基-9-蒽基)苯基]-9H-咔唑(简称:DPCzPA)、3-[4-(1-萘基)-苯基]-9-苯基-9H-咔唑(简称:PCPN)、9,10-二苯基蒽(简称:DPAnth)、N,N-二苯基-9-[4-(10-苯基-9-蒽基)苯基]-9H-咔唑-3-胺(简称:CzA1PA)、4-(10-苯基-9-蒽基)三苯胺(简称:DPhPA)、YGAPA、PCAPA、N,9-二苯基-N-{4-[4-(10-苯基-9-蒽基)苯基]苯基}-9H-咔唑-3-胺(简称:PCAPBA)、N-(9,10-二苯基-2-蒽基)-N,9-二苯基-9H-咔唑-3-胺(简称:2PCAPA)、6,12-二甲氧基-5,11-二苯基
Figure BDA0003755485300000563
N,N,N’,N’,N”,N”,N”’,N”’-八苯基二苯并[g,p]
Figure BDA0003755485300000571
-2,7,10,15-四胺(简称:DBC1)、9-[4-(10-苯基-9-蒽基)苯基]-9H-咔唑(简称:CzPA)、7-[4-(10-苯基-9-蒽基)苯基]-7H-二苯并[c,g]咔唑(简称:cgDBCzPA)、6-[3-(9,10-二苯基-2-蒽基)苯基]-苯并[b]萘并[1,2-d]呋喃(简称:2mBnfPPA)、9-苯基-10-{4-(9-苯基-9H-芴-9-基)联苯-4’-基}蒽(简称:FLPPA)、9,10-双(3,5-二苯基苯基)蒽(简称:DPPA)、9,10-二(2-萘基)蒽(简称:DNA)、2-叔丁基-9,10-二(2-萘基)蒽(简称:t-BuDNA)、9-(1-萘基)-10-(2-萘基)蒽(简称:α,β-ADN)、2-(10-苯基蒽-9-基)二苯并呋喃、2-(10-苯基-9-蒽基)-苯并[b]萘并[2,3-d]呋喃(简称:Bnf(II)PhA)、9-(1-萘基)-10-[4-(2-萘基)苯基]蒽(简称:αN-βNPAnth)、9-(2-萘基)-10-[3-(2-萘基)苯基]蒽(简称:βN-mβNPAnth)、1-[4-(10-[1,1’-联苯]-4-基-9-蒽基)苯基]-2-乙基-1H-苯并咪唑(简称:EtBImPBPhA)、9,9’-联蒽(简称:BANT)、9,9’-(二苯乙烯-3,3’-二基)二菲(简称:DPNS)、9,9’-(二苯乙烯-4,4’-二基)二菲(简称:DPNS2)、1,3,5-三(1-芘)苯(简称:TPB3)、5,12-二苯基并四苯、5,12-双(联苯-2-基)并四苯等。
<<磷光发光主体材料>>
在用于发光层(113、113a、113b、113c)的发光物质是磷光发光物质的情况下,作为与发光物质组合而使用的有机化合物(主体材料),选择其三重激发能(基态和三重激发态之间的能量差)大于发光物质的三重激发能的有机化合物即可。注意,当为了形成激基复合物,组合多个有机化合物(例如,第一主体材料及第二主体材料(或也称为辅助材料)等)与发光物质而使用时,优选与磷光发光物质混合而使用这些多个有机化合物。
通过采用这样的结构,可以高效地得到利用从激基复合物到发光物质的能量转移的ExTET(Exciplex-Triplet Energy Transfer:激基复合物-三重态能量转移)的发光。作为多个有机化合物的组合,优选使用容易形成激基复合物的组合,特别优选组合容易接收空穴的化合物(空穴传输性材料)与容易接收电子的化合物(电子传输性材料)。
虽然一部分内容与上述具体例子重复,但是从与发光物质(磷光发光物质)的优选组合的观点来看,作为有机化合物(主体材料、辅助材料)可以举出芳香胺(具有芳香胺骨架的有机化合物)、咔唑衍生物(具有咔唑环的有机化合物)、二苯并噻吩衍生物(具有二苯并噻吩环的有机化合物)、二苯并呋喃衍生物(具有二苯并呋喃环的有机化合物)、噁二唑衍生物(具有噁二唑环的有机化合物)、***衍生物(具有***环的有机化合物)、苯并咪唑衍生物(具有苯并咪唑环的有机化合物)、喹喔啉衍生物(具有喹喔啉环的有机化合物)、二苯并喹喔啉衍生物(具有二苯并喹喔啉环的有机化合物)、嘧啶衍生物(具有嘧啶环的有机化合物)、三嗪衍生物(具有三嗪环的有机化合物)、吡啶衍生物(具有吡啶环的有机化合物)、联吡啶衍生物(具有联吡啶环的有机化合物)、菲咯啉衍生物(具有菲咯啉环的有机化合物)、呋喃二嗪衍生物(具有呋喃二嗪环的有机化合物)、锌及铝类金属配合物等。
注意,在上述有机化合物中,作为空穴传输性高的有机化合物的芳香胺及咔唑衍生物的具体例子,可以举出与上述空穴传输性材料的具体例子相同的材料,这些材料优选用作主体材料。
此外,作为在上述有机化合物中空穴传输性高的有机化合物的二苯并噻吩衍生物以及二苯并呋喃衍生物的具体例子,可以举出4-{3-[3-(9-苯基-9H-芴-9-基)苯基]苯基}二苯并呋喃(简称:mmDBFFLBi-II)、4,4’,4”-(苯-1,3,5-三基)三(二苯并呋喃)(简称:DBF3P-II)、DBT3P-II、2,8-二苯基-4-[4-(9-苯基-9H-芴-9-基)苯基]二苯并噻吩(简称:DBTFLP-III)、4-[4-(9-苯基-9H-芴-9-基)苯基]-6-苯基二苯并噻吩(简称:DBTFLP-IV)、4-[3-(三亚苯-2-基)苯基]二苯并噻吩(简称:mDBTPTp-II)等,这些材料优选用作主体材料。
除此之外,作为优选的主体材料还可以举出双[2-(2-苯并噁唑基)苯酚]锌(II)(简称:ZnPBO)、双[2-(2-苯并噻唑基)苯酚]锌(II)(简称:ZnBTZ)等具有噁唑基类配体、噻唑类配体的金属配合物等。
此外,在上述有机化合物中,作为电子传输性高的有机化合物的噁二唑衍生物、***衍生物、苯并咪唑衍生物、喹喔啉衍生物、二苯并喹喔啉衍生物、喹唑啉衍生物、菲咯啉衍生物等的具体例子,可以举出2-(4-联苯基)-5-(4-叔丁基苯基)-1,3,4-噁二唑(简称:PBD)、1,3-双[5-(对叔丁基苯基)-1,3,4-噁二唑-2-基]苯(简称:OXD-7)、9-[4-(5-苯基-1,3,4-噁二唑-2-基)苯基]-9H-咔唑(简称:CO11)、3-(4-联苯基)-4-苯基-5-(4-叔丁基苯基)-1,2,4-***(简称:TAZ)、2,2’,2”-(1,3,5-苯三基)三(1-苯基-1H-苯并咪唑)(简称:TPBI)、2-[3-(二苯并噻吩-4-基)苯基]-1-苯基-1H-苯并咪唑(简称:mDBTBIm-II)、4,4’-双(5-甲基苯并噁唑-2-基)二苯乙烯(简称:BzOS)等包含具有多唑环的杂芳环的有机化合物、红菲绕啉(简称:Bphen)、浴铜灵(简称:BCP)、2,9-二(萘-2-基)-4,7-二苯基-1,10-菲咯啉(简称:NBphen)、2,2-(1,3-亚苯)双[9-苯基-1,10-菲咯啉](简称:mPPhen2P)、2-苯基-9-[4-[4-(9-苯基-1,10-菲咯啉-2-基)苯基]苯基]-1,10-菲咯啉(略称:PPhen2BP)等包含具有吡啶环的杂芳环的有机化合物、2-[3-(二苯并噻吩-4-基)苯基]二苯并[f,h]喹喔啉(简称:2mDBTPDBq-II)、2-[3-(3×-二苯并噻吩-4-基)联苯]二苯并[f,h]喹喔啉(简称:2mDBTBPDBq-II)、2-[3’-(9H-咔唑-9-基)联苯-3-基]二苯并[f,h]喹喔啉(简称:2mCzBPDBq)、2-[4-(3,6-二苯基-9H-咔唑-9-基)苯基]二苯并[f,h]喹喔啉(简称:2CzPDBq-III)、7-[3-(二苯并噻吩-4-基)苯基]二苯并[f,h]喹喔啉(简称:7mDBTPDBq-II)及6-[3-(二苯并噻吩-4-基)苯基]二苯并[f,h]喹喔啉(简称:6mDBTPDBq-II)、2-{4-[9,10-二(2-萘基)-2-蒽基]苯基}-1-苯基-1H-苯并咪唑(简称:ZADN)、2-[4’-(9-苯基-9H-咔唑-3-基)-3,1’-联苯-1-基]二苯并[f,h]喹喔啉(简称:2mpPCBPDBq)等,这些材料优选用作主体材料。
在上述有机化合物中,作为电子传输性高的有机化合物的吡啶衍生物、二嗪衍生物(包含嘧啶衍生物、吡嗪衍生物、哒嗪衍生物)、三嗪衍生物、呋喃二嗪衍生物的具体例子,可以举出4,6-双[3-(菲-9-基)苯基]嘧啶(简称:4,6mPnP2Pm)、4,6-双[3-(4-二苯并噻吩基)苯基]嘧啶(简称:4,6mDBTP2Pm-II)、4,6-双[3-(9H-咔唑-9-基)苯基]嘧啶)(简称:4,6mCzP2Pm)、2-{4-[3-(N-苯基-9H-咔唑-3-基)-9H-咔唑-9-基]苯基}-4,6-二苯基-1,3,5-三嗪(简称:PCCzPTzn)、9-[3-(4,6-二苯基-1,3,5-三嗪-2-基)苯基]-9’-苯基-2,3’-联-9H-咔唑(简称:mPCCzPTzn-02)、3,5-双[3-(9H-咔唑-9-基)苯基]吡啶(简称:35DCzPPy)、1,3,5-三[3-(3-吡啶)苯基]苯(简称:TmPyPB)、9,9’-[嘧啶-4,6-二基双(联苯-3,3’-二基)]双(9H-咔唑)(简称:4,6mCzBP2Pm)、2-[3’-(9,9-二甲基-9H-芴-2-基)-1,1’-联苯-3-基]-4,6-二苯基-1,3,5-三嗪(简称:mFBPTzn)、8-(1,1’-联苯-4-基)-4-[3-(二苯并噻吩-4-基)苯基]-[1]苯并呋喃并[3,2-d]嘧啶(简称:8BP-4mDBtPBfpm)、9-[3’-(二苯并噻吩-4-基)联苯-3-基]萘并[1’,2’:4,5]呋喃并[2,3-b]吡嗪(简称:9mDBtBPNfpr)、9-[(3’-二苯并噻吩-4-基)联苯-4-基]萘并[1’,2’:4,5]呋喃并[2,3-b]吡嗪(简称:9pmDBtBPNfpr)、11-[(3’-二苯并噻吩-4-基)联苯-3-基]菲并[9’,10’:4,5]呋喃并[2,3-b]吡嗪(简称:11mDBtBPPnfpr)、11-[(3’-二苯并噻吩-4-基)联苯-4-基]菲并[9’,10’:4,5]呋喃并[2,3-b]吡嗪、11-[(3’-(9H-咔唑-9-基)联苯-3-基]菲并[9’,10’:4,5]呋喃并[2,3-b]吡嗪、12-(9’-苯基-3,3’-联-9H-咔唑-9-基)菲并[9’,10’:4,5]呋喃并[2,3-b]吡嗪(简称:12PCCzPnfpr)、9-[(3’-9-苯基-9H-咔唑-3-基)联苯-4-基]萘并[1’,2’:4,5]呋喃并[2,3-b]吡嗪(简称:9pmPCBPNfpr)、9-(9’-苯基-3,3’-联-9H-咔唑-9-基)萘并[1’,2’:4,5]呋喃并[2,3-b]吡嗪(简称:9PCCzNfpr)、10-(9’-苯基-3,3’-联-9H-咔唑-9-基)萘并[1’,2’:4,5]呋喃并[2,3-b]吡嗪(简称:10PCCzNfpr)、9-[3’-(6-苯基苯并[b]萘并[1,2-d]呋喃-8-基)联苯-3-基]萘并[1’,2’:4,5]呋喃并[2,3-b]吡嗪(简称:9mBnfBPNfpr)、9-{3-[6-(9,9-二甲基芴-2-基)二苯并噻吩-4-基]苯基}萘并[1’,2’:4,5]呋喃并[2,3-b]吡嗪(简称:9mFDBtPNfpr)、9-[3’-(6-苯基二苯并噻吩-4-基)联苯-3-基]萘并[1’,2’:4,5]呋喃并[2,3-b]吡嗪(简称:9mDBtBPNfpr-02)、9-[3-(9’-苯基-3,3’-联-9H-咔唑-9-基)苯基]萘并[1’,2’:4,5]呋喃并[2,3-b]吡嗪(简称:9mPCCzPNfpr)、9-{(3’-[2,8-二苯基二苯并噻吩-4-基]联苯-3-基}萘并[1’,2’:4,5]呋喃并[2,3-b]吡嗪、11-{(3’-[2,8-二苯基二苯并噻吩-4-基]联苯-3-基}菲并[9’,10’:4,5]呋喃并[2,3-b]吡嗪、5-[3-(4,6-二苯基-1,3,5-三嗪-2-基)苯基]-7,7-二甲基-5H,7H-茚并[2,1-b]咔唑(简称:mINc(II)PTzn)、2-[3’-(三亚苯-2-基)-1,1’-联苯-3-基]-4,6-二苯基-1,3,5-三嗪(简称:mTpBPTzn)、2-[(1,1’-联苯)-4-基]-4-苯基-6-[9,9’-螺二(9H-芴)-2-基]-1,3,5-三嗪(简称:BP-SFTzn)、2,6-双(4-萘-1-基苯基)-4-[4-(3-吡啶基)苯基]嘧啶(简称:2,4NP-6PyPPm)、9-[4-(4,6-二苯基-1,3,5-三嗪-2-基)-2-二苯并噻吩基]-2-苯基-9H-咔唑(简称:PCDBfTzn)、2-[1,1’-联苯]-3-基-4-苯基-6-(8-[1,1’:4’,1”-三联苯]-4-基-1-二苯并呋喃基)-1,3,5-三嗪(简称:mBP-TPDBfTzn)、6-(1,1’-联苯-3-基)-4-[3,5-双(9H-咔唑-9-基)苯基]-2-苯基嘧啶(简称:6mBP-4Cz2PPm)、4-[3,5-双(9H-咔唑-9-基)苯基]-2-苯基-6-(1,1’-联苯-4-基)嘧啶(简称:6BP-4Cz2PPm)等包含具有二嗪环的杂芳环的有机化合物等,这些材料优选用作主体材料。
在上述有机化合物中,作为电子传输性高的有机化合物的金属配合物的具体例子,可以举出:锌或铝类金属配合物的三(8-羟基喹啉)铝(III)(简称:Alq)、三(4-甲基-8-羟基喹啉)铝(III)(简称:Almq3)、双(10-羟基苯并[h]喹啉)铍(II)(简称:BeBq2)、双(2-甲基-8-羟基喹啉)(4-苯基苯酚)铝(III)(简称:BAlq)、双(8-羟基喹啉)锌(II)(简称:Znq);具有喹啉环或苯并喹啉环的金属配合物等,这些材料优选用作主体材料。
除此以外,作为优选的主体材料还可以使用聚(2,5-吡啶二基)(简称:PPy)、聚[(9,9-二己基芴-2,7-二基)-共-(吡啶-3,5-二基)](简称:PF-Py)、聚[(9,9-二辛基芴-2,7-二基)-共-(2,2’-联吡啶-6,6’-二基)](简称:PF-BPy)等高分子化合物等。
再者,空穴传输性高的有机化合物且电子传输性高的有机化合物的双极性的9-苯基-9’-(4-苯基-2-喹唑啉基)-3,3’-联-9H-咔唑(简称:PCCzQz)、2-[4’-(9-苯基-9H-咔唑-3-基)-3,1’-联苯-1-基]二苯并[f,h]喹喔啉(简称:2mpPCBPDBq)、5-[3-(4,6-二苯基-1,3,5-三嗪-2-基)苯基]-7,7-二甲基-5H,7H-茚并[2,1-b]咔唑(简称:mINc(II)PTzn)、11-(4-[1,1’-联苯]-4-基-6-苯基-1,3,5-三嗪-2-基)-11,12-二氢-12-苯基-吲哚[2,3-a]咔唑(简称:BP-Icz(II)Tzn)、7-[4-(9-苯基-9H-咔唑-2-基)喹唑啉-2-基]-7H-二苯并[c,g]咔唑(简称:PC-cgDBCzQz)等具有二嗪环的有机化合物等也可以被用作主体材料。
<电子传输层>
电子传输层(114、114a、114b)是将从第二电极102及电荷产生层(106、106a、106b)由后述的电子注入层(115、115a、115b)注入的电子传输到发光层(113、113a、113b)中的层。另外,本发明的一个方式的发光器件因为电子传输层具有叠层结构,所以耐热性得到提高。作为用于电子传输层(114、114a、114b)的电子传输性材料,优选为在电场强度[V/cm]的平方根为600时具有1×10-6cm2/Vs以上的电子迁移率的物质。此外,只要是电子传输性高于空穴传输性的物质,就可以使用上述以外的物质。此外,电子传输层(114、114a、114b)即使是单层也起作用,但是也可以采用两层以上的叠层结构。注意,由于上述混合材料具有耐热性,所以通过使用在使用该混合材料的电子传输层上进行光刻工序,可以抑制因热工序导致的器件特性受到的影响。
<<电子传输性材料>>
作为能够用于电子传输层(114、114a、114b)的电子传输性材料,可以使用电子传输性高的有机化合物,例如可以使用杂芳族化合物。注意,杂芳族化合物是指环中包含至少两种不同的元素的环式化合物。注意,作为环结构,包括三元环、四元环、五元环、六元环等,尤其优选为五元环或六元环,作为所包含的元素除了碳以外优选为氮、氧和硫等中的任一个或多个的杂芳族化合物。尤其优选为包含氮的杂芳族化合物(含氮杂芳族化合物),优选使用含氮杂芳族化合物或包含该含氮杂芳族化合物的缺π电子型杂芳族化合物等的电子传输性高的材料(电子传输性材料)。
杂芳族化合物为至少具有一个杂芳环的有机化合物。
注意,杂芳环具有吡啶环、二嗪环、三嗪环、多唑环、恶唑环和噻唑环等中的任一个。此外,具有二嗪环的杂芳环包含具有嘧啶环、吡嗪环或哒嗪环等的杂芳环。此外,具有多唑环的杂芳环包含具有咪唑环、***环或噁二唑环的杂芳环。
杂芳环包含具有稠环结构的稠合杂芳环。注意,作为稠合杂芳环,可以举出喹啉环、苯并喹啉环、喹喔啉环、二苯并喹喔啉环、喹唑啉环、苯并喹唑啉环、二苯并喹唑啉环、菲咯啉环、呋喃二嗪环、苯并咪唑环等。
注意,作为杂芳族化合物,例如在除了碳以外还包含氮、氧和硫等中的一个或多个的杂芳族化合物中,作为具有五元环结构的杂芳族化合物,可以举出具有咪唑环的杂芳族化合物、具有***环的杂芳族化合物、具有恶唑环的杂芳族化合物、具有噁二唑环的杂芳族化合物、具有噻唑环的杂芳族化合物、具有苯并咪唑环的杂芳族化合物等。
例如,在除了碳以外还包含氮、氧和硫等中的任一个或多个的杂芳族化合物中,作为具有六元环结构的杂芳族化合物,可以举出吡啶环、二嗪环(包含嘧啶环、吡嗪环、哒嗪环等)、三嗪环、多唑环等具有杂芳环的杂芳族化合物等。注意,可以举出具有联吡啶结构的杂芳族化合物、具有三联吡啶结构的杂芳族化合物等,它们包括在吡啶环连接的杂芳族化合物的例子中。
再者,作为具有其一部分包含上述六元环结构的稠环结构的杂芳族化合物,可以举出具有喹啉环、苯并喹啉环、喹喔啉环、二苯并喹喔啉环、菲咯啉环、呋喃二嗪环(包括呋喃二嗪环的呋喃环与芳香环稠合的结构)、苯并咪唑环等稠合杂芳环的杂芳族化合物等。
作为具有上述五元环结构(多唑环(包括咪唑环、***环、噁二唑环)、恶唑环、噻唑环、苯并咪唑环等)的杂芳族化合物的具体例子,可以举出2-(4-联苯基)-5-(4-叔丁基苯基)-1,3,4-噁二唑(简称:PBD)、1,3-双[5-(对叔丁基苯基)-1,3,4-噁二唑-2-基]苯(简称:OXD-7)、9-[4-(5-苯基-1,3,4-噁二唑-2-基)苯基]-9H-咔唑(简称:CO11)、3-(4-联苯基)-4-苯基-5-(4-叔丁基苯基)-1,2,4-***(简称:TAZ)、3-(4-叔丁基苯基)-4-(4-乙基苯基)-5-(4-联苯基)-1,2,4-***(简称:p-EtTAZ)、2,2’,2”-(1,3,5-苯三基)三(1-苯基-1H-苯并咪唑)(简称:TPBI)、2-[3-(二苯并噻吩-4-基)苯基]-1-苯基-1H-苯并咪唑(简称:mDBTBIm-II)、4,4’-双(5-甲基苯恶唑-2-基)二苯乙烯(简称:BzOS)等。
作为具有上述六元环结构(包含具有吡啶环、二嗪环、三嗪环等的杂芳环)的杂芳族化合物的具体例子,可以举出3,5-双[3-(9H-咔唑-9-基)苯基]吡啶(简称:35DCzPPy)、1,3,5-三[3-(3-吡啶基)苯基]苯(简称:TmPyPB)等包含具有吡啶环的杂芳环的杂芳族化合物;2-{4-[3-(N-苯基-9H-咔唑-3-基)-9H-咔唑-9-基]苯基}-4,6-二苯基-1,3,5-三嗪(简称:PCCzPTzn)、9-[3-(4,6-二苯基-1,3,5-三嗪-2-基)苯基]-9’-苯基-2,3’-联-9H-咔唑(简称:mPCCzPTzn-02)、5-[3-(4,6-二苯基-1,3,5-三嗪-2-基)苯基]-7,7-二甲基-5H,7H-茚并[2,1-b]咔唑(简称:mINc(II)PTzn)、2-[3’-(三亚苯-2-基)-1,1’-联苯-3-基]-4,6-二苯基-1,3,5-三嗪(简称:mTpBPTzn)、2-[(1,1’-联苯)-4-基]-4-苯基-6-[9,9’-螺二(9H-芴)-2-基]-1,3,5-三嗪(简称:BP-SFTzn)、2,6-双(4-萘-1-基苯基)-4-[4-(3-吡啶基)苯基]嘧啶(简称:2,4NP-6PyPPm)、9-[4-(4,6-二苯基-1,3,5-三嗪-2-基)-2-二苯并噻吩基]-2-苯基-9H-咔唑(简称:PCDBfTzn)、2-[1,1’-联苯]-3-基-4-苯基-6-(8-[1,1’:4’,1”-三联苯]-4-基-1-二苯并呋喃基)-1,3,5-三嗪(简称:mBP-TPDBfTzn)、2-{3-[3-(二苯并噻吩-4-基)苯基]苯基}-4,6-二苯基-1,3,5-三嗪(简称:mDBtBPTzn)、mFBPTzn等包含具有三嗪环的杂芳环的杂芳族化合物;4,6-双[3-(菲-9-基)苯基]嘧啶(简称:4,6mPnP2Pm)、4,6-双[3-(4-二苯并噻吩基)苯基]嘧啶(简称:4,6mDBTP2Pm-II)、4,6-双[3-(9H-咔唑-9-基)苯基]嘧啶(简称:4,6mCzP2Pm)、4,6mCzBP2Pm、6-(1,1’-联苯-3-基)-4-[3,5-双(9H-咔唑-9-基)苯基]-2-苯基嘧啶(简称:6mBP-4Cz2PPm)、4-[3,5-双(9H-咔唑-9-基)苯基]-2-苯基-6-(1,1’-联苯-4-基)嘧啶(简称:6BP-4Cz2PPm)、4-[3-(二苯并噻吩-4-基)苯基]-8-(萘-2-基)-[1]苯并呋喃并[3,2-d]嘧啶(简称:8βN-4mDBtPBfpm)、8BP-4mDBtPBfpm、9mDBtBPNfpr、9pmDBtBPNfpr、3,8-双[3-(二苯并噻吩-4-基)苯基]苯并呋喃并[2,3-b]吡嗪(简称:3,8mDBtP2Bfpr)、4,8-双[3-(二苯并噻吩-4-基)苯基]-[1]苯并呋喃并[3,2-d]嘧啶(简称:4,8mDBtP2Bfpm)、8-[3’-(二苯并噻吩-4-基)(1,1’-联苯-3-基)]萘并[1’,2’:4,5]呋喃并[3,2-d]嘧啶(简称:8mDBtBPNfpm)、8-[(2,2’-联萘)-6-基]-4-[3-(二苯并噻吩-4-基)苯基]-[1]苯并呋喃并[3,2-d]嘧啶(简称:8(βN2)-4mDBtPBfpm)、8-(1,1’:4’,1”-三联苯-3-基)-4-[3-(二苯并噻吩-4-基)苯基]-苯并呋喃并[3,2-d]嘧啶(简称:8mpTP-4mDBtPBfpm)、4,8-双[3-(二苯并呋喃-4-基)苯基]苯并呋喃并[3,2-d]嘧啶、8-(1,1’:4’,1”-三联苯-3-基)-4-[3-(二苯并噻吩-4-基)联苯-4-基]-苯并呋喃并[3,2-d]嘧啶、4,8-双[3-(9H-咔唑-9-基)苯基]苯并呋喃并[3,2-d]嘧啶(简称:4,8mCzP2Bfpm)、8-(1,1’:4’,1”-三联苯-3-基)-4-[3-(9-苯基-9H-咔唑-3-基)苯基]-苯并呋喃并[3,2-d]嘧啶、8-(1,1’-联苯-4-基)-4-[3-(9-苯基-9H-咔唑-3-基)联苯-3-基]-苯并呋喃并[3,2-d]嘧啶、8-(1,1’-联苯-4-基)-4-{3-[2-(N-苯基-9H-咔唑-3-基)-9H-咔唑-9-基]苯基}苯并呋喃并[3,2-d]嘧啶、8-苯基-4-{3-[2-(N-苯基-9H-咔唑-3-基)-9H-咔唑-9-基]苯基}苯并呋喃并[3,2-d]嘧啶、8-(1,1’-联苯-4-基)-4-(3,5-二-9H-咔唑-9-基-苯基)苯并呋喃并[3,2-d]嘧啶等包含具有二嗪(嘧啶)环的杂芳环的杂芳族化合物等。注意,包含上述杂芳环的芳香化合物包含具有稠合杂芳环的杂芳族化合物。
除此以外,可以举出2,2’-(吡啶-2,6-二基)双(4-苯基苯并[h]喹唑啉)(简称:2,6(P-Bqn)2Py)、2,2’-(2,2’-双吡啶-6,6’-二基)双(4-苯基苯并[h]喹唑啉)(简称:6,6’(P-Bqn)2BPy)、2,2’-(吡啶-2,6-二基)双{4-[4-(2-萘基)苯基]-6-苯基嘧啶}(简称:2,6(NP-PPm)2Py)、6-(1,1’-联苯-3-基)-4-[3,5-双(9H-咔唑-9-基)苯基]-2-苯基嘧啶(简称:6mBP-4Cz2PPm)等包含具有二嗪(嘧啶)环的杂芳环的杂芳族化合物;2,4,6-三(3’-(吡啶-3-基)联苯-3-基)-1,3,5-三嗪(简称:TmPPPyTz)、2,4,6-三(2-吡啶基)-1,3,5-三嗪(简称:2Py3Tz)、2-[3-(2,6-二甲基-3-吡啶基)-5-(9-菲基)苯基]-4,6-二苯基-1,3,5-三嗪(简称:mPn-mDMePyPTzn)等包含具有三嗪环的杂芳环的杂芳族化合物等。
作为具有其一部分包含上述六元环结构的稠环结构的杂芳族化合物(具有稠环结构的杂芳族化合物)的具体例子,可以举出红菲咯啉(简称:Bphen)、浴铜灵(简称:BCP)、2,9-二(萘-2-基)-4,7-二苯基-1,10-菲咯啉(简称:NBphen)、2,2-(1,3-亚苯)双[9-苯基-1,10-菲咯啉](简称:mPPhen2P)、2-苯基-9-[4-[4-(9-苯基-1,10-菲咯啉-2-基)苯基]苯基]-1,10-菲咯啉(略称:PPhen2BP)、2,2’-(吡啶-2,6-二基)双(4-苯基苯并[h]喹唑啉)(简称:2,6(P-Bqn)2Py)、2-[3-(二苯并噻吩-4-基)苯基]二苯并[f,h]喹喔啉(简称:2mDBTPDBq-II)、2-[3-(3×-二苯并噻吩-4-基)联苯]二苯并[f,h]喹喔啉(简称:2mDBTBPDBq-II)、2-[3’-(9H-咔唑-9-基)联苯-3-基]二苯并[f,h]喹喔啉(简称:2mCzBPDBq)、2-[4-(3,6-二苯基-9H-咔唑-9-基)苯基]二苯并[f,h]喹喔啉(简称:2CzPDBq-III)、7-[3-(二苯并噻吩-4-基)苯基]二苯并[f,h]喹喔啉(简称:7mDBTPDBq-II)及6-[3-(二苯并噻吩-4-基)苯基]二苯并[f,h]喹喔啉(简称:6mDBTPDBq-II)、2mpPCBPDBq等具有喹喔啉环的杂芳族化合物等。
电子传输层(114、114a、114b)除了上述杂芳族化合物以外还可以使用下述的金属配合物。作为该金属配合物可以举出三(8-羟基喹啉)铝(III)(简称:Alq3)、Almq3、8-羟基喹啉锂(I)(简称:Liq)、BeBq2、双(2-甲基-8-羟基喹啉)(4-苯基苯酚)铝(III)(简称:BAlq)、双(8-羟基喹啉)锌(II)(简称:Znq)等具有喹啉环或苯并喹啉环的金属配合物、双[2-(2-苯并噁唑基)苯酚]锌(II)(简称:ZnPBO)、双[2-(2-苯并噻唑基)苯酚]锌(II)(简称:ZnBTZ)等具有恶唑环或噻唑环的金属配合物等。
此外,作为电子传输性材料,还可以使用聚(2,5-吡啶二基)(简称:PPy)、聚[(9,9-二己基芴-2,7-二基)-共-(吡啶-3,5-二基)](简称:PF-Py)、聚[(9,9-二辛基芴-2,7-二基)-共-(2,2’-联吡啶-6,6’-二基)](简称:PF-BPy)等高分子化合物。
另外,电子传输层(114、114a、114b)可以为单层,也可以为包含上述物质的两层以上的叠层。
<电子注入层>
电子注入层(115、115a、115b)是包含电子注入性高的物质的层。电子注入层(115、115a、115b)是用来提高从第二电极102注入电子的效率的层,优选使用用于第二电极102的材料的功函数的值与用于电子注入层(115、115a、115b)的材料的LUMO能级的值之差小(0.5eV以下)的材料。因此,作为电子注入层115,可以使用锂、铯、氟化锂(LiF)、氟化铯(CsF)、氟化钙(CaF2)、8-(羟基喔啉)锂(简称:Liq)、2-(2-吡啶基)苯酚锂(简称:LiPP)、2-(2-吡啶基)-3-羟基吡啶(pyridinolato)锂(简称:LiPPy)、4-苯基-2-(2-吡啶基)苯酚锂(简称:LiPPP)、锂氧化物(LiOx)、碳酸铯等碱金属、碱土金属或者它们的化合物。此外,可以使用镱(Yb)等稀土金属或者氟化铒(ErF3)等稀土金属化合物。注意,电子注入层(115、115a、115b)既可以混合上述材料中的多种形成,也可以层叠上述材料中的多种形成。另外,也可以将电子化合物用于电子注入层(115、115a、115b)。作为电子化合物,例如可以举出对钙和铝的混合氧化物以高浓度添加电子的物质等。另外,也可以使用如上所述的构成电子传输层(114、114a、114b)的物质。
此外,也可以将混合有机化合物与电子给体(供体)而成的混合材料用于电子注入层(115、115a、115b)。这种混合材料因为通过电子给体在有机化合物中产生电子而具有优异的电子注入性和电子传输性。在此情况下,有机化合物优选是在传输所产生的电子方面性能优异的材料,具体而言,例如,可以使用用于如上所述的电子传输层(114、114a、114b)的电子传输性材料(金属配合物及杂芳族化合物等)。作为电子给体,只要是对有机化合物呈现电子供给性的物质即可。具体而言,优选使用碱金属、碱土金属及稀土金属,可以举出锂、铯、镁、钙、铒、镱等。另外,优选使用碱金属氧化物及碱土金属氧化物,可以举出锂氧化物、钙氧化物、钡氧化物等。此外,还可以使用氧化镁等路易斯碱。另外,也可以使用四硫富瓦烯(简称:TTF)等有机化合物。或者,也可以层叠使用多个这些材料。
除此以外,也可以将混合有机化合物和金属而成的混合材料用于电子注入层(115、115a、115b)。注意,这里使用的有机化合物优选具有-3.6eV以上且-2.3eV以下的LUMO能级。此外,优选使用具有非共用电子对的材料。
因此,作为用于上述混合材料的有机化合物,也可以使用混合能够用于电子传输层的上述杂芳族化合物与金属而成的混合材料。杂芳族化合物优选为具有五元环结构(咪唑环、***环、恶唑环、噁二唑环、噻唑环、苯并咪唑环等)的杂芳族化合物、具有六元环结构(吡啶环、二嗪环(包括嘧啶环、吡嗪环、哒嗪环等)、三嗪环、联吡啶环、三联吡啶环等)的杂芳族化合物、其一部分具有六元环结构的稠环结构(喹啉环、苯并喹喔啉环、喹喔啉环、二苯并喹喔啉环、菲咯啉环等)的杂芳族化合物等具有非共用电子对的材料。上面已说明了具体材料,所以在此省略其说明。
作为用于上述混合材料的金属,优选使用属于元素周期表中第5族、第7族、第9族或第11族的过渡金属以及属于第13族的材料,例如,可以举出Ag、Cu、Al或In等。此外,此时,有机化合物与过渡金属之间形成单占轨道(SOMO)。
另外,例如,在使从发光层113b得到的光放大的情况下,优选以第二电极102与发光层113b之间的光学距离小于发光层113b所发射的光的波长λ的1/4的方式形成。在此情况下,通过改变电子传输层114b或电子注入层115b的厚度,可以调整光学距离。
此外,如图2D所示的发光器件那样,通过在两个EL层(103a、103b)之间设置电荷产生层106,可以具有多个EL层层叠在一对电极之间的结构(也称为串联结构)。
<电荷产生层>
电荷产生层106具有如下功能:当第一电极101(阳极)和第二电极102(阴极)之间被施加电压时,对EL层103a注入电子且对EL层103b注入空穴的功能。电荷产生层106既可以具有对空穴传输性材料添加电子受体(受体)的结构,也可以具有对电子传输性材料添加电子给体(供体)的结构。或者,也可以层叠有这两种结构。注意,通过使用上述材料形成电荷产生层106,可以抑制层叠EL层时导致的驱动电压的上升。
在电荷产生层106具有对有机化合物的空穴传输性材料添加电子受体的结构的情况下,作为空穴传输性材料可以使用本实施方式所示的材料。另外,作为电子受体,可以举出7,7,8,8-四氰基-2,3,5,6-四氟醌二甲烷(简称:F4-TCNQ)、氯醌等。此外,可以举出属于元素周期表中第4族至第8族的金属的氧化物。具体而言,可以举出氧化钒、氧化铌、氧化钽、氧化铬、氧化钼、氧化钨、氧化锰、氧化铼等。
在电荷产生层106具有对电子传输性材料添加电子供体的结构的情况下,作为电子传输性材料可以使用本实施方式所示的材料。另外,作为电子给体,可以使用碱金属、碱土金属、稀土金属或属于元素周期表中第2族、第13族的金属及它们的氧化物或碳酸盐。具体而言,优选使用锂(Li)、铯(Cs)、镁(Mg)、钙(Ca)、镱(Yb)、铟(In)、氧化锂、碳酸铯等。此外,也可以将如四硫萘并萘(tetrathianaphthacene)等有机化合物用作电子给体。
虽然图2D示出层叠有两个EL层103的结构,但是通过在不同的EL层之间设置电荷产生层可以使其成为三个以上的叠层结构。
<衬底>
本实施方式所示的发光器件可以形成在各种衬底上。注意,对衬底的种类没有特定的限制。作为该衬底的例子,可以举出半导体衬底(例如,单晶衬底或硅衬底)、SOI衬底、玻璃衬底、石英衬底、塑料衬底、金属衬底、不锈钢衬底、包含不锈钢箔的衬底、钨衬底、包含钨箔的衬底、柔性衬底、贴合薄膜、包含纤维状材料的纸或基材薄膜等。
作为玻璃衬底的例子,有钡硼硅酸盐玻璃、铝硼硅酸盐玻璃、钠钙玻璃等。作为柔性衬底、贴合薄膜、基材薄膜等,可以举出以聚对苯二甲酸乙二醇酯(PET)、聚萘二甲酸乙二醇酯(PEN)、聚醚砜(PES)为代表的塑料、丙烯酸树脂等合成树脂、聚丙烯、聚酯、聚氟化乙烯、聚氯乙烯、聚酰胺、聚酰亚胺、芳族聚酰胺、环氧树脂、无机蒸镀薄膜、纸类等。
另外,当制造本实施方式所示的发光器件时,可以利用蒸镀法等气相法、旋涂法及喷墨法等液相法。作为蒸镀法,可以利用溅射法、离子镀法、离子束蒸镀法、分子束蒸镀法、真空蒸镀法等物理蒸镀法(PVD法)或化学气相沉积法(CVD法)等。尤其是,可以利用蒸镀法(真空蒸镀法)、涂敷法(浸涂法、染料涂布法、棒式涂布法、旋涂法、喷涂法等)、印刷法(喷墨法、丝网印刷(孔版印刷)法、胶版印刷(平版印刷)法、柔版印刷(凸版印刷)法、照相凹版印刷法、微接触印刷法等)等方法形成包括在发光器件的EL层中的具有各种功能的层(空穴注入层111、空穴传输层112、发光层113、电子传输层114、电子注入层115)。
注意,在使用上述涂布法、印刷法等的成膜方法时,可以使用高分子化合物(低聚物、树枝状聚合物、聚合物等)、中分子化合物(介于低分子与高分子之间的化合物:分子量为400以上且4000以下)、无机化合物(量子点材料等)等。注意,作为量子点材料,可以使用胶状量子点材料、合金型量子点材料、核壳(Core Shell)型量子点材料、核型量子点材料等。
本实施方式所示的构成发光器件的EL层103的各层(空穴注入层111、空穴传输层112、发光层113、电子传输层114、电子注入层115)的材料不局限于本实施方式所示的材料,只要为可以满足各层的功能的材料就可以组合地使用。
在本说明书等中,“层”和“膜”可以相互调换。
本实施方式所示的结构可以适当地与其他实施方式所示的结构组合而使用。
实施方式3
在本实施方式中,对本发明的一个方式的发光装置(也称为显示面板)的具体结构例子及制造方法进行说明。
<发光装置700的结构例子1>
图3A所示的发光装置700包括发光器件550B、发光器件550G、发光器件550R以及分隔壁528。此外,发光器件550B、发光器件550G、发光器件550R以及分隔壁528形成于设置在第一衬底510上的功能层520上。功能层520除了由多个晶体管构成的驱动电路GD等以外还包括使它们电连接的布线等。注意,作为一个例子,这些驱动电路与发光器件550B、发光器件550G及发光器件550R电连接,并可以驱动这些器件。此外,发光装置700在功能层520及各发光器件上包括绝缘层705,绝缘层705具有使第二衬底770和功能层520贴合的功能。
注意,发光器件550B、发光器件550G以及发光器件550R具有实施方式1及2所示的器件结构。就是说,示出图2A所示的结构中的EL层103在各发光器件中不同的情况。
此外,在本说明书等中,有时将在各颜色的发光器件(例如蓝色(B)、绿色(G)及红色(R))中分别形成发光层或分别涂布发光层的结构称为SBS(Side By Side)结构。注意,虽然在图3A所示的发光装置700中发光器件550B、发光器件550G及发光器件550R依次排列,但本发明的一个方式不局限于该结构。例如,在发光装置700中,上述发光器件也可以按发光器件550R、发光器件550G及发光器件550B的顺序排列。
如图3A所示,发光器件550B包括电极551B、电极552以及EL层103B。注意,各层的具体结构是如实施方式2所示那样的。此外,EL层103B具有由包括发光层113B的功能不同的多个层构成的叠层结构。在图3A中,在EL层103B所包括的层中,只示出空穴注入/传输层104B、发光层113B、具有叠层结构的电子传输层(电子传输层108B-1\电子传输层108B-2)以及电子注入层109,本发明不局限于此。注意,作为空穴注入/传输层104B示出具有实施方式2所示的空穴注入层及空穴传输层的功能的层,也可以具有叠层结构。注意,在本说明书中,在发光器件中的任意个中空穴注入/传输层都可以如上那样被解释。
注意,电子传输层(电子传输层108B-1\电子传输层108B-2)具有实施方式1中所说明的结构。另外,也可以具有阻挡从阳极一侧经过发光层移动到阴极一侧的空穴的功能。此外,电子注入层109也可以具有其一部分或全部使用不同材料形成的叠层结构。
如图3A所示,也可以在包括发光层的EL层103B所包括的层中的空穴注入/传输层104B、发光层113B、电子传输层(电子传输层108B-1\电子传输层108B-2)的侧面(或端部)形成绝缘层107。绝缘层107以与EL层103B的侧面(或端部)接触的方式形成。由此,可以抑制氧及水分或其构成元素从EL层103B的侧面向内部进入。注意,绝缘层107例如可以使用氧化铝、氧化镁、氧化铪、氧化镓、铟镓锌氧化物、氮化硅或氮氧化硅等。此外,绝缘层107可以使用上述材料层叠形成。绝缘层107可以利用溅射法、CVD(CVD:Chemical Vapor Deposition)法、MBE(MBE:Molecular Beam Epitaxy)法、PLD(PLD:Pulsed Laser Deposition)法、ALD(ALD:Atomic Layer Deposition)法等形成,优选利用覆盖性良好的ALD法。
此外,覆盖EL层103B的一部分(发光层113B、空穴注入/传输层104B及电子传输层(电子传输层108B-1\电子传输层108B-2))及绝缘层107形成电子注入层109。注意,电子注入层109也可以具有层中的电阻不同的两层以上的叠层结构。
电极552形成在电子注入层109上。注意,电极551B和电极552具有彼此重叠的区域。此外,在电极551B与电极552之间包括EL层103B。
图3A所示的EL层103B具有与在实施方式2中说明的EL层103同样的结构。此外,EL层103B例如可以发射蓝光。
如图3A所示,发光器件550G包括电极551G、电极552以及EL层103G。注意,各层的具体结构是如实施方式1及2所示那样的。此外,EL层103G具有由包括发光层113G的功能不同的多个层构成的叠层结构。在图3A中,在EL层103G所包括的层中,只示出空穴注入/传输层104G、发光层113G、电子传输层(电子传输层108G-1\电子传输层108G-2)以及电子注入层109,本发明不局限于此。注意,作为空穴注入/传输层104G示出具有实施方式2所示的空穴注入层及空穴传输层的功能的层,也可以具有叠层结构。
注意,电子传输层(电子传输层108G-1\电子传输层108G-2)具有实施方式1中所说明的结构。另外,也可以具有阻挡从阳极一侧经过发光层移动到阴极一侧的空穴的功能。此外,电子注入层109也可以具有其一部分或全部使用不同材料形成的叠层结构。
如图3A所示,也可以在包括发光层113G的EL层103G所包括的层中的空穴注入/传输层104G、发光层113G、电子传输层(电子传输层108G-1\电子传输层108G-2)的侧面(或端部)形成绝缘层107。绝缘层107以与EL层103G的侧面(或端部)接触的方式形成。由此,可以抑制氧及水分或其构成元素从EL层103G的侧面向内部进入。注意,绝缘层107例如可以使用氧化铝、氧化镁、氧化铪、氧化镓、铟镓锌氧化物、氮化硅或氮氧化硅等。此外,绝缘层107可以使用上述材料层叠形成。绝缘层107可以利用溅射法、CVD法、MBE法、PLD法、ALD法等形成,优选利用覆盖性良好的ALD法。
此外,覆盖EL层103G的一部分(发光层113G、空穴注入/传输层104G及电子传输层(电子传输层108G-1\电子传输层108G-2))及绝缘层107形成电子注入层109。注意,电子注入层109也可以具有层中的电阻不同的两层以上的叠层结构。
电极552形成在电子注入层109上。注意,电极551G和电极552具有彼此重叠的区域。此外,在电极551G与电极552之间包括EL层103G。
图3A所示的EL层103G具有与在实施方式2中说明的EL层103同样的结构。此外,EL层103G例如可以发射绿光。
如图3A所示,发光器件550R包括电极551R、电极552以及EL层103R。注意,各层的具体结构是如实施方式1及2所示那样的。此外,EL层103R具有由包括发光层113R的功能不同的多个层构成的叠层结构。在图3A中,在EL层103R所包括的层中,只示出空穴注入/传输层104R、发光层113R、电子传输层108(电子传输层108R-1\电子传输层108R-2)以及电子注入层109,本发明不局限于此。注意,作为空穴注入/传输层104R示出具有实施方式2所示的空穴注入层及空穴传输层的功能的层,也可以具有叠层结构。
注意,电子传输层108(电子传输层108R-1\电子传输层108R-2)具有实施方式1中所说明的结构。另外,也可以具有阻挡从阳极一侧经过发光层移动到阴极一侧的空穴的功能。此外,电子注入层109也可以具有其一部分或全部使用不同材料形成的叠层结构。
如图3A所示,也可以在包括发光层的EL层103R所包括的层中的空穴注入/传输层104R、发光层113R、电子传输层108R(电子传输层108R-1\108R-2)的侧面(或端部)形成绝缘层107。绝缘层107以与EL层103R的侧面(或端部)接触的方式形成。由此,可以抑制氧及水分或其构成元素从EL层103R的侧面向内部进入。注意,绝缘层107例如可以使用氧化铝、氧化镁、氧化铪、氧化镓、铟镓锌氧化物、氮化硅或氮氧化硅等。此外,绝缘层107可以使用上述材料层叠形成。绝缘层107可以利用溅射法、CVD法、MBE法、PLD法、ALD法等形成,优选利用覆盖性良好的ALD法。
此外,覆盖EL层103R的一部分(发光层113R、空穴注入/传输层104R及电子传输层108R(电子传输层108R-1\电子传输层108R-2))及绝缘层107R形成电子注入层109。注意,电子注入层109也可以具有层中的电阻不同的两层以上的叠层结构。
电极552形成在电子注入层109上。注意,电极551R和电极552具有彼此重叠的区域。此外,在电极551R与电极552之间包括EL层103R。
图3A所示的EL层103R具有与在实施方式2中说明的EL层103同样的结构。此外,EL层103R例如可以发射红光。
在EL层103B、EL层103G、EL层103R之间分别包括分隔壁528。注意,如图3A所示,各发光器件的EL层(EL层103B、EL层103G、EL层103R)的侧面(或端部)隔着绝缘层107与分隔壁528接触。
在各EL层中,由于在很多情况下尤其包括在位于阳极与发光层之间的空穴传输区域中的空穴注入层的导电率高,所以在作为在相邻的发光器件中共同使用的层形成空穴注入层时有时因横向方向的电流泄漏导致串扰。因此,如本结构例子所示,通过在各EL层之间设置由绝缘材料形成的分隔壁528,可以抑制在相邻的发光器件间发生串扰。
在本实施方式中说明的制造方法中,通过图案工序使EL层的侧面(或端部)在工序中途露出。因此,因从EL层的侧面(或端部)的氧及水等的进入而加速EL层的劣化。因此,通过设置分隔壁528,可以抑制制造工艺中的EL层的劣化。
通过设置分隔壁528,可以使形成在相邻的发光器件间的凹部平坦化。此外,通过使凹部平坦化,可以抑制形成在各EL层上的电极552的断开。此外,作为用来形成分隔壁528的绝缘材料,例如,可以使用丙烯酸树脂、聚酰亚胺树脂、环氧树脂、亚胺树脂、聚酰胺树脂、聚酰亚胺酰胺树脂、硅酮树脂、硅氧烷树脂、苯并环丁烯类树脂、酚醛树脂及这些树脂的前体等有机材料。此外,也可以使用聚乙烯醇(PVA)、聚乙烯醇缩丁醛、聚乙烯吡咯烷酮、聚乙二醇、聚甘油、普鲁兰多糖、水溶性纤维素或可溶解于醇的聚酰胺树脂等有机材料。此外,可以使用光致抗蚀剂等感光性树脂。注意,感光性树脂可以使用正型材料或负型材料。
通过使用感光性树脂,可以只通过曝光及显影的工序制造分隔壁528。此外,也可以使用负型感光性树脂(如抗蚀剂材料等)形成分隔壁528。此外,在使用包含有机材料的绝缘层作为分隔壁528的情况下,优选使用吸收可见光的材料。通过将吸收可见光的材料用于分隔壁528,可以由分隔壁528吸收从EL层发射的光,由此可以抑制可能泄漏到相邻的EL层的光(杂散光)。因此,可以提供显示质量高的显示面板。
此外,分隔壁528的顶面的高度与EL层103B、EL层103G及EL层103R中的任意个的顶面的高度之差例如优选为分隔壁528的厚度的0.5倍以下,更优选为0.3倍以下。此外,例如,也可以以EL层103B、EL层103G及EL层103R中的任意个的顶面比分隔壁528的顶面高的方式设置分隔壁528。此外,例如,也可以以分隔壁528的顶面比EL层103B、EL层103G及EL层103R所包括的发光层的顶面高的方式设置分隔壁528。
在超过1000ppi的高清晰发光装置(显示面板)中,在EL层103B、EL层103G、EL层103R之间产生电导通时,在降低器件效率的同时发生串扰,因此发光装置的能够显示的色域变窄。此外,在采用电极551R、电极551G、电极551B的端部被绝缘体覆盖的结构时,引起开口率的降低。但是,通过设置图3A所示的形状的分隔壁528,可以提供超过1000ppi的高清晰显示面板,优选超过2000ppi的高清晰显示面板,更优选超过5000ppi的超高清晰显示面板。
图3B及图3C示出对应于图3A的截面图中的点划线Ya-Yb的发光装置700的俯视示意图。就是说,发光器件550B、发光器件550G及发光器件550R都排列为矩阵状。注意,图3B示出在X方向上排列相同颜色的发光器件的所谓条形排列。此外,在交叉于X方向的Y方向上排列不同颜色的发光器件。注意,发光器件的排列方法不局限于此,既可以使用Delta排列、锯齿形(zigzag)排列等排列方法,又可以使用Pentile排列、Diamond排列等。
注意,由于在各EL层(EL层103B、EL层103G以及EL层103R)的分离加工中利用光刻法进行图案形成,所以可以制造高清晰发光装置(显示面板)。此外,利用光刻法进行图案形成来加工的EL层的端部(侧面)成为具有大致同一表面(或者,位于大致同一平面上)的形状。此外,此时,设置于各EL层之间的间隙580的宽度(SE)优选为5μm以下,更优选为1μm以下。
在EL层中,由于在很多情况下尤其包括在位于阳极与发光层之间的空穴传输区域中的空穴注入层的导电率高,所以在作为在相邻的发光器件中共同使用的层形成空穴注入层时有时因横向方向的电流泄漏导致串扰。因此,如本结构例子所示,通过进行利用光刻法的图案形成使EL层分离加工,可以抑制在相邻的发光器件间发生串扰。
图3D是对应于图3B及图3C中的包括区域150的点划线C1-C2的截面示意图。图3D示出连接电极551C与电极552电连接的连接部130。在连接部130中,在连接电极551C上且与其接触的方式设置电极552。此外,以覆盖连接电极551C的端部的方式设置分隔壁528。
<发光装置的制造方法例子1>
如图4A所示,形成电极551B、电极551G以及电极551R。例如,在形成在第一衬底510上的功能层520上形成导电膜,利用光刻法将该导电膜加工为规定形状。
注意,导电膜可以利用溅射法、化学气相沉积法、分子束外延法、真空蒸镀法、脉冲激光沉积法、原子层沉积法等形成。作为CVD法有等离子体增强化学气相沉积(PECVD:Plasma Enhanced CVD)法或热CVD法等。此外,作为热CVD法之一,可以举出有机金属化学气相沉积(MOCVD:Metal Organic CVD)法。
在导电膜的加工中除了上述光刻法以外也可以利用纳米压印法、喷砂法、剥离法等对薄膜进行加工。此外,可以利用金属掩模等遮蔽掩模的成膜方法直接形成岛状的薄膜。
作为光刻法典型地有如下两种方法。一个是在要进行加工的薄膜上形成抗蚀剂掩模,通过蚀刻等对该薄膜进行加工,并去除抗蚀剂掩模的方法。另一个是在形成感光性薄膜之后,进行曝光及显影来将该薄膜加工为所希望的形状的方法。注意,在利用前者的方法时,有抗蚀剂涂敷后的加热(PAB:Pre Applied Bake)及曝光后的加热(PEB:Post ExposureBake)等热处理工序。在本发明的一个方式中,除了导电膜的加工以外还在用来形成EL层的薄膜(由有机化合物形成的膜或其一部分包含有机化合物的膜)的加工中采用光刻法。
在光刻法中,作为用于曝光的光,例如可以使用i线(波长365nm)、g线(波长436nm)、h线(波长405nm)或将这些光混合了的光。此外,还可以使用紫外光、KrF激光或ArF激光等。此外,也可以利用液浸曝光技术进行曝光。此外,作为用于曝光的光,也可以使用极紫外(EUV:Extreme Ultra-violet)光或X射线。此外,也可以使用电子束代替用于曝光的光。当使用极紫外光、X射线或电子束时,可以进行极其精细的加工,所以是优选的。注意,在通过利用电子束等光束进行扫描而进行曝光时,不需要光掩模。
作为使用抗蚀剂掩模的薄膜蚀刻,可以利用干蚀刻法、湿蚀刻法、喷砂法等。
接着,如图4B所示,在电极551B、电极551G以及电极551R上形成EL层103B的一部分。在图4B中,EL层103B的一部分被形成到空穴注入/传输层104B、发光层113B及电子传输层(电子传输层108B-1\电子传输层108B-2)。例如,可以利用真空蒸镀法在电极551B、电极551G以及电极551R上以覆盖它们的方式形成上述EL层103B的一部分。然后,在EL层103B的一部分的电子传输层(电子传输层108B-1\电子传输层108B-2)上形成掩模层110B。
掩模层110B可以使用对于EL层103B的蚀刻处理的耐性高的膜,即蚀刻选择比较大的膜。此外,掩模层110B优选采用蚀刻选择比彼此不同的第一掩模层与第二掩模层的叠层结构。此外,掩模层110B可以使用能够通过对EL层103B带来的损伤少的湿蚀刻法去除的膜。作为用于湿蚀刻的蚀刻材料可以使用草酸等。
作为掩模层110B,例如可以使用金属膜、合金膜、金属氧化物膜、半导体膜、无机绝缘膜等的无机膜。此外,掩模层110B可以通过溅射法、蒸镀法、CVD法、ALD法等的各种成膜方法形成。
作为掩模层110B,例如可以使用金、银、铂、镁、镍、钨、铬、钼、铁、钴、铜、钯、钛、铝、钇、锆及钽等的金属材料或者包含该金属材料的合金材料。尤其是,优选使用铝或银等低熔点材料。
此外,作为掩模层110B可以使用铟镓锌氧化物(In-Ga-Zn氧化物,也记为IGZO)等金属氧化物。此外,可以使用氧化铟、铟锌氧化物(In-Zn氧化物)、铟锡氧化物(In-Sn氧化物)、铟钛氧化物(In-Ti氧化物)、铟锡锌氧化物(In-Sn-Zn氧化物)、铟钛锌氧化物(In-Ti-Zn氧化物)、铟镓锡锌氧化物(In-Ga-Sn-Zn氧化物)等。或者,也可以使用包含硅的铟锡氧化物等。
注意,可以使用元素M(M为选自铝、硅、硼、钇、铜、钒、铍、钛、铁、镍、锗、锆、钼、镧、铈、钕、铪、钽、钨和镁中的一种或多种)代替上述镓。尤其是,M优选为选自镓、铝和钇中的一种或多种。
此外,作为掩模层110B可以使用氧化铝、氧化铪、氧化硅等无机绝缘材料。
作为掩模层110B,优选使用能够溶解于如下溶剂中的材料,即至少对作为EL层103B的一部分且位于其最上部的膜(在附图中电子传输层(电子传输层108B-1\电子传输层108B-2))呈现化学稳定性的溶剂。尤其是,作为掩模层110B可以适当地使用溶解于水或醇的材料。当沉积掩模层110B时,优选的是,在材料溶解于水或醇等溶剂的状态下通过上述湿式的沉积方法涂布该材料,然后进行用来使溶剂蒸发的加热处理。此时,通过在减压气氛下进行热处理,由于可以在短时间内以低温去除溶剂,所以可以减少对EL层103B的一部分带来的热损伤,因此是优选的。
注意,在掩模层110B为叠层结构时,可以将由上述材料形成的层作为第一掩模层,在其下形成第二掩模层而形成叠层结构。
此时,第二掩模层为对第一掩模层进行蚀刻时被用作硬掩模的膜。此外,在对第二掩模层进行加工时露出第一掩模层。因此,作为第一掩模层和第二掩模层,选择蚀刻选择比较大的膜的组合。因此,可以根据第一掩模层的蚀刻条件及第二掩模层的蚀刻条件选择可以用于第二掩模层的膜。
例如,在作为第二掩模层的蚀刻利用使用含有氟的气体(也称为氟类气体)的干蚀刻时,可以将硅、氮化硅、氧化硅、钨、钛、钼、钽、氮化钽、含有钼及铌的合金或者含有钼及钨的合金等用于第二掩模层。在此,作为相对于上述使用氟类气体的干蚀刻的蚀刻选择比较大(即,可以使蚀刻速率较慢)的膜,可以举出IGZO、ITO等的金属氧化物膜等,可以将上述膜用于第一掩模层。
此外,不局限于此,第二掩模层可以根据第一掩模层的蚀刻条件及第二掩模层的蚀刻条件从各种材料选择。例如,也可以从可用于上述第一掩模层的膜中选择。
此外,作为第二掩模层例如可以使用氮化物膜。具体而言,也可以使用氮化硅、氮化铝、氮化铪、氮化钛、氮化钽、氮化钨、氮化镓、氮化锗等的氮化物。
此外,作为第二掩模层可以使用氧化物膜。典型的是,可以使用氧化硅、氧氮化硅、氧化铝、氧氮化铝、氧化铪、氧氮化铪等氧化物膜或者氧氮化物膜。
接着,如图4C所示,在掩模层110B上涂敷抗蚀剂,利用光刻法将抗蚀剂形成为所希望的形状(抗蚀剂掩模:REG)。此外,在采用这种方法时,有抗蚀剂涂敷后的加热(PAB:PreApplied Bake)及曝光后的加热(PEB:Post Exposure Bake)等热处理工序。例如,PAB温度为100℃左右,PEB温度为120℃左右。因此,发光器件需要能够耐受这些处理温度。
接着,通过使用所得到的抗蚀剂掩模REG蚀刻去除没有被抗蚀剂掩模REG覆盖的掩模层110B的一部分,去除抗蚀剂掩模REG,然后通过蚀刻去除没有被掩模层覆盖的EL层103B的一部分,通过蚀刻去除电极551G上的EL层103B和电极551R上的EL层103B,加工为具有侧面(或露出侧面)的形状或者在与纸面交叉的方向上延伸的带状形状。具体而言,使用在与电极551B重叠的EL层103B上形成图案的掩模层110B,进行干蚀刻。此外,在掩模层110B具有上述第一掩模层和第二掩模层的叠层结构的情况下,也可以在利用抗蚀剂掩模REG对第二掩模层的一部分进行蚀刻后去除抗蚀剂掩模REG,将第二掩模层用作掩模对第一掩模层的一部分进行蚀刻,EL层103B被加工成规定形状。通过进行这些蚀刻处理,得到图5A的形状。
接着,如图5B所示,在掩模层110B、电极551G以及电极551R上形成EL层103G的一部分。在图5B中,EL层103G被形成到空穴注入/传输层104G、发光层113G及电子传输层(电子传输层108G-1\电子传输层108G-2)。例如,可以利用真空蒸镀法在掩模层110B、电极551G以及电极551R上以覆盖它们的方式形成上述EL层103G。
接着,如图5C所示,在EL层103G的一部分的电子传输层(电子传输层108G-1\电子传输层108G-2)上形成掩模层110G,在掩模层110G上涂敷抗蚀剂,通过光刻法将抗蚀剂形成为所希望的形状(抗蚀剂掩模:REG),通过蚀刻去除没有被所得到的抗蚀剂掩模覆盖的掩模层110G的一部分,去除抗蚀剂掩模,然后通过蚀刻去除没有被掩模层覆盖的EL层103G的一部分,通过蚀刻去除电极551B上的EL层103G的一部分和电极551R上的EL层103G的一部分,加工为如图6A所示那样的具有侧面(或露出侧面)的形状或者在与纸面交叉的方向上延伸的带状形状。此外,在掩模层110G具有上述第一掩模层和第二掩模层的叠层结构的情况下,也可以在利用抗蚀剂掩模对第二掩模层的一部分进行蚀刻后去除抗蚀剂掩模,将第二掩模层用作掩模对第一掩模层的一部分进行蚀刻,EL层103G的一部分被加工成规定形状。
接着,如图6B所示,在掩模层110B、掩模层110G以及电极551R上形成EL层103R的一部分。在图6B中,EL层103R的一部分被形成到空穴注入/传输层104R、发光层113R及电子传输层(电子传输层108R-1\电子传输层108R-2)。例如,可以利用真空蒸镀法在掩模层110B、掩模层110G以及电极551R上以覆盖它们的方式形成上述EL层103R的一部分。
接着,如图6C所示,在EL层103R的一部分的电子传输层(电子传输层108R-1\电子传输层108R-2)上形成掩模层110R,在掩模层110R上涂敷抗蚀剂,通过光刻法将抗蚀剂形成为所希望的形状(抗蚀剂掩模:REG),通过蚀刻去除没有被所得到的抗蚀剂掩模覆盖的掩模层110R的一部分,去除抗蚀剂掩模,然后通过蚀刻去除没有被掩模层覆盖的EL层103R的一部分,通过蚀刻去除电极551B上的EL层103R的一部分和电极551G上的EL层103R的一部分,加工为具有侧面(或露出侧面)的形状或者在与纸面交叉的方向上延伸的带状形状。此外,在掩模层110G具有上述第一掩模层和第二掩模层的叠层结构的情况下,也可以在利用抗蚀剂掩模对第二掩模层的一部分进行蚀刻后去除抗蚀剂掩模,将第二掩模层用作掩模对第一掩模层的一部分进行蚀刻,EL层103G的一部分被加工成规定形状。再者,在EL层(103B、103G、103R)上的掩模层(掩模层110B、掩模层110G、掩模层110R)留下的状态下在掩模层(掩模层110B、掩模层110G、掩模层110R)上形成绝缘层107,得到图7A的形状。
此外,绝缘层107例如可以利用ALD法形成。此时,绝缘层107如图7A所示以与各EL层(EL层103B、EL层103G、EL层103R)的侧面接触的方式形成。由此,能够抑制氧及水分或其构成元素从各EL层(EL层103B、EL层103G、EL层103R)的侧面进入到内部。作为用于绝缘层107的材料,例如可以使用氧化铝、氧化镁、氧化铪、氧化镓、铟镓锌氧化物、氮化硅或氮氧化硅等。
接着,如图7B所示,在去除掩模层(掩模层110B、掩模层110G、掩模层110R)之后,在绝缘层(绝缘层107B、绝缘层107G、绝缘层107R)上形成分隔壁528,在分隔壁528及电子传输层(电子传输层108B、电子传输层108G、电子传输层108R)上形成电子注入层109。电子注入层109例如通过真空蒸镀法形成。此外,电子注入层109形成在电子传输层(电子传输层108B、电子传输层108G、电子传输层108R)上。此外,电子注入层109与各EL层(EL层103B、EL层103G、EL层103R)的一部分的空穴注入/传输层(空穴注入/传输层104R、空穴注入/传输层104G、空穴注入/传输层104B)、发光层(发光层113R、发光层113G、发光层113B)及电子传输层(电子传输层108B、电子传输层108G、电子传输层108R)的侧面(或端部)隔着绝缘层(绝缘层107B、绝缘层107G、绝缘层107R)接触。
接着,如图7C所示,形成电极552。电极552例如利用真空蒸镀法形成。注意,电极552形成于电子注入层109上。注意,电极552隔着电子注入层109以及绝缘层(绝缘层107B、绝缘层107G、绝缘层107R)与各EL层(EL层103B、EL层103G、EL层103R)(注意,图7C所示的EL层(EL层103B、EL层103G、EL层103R)包括空穴注入/传输层(空穴注入/传输层104R、空穴注入/传输层104G、空穴注入/传输层104B)、发光层及电子传输层(电子传输层108B、电子传输层108G、电子传输层108R))的侧面(或端部)接触。由此,可以防止各EL层(EL层103B、EL层103G、EL层103R)与电极552电短路,更具体而言,可以防止各EL层(EL层103B、EL层103G、EL层103R)各自包括的空穴注入/传输层(空穴注入/传输层104B、空穴注入/传输层104G、空穴注入/传输层104R)与电极552电短路。
通过上述工序,可以对发光器件550B、发光器件550G以及发光器件550R中的EL层103B、EL层103G以及EL层103R进行分离加工。
注意,由于在这些EL层(EL层103B、EL层103G以及EL层103R)的分离加工中利用光刻法进行图案形成,所以可以制造高清晰发光装置(显示面板)。此外,利用光刻法进行图案形成来加工的EL层的端部(侧面)成为具有大致同一表面(或者,位于大致同一平面上)的形状。
在EL层中,由于在很多情况下尤其包括在位于阳极与发光层之间的空穴传输区域中的空穴注入层的导电率高,所以在作为在相邻的发光器件中共同使用的层形成空穴注入层时有时因横向方向的电流泄漏导致串扰。因此,如本结构例子所示,通过进行利用光刻法的图案形成使EL层分离加工,可以抑制在相邻的发光器件间发生串扰。
<发光装置700的结构例子2>
图8所示的发光装置700包括发光器件550B、发光器件550G、发光器件550R以及分隔壁532。此外,发光器件550B、发光器件550G、发光器件550R以及分隔壁532形成在设置在第一衬底510上的功能层520上。功能层520除了由多个晶体管构成的驱动电路GD等以外还包括使它们电连接的布线等。注意,作为一个例子,这些驱动电路与发光器件550B、发光器件550G、发光器件550R电连接,并可以驱动这些器件。
注意,发光器件550B、发光器件550G以及发光器件550R具有实施方式1及2所示的器件结构。尤其示出图2A所示的结构中的EL层103在各发光器件中不同的情况。
注意,图8所示的各发光器件的具体结构与在图3A至图3C中说明的发光器件550B、发光器件550G以及发光器件550R相同。
如图8所示,各发光器件(发光器件550B、发光器件550G、发光器件550R)的EL层(EL层103B、EL层103G、EL层103R)包括空穴注入/传输层(空穴注入/传输层104B、空穴注入/传输层104G、空穴注入/传输层104R)、发光层(发光层113B、发光层113G、发光层113R)、电子传输层(电子传输层108B、电子传输层108G、电子传输层108R)及电子注入层109。
此外,由于本结构的各EL层(EL层103B、EL层103G以及EL层103R)在分离加工中进行利用光刻法的图案形成,所以被加工的EL层的端部(侧面)成为具有大致同一表面(或者,位于大致同一平面上)的形状。
各发光器件分别包括的EL层(EL层103B、EL层103G及EL层103R)在相邻的发光器件之间都包括间隙580。注意,这里,在将间隙580记为相邻的发光器件的EL层间的距离SE时,距离SE越小越可以提高开口率及清晰度。另一方面,由于距离SE越大,越可以允许相邻的发光器件间的制造工序偏差的影响,所以可以提高制造成品率。由于通过本说明书制造的发光器件适合于微型化工艺,所以相邻的发光器件的EL层之间的距离SE可以为0.5μm以上且5μm以下,优选为1μm以上且3μm以下,更优选为1μm以上且2.5μm以下,进一步优选为1μm以上且2μm以下。注意,距离SE典型地优选为1μm以上且2μm以下(例如1.5μm或其附近)。
在EL层中,由于在很多情况下尤其包括在位于阳极与发光层之间的空穴传输区域中的空穴注入层的导电率高,所以在作为在相邻的发光器件中共同使用的层形成空穴注入层时有时因横向方向的电流泄漏导致串扰。因此,如本结构例子所示,通过进行利用光刻法的图案形成使EL层分离加工,可以抑制在相邻的发光器件间发生串扰。
在本说明书等中,有时将使用金属掩模或FMM(Fine Metal Mask,高精细金属掩模版)制造的器件称为MM(Metal Mask)结构的器件。此外,在本说明书等中,将不使用金属掩模或FMM制造的器件称为MML(Metal Mask Less)结构的器件。MML结构的发光装置由于不使用金属掩模制造,因此其像素配置及像素形状等的设计自由度比FMM结构或MM结构的发光装置高。
MML结构的发光装置中的岛状EL层不使用金属掩模的图案来形成,而在沉积EL层之后对该EL层进行加工来形成。因此,与现有的发光装置相比,可以实现更加高清晰或开口率更高的发光装置。并且,因为可以分别形成各颜色的EL层,所以可以实现极为鲜明、对比度极高且显示品质极高的发光装置。此外,通过在EL层上设置掩模层,可以降低在制造工序中EL层受到的损伤,由此可以提高发光器件的可靠性。
注意,在将上述发光层加工成岛状的情况下,可以考虑使用光刻法对层叠到发光层的EL层进行加工的结构。在采用该结构时,有时会对发光层造成损伤(加工引起的损伤等)而可靠性严重受损。于是,在制造本发明的一个方式的显示面板时,优选的是,使用在比发光层更位于上方的层(例如,载流子传输层或载流子注入层,更具体而言为电子传输层或电子注入层等)之上形成掩模层等并将发光层加工成岛状的方法。通过使用该方法,可以提供可靠性高的显示面板。
例如,通过使用金属掩模(也称为遮蔽掩模)的真空蒸镀法,可以沉积岛状的发光层。但是,在该方法中,因金属掩模的精度、金属掩模与衬底的位置错开、金属掩模的弯曲及蒸汽的散射等导致的沉积的膜的轮廓的扩大等各种影响产生岛状的发光层的形状及位置从设计离开,显示装置的高清晰化及高开口率化很困难。另外,在蒸镀中,有时因层的轮廓模糊而端部的厚度变小。就是说,有时根据位置而岛状发光层的厚度不同。另外,当制造大型且高分辨率或高清晰的显示装置时,有如下担扰:由于金属掩模的低尺寸精度、热等所引起的变形,制造成品率下降。
于是,在制造本发明的一个方式的显示装置时,按每个子像素分别形成像素电极,然后横跨多个像素电极沉积发光层。然后,例如利用光刻法加工该发光层而在一个像素电极形成一个岛状的发光层。由此,发光层按每个子像素分割而可以按每个子像素形成岛状的发光层。
注意,可想到在将上述发光层加工为岛状时利用光刻法直接对发光层进行加工的结构。在采用该结构时,发光层受伤(因加工导致的损伤等),有时显著降低可靠性。在制造本发明的一个方式的显示装置时,优选使用在位于发光层的上方的层(例如,载流子传输层或载流子注入层,更具体而言,电子传输层或电子注入层等)上形成掩模层(也称为牺牲层、保护层等)等,将发光层加工为岛状的方法。通过可以使用该方法,可以提供一种可靠性高的显示装置。
如此,在本发明的一个方式的显示装置的制造方法中,岛状发光层不是使用高精细金属掩模形成的,而是在将发光层沉积在整个面上之后进行加工来形成的。具体而言,该岛状的发光层的尺寸为利用光刻法等被分割而微型化的尺寸。因此,可以使该岛状的发光层的尺寸比利用高精细金属掩模形成的尺寸更小。因此,可以实现至今难以实现的高清晰的显示装置或高开口率的显示装置。
注意,在利用光刻法的发光层的加工次数很少时,可以降低制造成本且提高制造成品率,所以是优选的。
在相邻的发光器件之间的间隔例如在利用高精细金属掩模的形成方法中小于10μm是很困难的,但是通过利用本发明的一个方式的光刻法的方法,在玻璃衬底上的工序中,例如,可以使相邻的发光器件之间的间隔减小到小于10μm、5μm以下、3μm以下、2μm以下、1.5μm以下、1μm以下或0.5μm以下。此外,例如通过使用用于LSI的曝光装置,在硅晶片上的工序中,也可以使相邻的发光器件之间的间隔例如减小到500nm以下、200nm以下、100nm以下、甚至为50nm以下。由此,可以大幅度缩小两个发光器件间可存在的非发光区域的面积,而可以使开口率接近100%。例如,在本发明的一个方式的显示装置中,开口率可以为40%以上、50%以上、60%以上、70%以上、80%以上、甚至为90%以上且小于100%。
注意,通过提高显示装置的开口率,可以提高显示装置的可靠性。更具体而言,在以包括有机EL器件且具有10%的开口率的显示装置的寿命为基准时,20%的开口率(就是说,开口率为基准的2倍)的显示装置的寿命大约为3.25倍,40%的开口率(就是说,开口率为基准的4倍)的显示装置的寿命大约为10.6倍。如此,由于随着开口率的提高,可以降低在有机EL器件中流过的电流密度,所以可以提高显示装置的寿命。在本发明的一个方式的显示装置中,由于可以提高开口率,所以可以提高显示装置的显示品质。此外,随着提高显示装置的开口率,产生显著提高显示装置的可靠性(尤其是寿命)等优异效果。
本实施方式所示的结构可以适当地与其他实施方式所示的结构组合而使用。
实施方式4
在本实施方式中,参照图9A至图11B说明装置720。注意,图9A至图11B所示的装置720因包括实施方式1及2所示的发光器件而可以说是发光装置,但是在本实施方式中说明的装置720可以应用于电子设备等的显示部,由此也可以说是显示面板或显示装置。此外,在将上述发光器件用作光源且包括能够接收来自发光器件的光的受光器件的情况下,也可以说是受发光装置。此外,这些发光装置、显示面板、显示装置以及受发光装置至少包括发光器件。
此外,本实施方式的发光装置、显示面板、显示装置以及受发光装置可以为高分辨率或大型的发光装置、显示面板、显示装置以及受发光装置。因此,例如可以将本实施方式的发光装置、显示面板、显示装置以及受发光装置用作如下装置的显示部:具有较大的屏幕的电子设备诸如电视装置、台式或笔记本型个人计算机、用于计算机等的显示器、数字标牌、如弹珠机等大型游戏机等;数码相机;数码摄像机;数码相框;移动电话机;便携式游戏机;智能手机;手表型终端;平板终端;便携式信息终端;声音再现装置等。
图9A是这些装置(包括发光装置、显示面板、显示装置以及受发光装置)720的俯视图。
在图9A中,装置720具有贴合衬底710与衬底711的结构。此外,装置720包括显示区域701、电路704以及布线706等。此外,显示区域701包括多个像素,图9A所示的像素703(i,j)包括图9B所示的与像素703(i,j)相邻的像素703(i+1,j)。
此外,如图9A所示,装置720将IC(集成电路)712通过COG(Chip On Glass)方式或COF(Chip on Film)方式等设置在衬底710上。作为IC712,例如可以应用包括扫描线驱动电路或信号线驱动电路等的IC。图9A示出将包括信号线驱动电路的IC用作IC712且使用扫描线驱动电路作为电路704的结构。
布线706具有对显示区域701及电路704供应信号及电力的功能。该信号及电力从外部通过FPC(Flexible Printed Circuit)713输入到布线706或者从IC712输入到布线706。此外,也可以在装置720中不设置IC。此外,IC也可以通过COF方式等安装在FPC上。
图9B示出显示区域701的像素703(i,j)及像素703(i+1,j)。也就是说,像素703(i,j)可以包括多种子像素,其中分别包括发射不同颜色的光的发光器件。此外,除了上述以外,像素703(i,j)也可以包括多个子像素,其中都包括发射相同颜色的光的发光器件。像素的子像素例如可以为三种子像素。作为该三种子像素,可以举出红色(R)、绿色(G)及蓝色(B)这三种颜色的子像素、黄色(Y)、青色C及品红色(M)这三种颜色的子像素等。或者,像素可以包括四种子像素。作为该四种子像素,可以举出R、G、B、白色(W)这四种颜色的子像素、R、G、B、Y这四种颜色的子像素等。具体而言,可以使用显示蓝色的像素702B(i,j)、显示绿色的像素702G(i,j)及显示红色的像素702R(i,j)构成像素703(i,j)。
此外,除了发光器件之外,子像素还可以包括受光器件。在子像素包括受光器件的情况下,装置720也可以说是受发光装置。
图9C至图9F示出像素703(i,j)包括具有受光器件的子像素702PS(i,j)时的各种布局的一个例子。图9C所示的像素的排列为条纹排列,图9D所示的像素的排列为矩阵排列。此外,图9E所示的像素具有以与一个子像素(子像素B)相邻的方式纵向排列三个子像素(子像素R、子像素G、子像素PS)的结构。此外,在图9F所示的像素703(i,j)中,纵向较长的三个子像素G、子像素B以及子像素R横向排列,且在其下侧子像素PS及横向较长的子像素IR横向排列。此外,对子像素702PS(i,j)所检测的光的波长没有特别的限制,但是子像素702PS(i,j)所具有的受光器件优选对子像素702R(i,j)、子像素702G(i,j)、子像素702B(i,j)或子像素702IR(i,j)所具有的发光器件所发射的光具有灵敏度。例如,优选的是,检测出蓝色、紫色、蓝紫色、绿色、黄绿色、黄色、橙色、红色等波长区域的光和红外的波长区域的光中的一个或多个。
此外,如图9F所示,也可以对上述一组追加发射红外线的子像素702IR(i,j)来构成像素703(i,j)。具体而言,也可以将发射包括波长为650nm以上且1000nm以下的光的光的子像素用于像素703(i,j)。
子像素的排列不局限于图9A至图9F所示的结构,而可以采用各种排列方法。作为子像素的排列,例如可以举出条纹排列、S条纹排列、矩阵排列、Delta排列、拜耳排列、Pentile排列等。
此外,作为子像素的顶面形状,例如可以举出三角形、四角形(包括矩形、正方形)、五角形等多角形、角部圆的上述多角形形状、椭圆形或圆形等。在此,子像素的顶面形状相当于发光器件的发光区域的顶面形状。
在像素包括发光器件及受光器件的显示装置中,像素具有受光功能,所以该显示装置可以在显示图像的同时检测出对象物的接触或接近。例如,不仅使发光装置所包括的所有子像素显示图像,而且可以使部分子像素呈现用作光源的光并使其他子像素显示图像。
此外,子像素702PS(i,j)的受光面积优选比其他子像素的发光面积为小。受光面积越小摄像范围越窄,可以实现摄像结果变模糊的抑制以及分辨率的提高。因此,通过使用子像素702PS(i,j),可以以高清晰度或分辨率进行摄像。例如,可以使用子像素702PS(i,j)进行用来利用指纹、掌纹、虹膜、脉形状(包括静脉形状、动脉形状)或脸等的个人识别的摄像。
此外,子像素702PS(i,j)可以用于触摸传感器(也称为直接触摸传感器)或者空中触摸传感器(也称为悬浮传感器、悬浮触摸传感器、非接触式传感器、无接触式传感器)等。例如,子像素702PS(i,j)优选检测出红外光。由此,在黑暗处也可以检测出触摸。
在此,触摸传感器或空中触摸传感器可以检测出对象物(指头、手或笔等)的接近或接触。触摸传感器通过受发光装置与对象物直接接触可以检测出对象物。此外,空中触摸传感器即使对象物没有接触受发光装置也可以检测出该对象物。例如,优选的是,在受发光装置与对象物之间的距离为0.1mm以上且300mm以下、优选为3mm以上且50mm以下的范围内受发光装置可以检测出该对象物。通过采用该结构,可以在对象物没有直接接触受发光装置的状态下进行操作,换言之可以以非接触(无接触)方式操作受发光装置。通过采用上述结构,可以减少受发光装置被弄脏或受损伤的风险或者对象物不直接接触附着于受发光装置的污渍(例如,垃圾、细菌或病毒等)而操作受发光装置。
因为进行高清晰摄像,所以子像素702PS(i,j)优选设置在受发光装置所包括的所有像素中。另一方面,用于触摸传感器或空中触摸传感器等的子像素702PS(i,j)与用于拍摄指纹等的情况相比不需高检测精度,因此子像素702PS(i,j)设置在受发光装置所包括的部分像素中,即可。通过使受发光装置所包括的子像素702PS(i,j)个数少于子像素702R(i,j)等个数,可以提高检测速度。
接着,参照图10A说明包括发光器件的子像素的像素电路的一个例子。图10A所示的像素电路530包括发光器件(EL)550、晶体管M15、晶体管M16、晶体管M17以及电容器C3。作为发光器件550,可以使用发光二极管。尤其是,作为发光器件550,优选使用在实施方式1及2中说明的发光器件。
在图10A中,晶体管M15的栅极与布线VG电连接,源极和漏极中的一个与布线VS电连接,源极和漏极中的另一个与电容器C3的一个电极及晶体管M16的栅极电连接。晶体管M16的源极和漏极中的一个与布线V4电连接,源极和漏极中的另一个与发光器件550的阳极及晶体管M17的源极和漏极中的一个电连接。晶体管M17的栅极与布线MS电连接,源极和漏极中的另一个与布线OUT2电连接。发光器件550的阴极与布线V5电连接。
布线V4及布线V5各自被供应恒定电位。可以将发光器件550的阳极一侧和阴极一侧分别设定为高电位和低于阳极一侧的电位。晶体管M15被供应到布线VG的信号控制,被用作用来控制像素电路530的选择状态的选择晶体管。此外,晶体管M16被用作根据供应到栅极的电位控制流过发光器件550的电流的驱动晶体管。当晶体管M15处于导通状态时,供应到布线VS的电位被供应到晶体管M16的栅极,可以根据该电位控制发光器件550的发光亮度。晶体管M17被供应到布线MS的信号控制,将晶体管M16与发光器件550之间的电位通过布线OUT2输出到外部。
图10A的像素电路530所包括的晶体管M11、晶体管M12、晶体管M13及晶体管M14、像素电路530所包括的晶体管M15、晶体管M16及晶体管M17优选使用形成其沟道的半导体层包含金属氧化物(氧化物半导体)的晶体管。
使用其带隙比硅宽且载流子密度低的金属氧化物的晶体管可以实现极低的关态电流。由此,因为其关态电流小,所以能够长期间保持储存于与晶体管串联连接的电容器中的电荷。因此,尤其是,与电容器C2或电容器C3串联连接的晶体管M11、晶体管M12、晶体管M15优选使用包含氧化物半导体的晶体管。此外,通过将同样地应用氧化物半导体的晶体管用于其他晶体管,可以减少制造成本。
此外,晶体管M11至晶体管M17也可以使用形成其沟道的半导体包含硅的晶体管。特别是,在使用单晶硅或多晶硅等结晶性高的硅时可以实现高场效应迁移率及更高速的工作,所以是优选的。
此外,晶体管M11至晶体管M17中的一个以上可以使用包含氧化物半导体的晶体管,除此以外的晶体管可以使用包含硅的晶体管。
接着,参照图10B说明具有受光器件的子像素的一个例子。图10B所示的像素电路531包括受光器件(PD)560、晶体管M11、晶体管M12、晶体管M13、晶体管M14及电容器C2。这里,示出使用光电二极管作为受光器件(PD)560的例子。
在图10B中,受光器件(PD)560的阳极与布线V1电连接,阴极与晶体管M11的源极和漏极中的一个电连接。晶体管M11的栅极与布线TX电连接,源极和漏极中的另一个与电容器C2的一个电极、晶体管M12的源极和漏极中的一个及晶体管M13的栅极电连接。晶体管M12的栅极与布线RES电连接,源极和漏极中的另一个与布线V2电连接。晶体管M13的源极和漏极中的一个与布线V3电连接,源极和漏极中的另一个与晶体管M14的源极和漏极中的一个电连接。晶体管M14的栅极与布线SE1电连接,源极和漏极中的另一个与布线OUT1电连接。
布线V1、布线V2及布线V3各自被供应恒定电位。当以反向偏压驱动受光器件(PD)560时,将高于布线V1的电位供应到布线V2。晶体管M12被供应到布线RES的信号控制,使得连接于晶体管M13的栅极的节点的电位复位至供应到布线V2的电位。晶体管M11被供应到布线TX的信号控制,根据流过受光器件(PD)560的电流控制上述节点的电位变化的时序。将晶体管M13用作根据上述节点的电位输出的放大晶体管。晶体管M14被供应到布线SE1的信号控制,被用作选择晶体管,该选择晶体管用来使用连接于布线OUT1的外部电路读出根据上述节点的电位的输出。
在图10A和图10B中,作为晶体管使用n沟道型晶体管,但是也可以使用p沟道型晶体管。
像素电路530所包括的晶体管与像素电路531所包括的晶体管优选排列在同一衬底上。尤其优选像素电路530所包括的晶体管和像素电路531所包括的晶体管优选混合形成在一个区域内并周期性地排列。
此外,优选在与受光器件(PD)560或发光器件(EL)550重叠的位置设置一个或多个包括晶体管和电容器中的一个或两个的层。由此,可以减少各像素电路的实效占有面积,从而可以实现高清晰的受光部或显示部。
接着,图10C示出可以应用于参照图10A及图10B说明的像素电路的晶体管的具体结构的一个例子。注意,作为晶体管,可以适当地使用底栅型晶体管或顶栅型晶体管等。
图10C所示的晶体管包括半导体膜508、导电膜504、绝缘膜506、导电膜512A以及导电膜512B。晶体管例如形成在绝缘膜501C上。此外,该晶体管包括绝缘膜516(绝缘膜516A及绝缘膜516B)以及绝缘膜518。
半导体膜508包括与导电膜512A电连接的区域508A及与导电膜512B电连接的区域508B。半导体膜508包括区域508A和区域508B之间的区域508C。
导电膜504包括与区域508C重叠的区域,导电膜504具有栅电极的功能。
绝缘膜506包括夹在半导体膜508与导电膜504之间的区域。绝缘膜506具有第一栅极绝缘膜的功能。
导电膜512A具有源电极的功能和漏电极的功能中的一个,导电膜512B具有源电极的功能和漏电极的功能中的另一个。
此外,可以将导电膜524用于晶体管。导电膜524包括在其与导电膜504之间夹着半导体膜508的区域。导电膜524具有第二栅电极的功能。绝缘膜501D夹在半导体膜508与导电膜524之间,并具有第二栅极绝缘膜的功能。
绝缘膜516例如被用作覆盖半导体膜508的保护膜。具体而言,例如可以将含有氧化硅膜、氧氮化硅膜、氮氧化硅膜、氮化硅膜、氧化铝膜、氧化铪膜、氧化钇膜、氧化锆膜、氧化镓膜、氧化钽膜、氧化镁膜、氧化镧膜、氧化铈膜或氧化钕膜的膜用作绝缘膜516。
例如,优选将能够抑制氧、氢、水、碱金属、碱土金属等的扩散的材料用于绝缘膜518。具体而言,作为绝缘膜518,例如可以使用氮化硅、氧氮化硅、氮化铝、氧氮化铝等。此外,作为氧氮化硅及氧氮化铝各自包含的氧的原子数和氮的原子数,优选的是氮的原子数较多。
在形成用于像素电路的晶体管的半导体膜的工序中,可以形成用于驱动电路的晶体管的半导体膜。例如,可以将半导体膜用于驱动电路,该半导体膜具有与像素电路的晶体管中的半导体膜相同的组成。
作为半导体膜508,例如优选包含铟、M(M为选自镓、铝、硅、硼、钇、锡、铜、钒、铍、钛、铁、镍、锗、锆、钼、镧、铈、钕、铪、钽、钨和镁中的一种或多种)和锌。尤其是,M优选为选自铝、镓、钇和锡中的一种或多种。
尤其是,作为半导体膜508,优选使用包含铟(In)、镓(Ga)及锌(Zn)的氧化物(IGZO)。或者,优选使用包含铟、锡及锌的氧化物。或者,优选使用包含铟、镓、锡及锌的氧化物。或者,优选使用包含铟(In)、铝(Al)及锌(Zn)的氧化物(也称为IAZO)。或者,优选使用包含铟(In)、铝(Al)、镓(Ga)及锌(Zn)的氧化物(也称为IAGZO)。
当半导体膜为In-M-Zn氧化物时,优选该In-M-Zn氧化物的In的原子数比为M的原子数比以上。作为这种In-M-Zn氧化物的金属元素的原子数比,可以举出In:M:Zn=1:1:1或其附近的组成、In:M:Zn=1:1:1.2或其附近的组成、In:M:Zn=1:3:2或其附近的组成、In:M:Zn=1:3:4或其附近的组成、In:M:Zn=2:1:3或其附近的组成、In:M:Zn=3:1:2或其附近的组成、In:M:Zn=4:2:3或其附近的组成、In:M:Zn=4:2:4.1或其附近的组成、In:M:Zn=5:1:3或其附近的组成、In:M:Zn=5:1:6或其附近的组成、In:M:Zn=5:1:7或其附近的组成、In:M:Zn=5:1:8或其附近的组成、In:M:Zn=6:1:6或其附近的组成、In:M:Zn=5:2:5或其附近的组成等。注意,附近的组成包括所希望的原子个数比的±30%的范围。
当记载为原子数比为In:Ga:Zn=4:2:3或其附近的组成时包括如下情况:In的原子数比为4时,Ga的原子数比为1以上且3以下,Zn的原子数比为2以上且4以下。此外,当记载为原子数比为In:Ga:Zn=5:1:6或其附近的组成时包括如下情况:In的原子数比为5时,Ga的原子数比大于0.1且为2以下,Zn的原子数比为5以上且7以下。此外,当记载为原子数比为In:Ga:Zn=1:1:1或其附近的组成时包括如下情况:In的原子数比为1时,Ga的原子数比大于0.1且为2以下,Zn的原子数比大于0.1且为2以下。
对用于晶体管的半导体材料的结晶性也没有特别的限制,可以使用非晶半导体或具有结晶性的半导体(微晶半导体、多晶半导体、单晶半导体或其一部分具有结晶区域的半导体)。当使用具有结晶性的半导体时可以抑制晶体管的特性劣化,所以是优选的。
晶体管的半导体层优选使用金属氧化物(也称为氧化物半导体)。注意,作为具有结晶性的氧化物半导体,可以举出CAAC(c-axis-aligned crystalline)-OS及nc(nanocrystalline)-OS等。
或者,也可以使用将硅用于沟道形成区域的晶体管(Si晶体管)。作为硅可以举出单晶硅(单晶Si)、多晶硅、非晶硅等。尤其是,可以使用半导体层中含有低温多晶硅(LTPS(Low Temperature Poly Silicon))的晶体管(以下,也称为LTPS晶体管)。LTPS晶体管具有高场效应迁移率以及良好的频率特性。
通过使用LTPS晶体管等Si晶体管,可以在同一衬底上形成需要以高频率驱动的电路(例如,源极驱动器电路)和显示部。因此,可以使安装到发光装置的外部电路简化,可以缩减构件成本及安装成本。
与使用非晶硅的晶体管相比,将被形成沟道的半导体中含有金属氧化物(以下,也称为氧化物半导体)的晶体管(以下,也称为OS晶体管)的场效应迁移率非常高。另外,OS晶体管的关闭状态下的源极和漏极间的泄漏电流(以下,也称为关态电流)极低,可以长期间保持与该晶体管串联连接的电容器中储存的电荷。另外,通过使用OS晶体管,可以降低发光装置的功耗。
另外,室温下的每沟道宽度1μm的OS晶体管的关态电流值可以为1aA(1×10-18A)以下、1zA(1×10-21A)以下或1yA(1×10-24A)以下。注意,室温下的每沟道宽度1μm的Si晶体管的关态电流值为1fA(1×10-15A)以上且1pA(1×10-12A)以下。因此,也可以说,OS晶体管的关态电流比Si晶体管的关态电流低10位左右。
另外,在提高像素电路所包括的发光器件的发光亮度时,需要增大流过发光器件的电流量。为此,需要提高像素电路所包括的驱动晶体管的源极-漏极间电压。因为OS晶体管的源极-漏极间的耐压比Si晶体管高,所以可以对OS晶体管的源极-漏极间施加高电压。由此,通过作为像素电路所包括的驱动晶体管使用OS晶体管,可以增大流过发光器件的电流量而提高发光器件的发光亮度。
另外,当晶体管在饱和区域中工作时,与Si晶体管相比,OS晶体管可以使相对于栅极-源极间电压的变化的源极-漏极间电流的变化细小。因此,通过作为像素电路所包括的驱动晶体管使用OS晶体管,可以根据栅极-源极间电压的变化详细决定流过源极-漏极间的电流,所以可以控制流过发光器件的电流量。由此,可以增大像素电路的灰度。
另外,关于晶体管在饱和区域中工作时流过的电流的饱和特性,与Si晶体管相比,OS晶体管即使逐渐地提高源极-漏极间电压也可以使稳定的电流(饱和电流)流过。因此,通过将OS晶体管用作驱动晶体管,即使例如EL器件的电流-电压特性发生不均匀,也可以使稳定的电流流过发光器件。也就是说,OS晶体管当在饱和区域中工作时即使提高源极-漏极间电压,源极-漏极间电流也几乎不变,因此可以使发光器件的发光亮度稳定。
如上所述,通过作为像素电路所包括的驱动晶体管使用OS晶体管,可以实现“黑色模糊的抑制”、“发光亮度的上升”、“多灰度化”、“发光器件不均匀的抑制”等。
或者,可以通过同一工序形成用于驱动电路的晶体管的半导体膜及用于像素电路的晶体管的半导体膜。或者,可以在与形成有像素电路的衬底同一衬底上形成驱动电路。或者,可以减少构成电子设备的构件数量。
另外,作为半导体膜508,也可以使用硅。作为硅可以举出单晶硅、多晶硅、非晶硅等。尤其是,优选使用半导体层中含有低温多晶硅(LTPS(Low Temperature PolySilicon))的晶体管(以下,也称为LTPS晶体管)。LTPS晶体管具有高场效应迁移率以及良好的频率特性。
通过使用LTPS晶体管等使用硅的晶体管,可以在同一衬底上形成需要以高频率驱动的电路(例如,源极驱动器电路)和显示部。因此,可以使安装到发光装置的外部电路简化,可以缩减构件成本及安装成本。
另外,优选将被形成沟道的半导体中含有金属氧化物(以下,也称为氧化物半导体)的晶体管(以下,也称为OS晶体管)用于像素电路所包括的晶体管中的至少一个。与使用非晶硅的晶体管相比,OS晶体管的场效应迁移率非常高。另外,OS晶体管的关闭状态下的源极和漏极间的泄漏电流(以下,也称为关态电流)极低,可以长期间保持与该晶体管串联连接的电容器中储存的电荷。另外,通过使用OS晶体管,可以降低发光装置的功耗。
通过将LTPS晶体管用于像素电路所包括的一部分晶体管且将OS晶体管用于其他晶体管,可以实现一种功耗低且驱动能力高的发光装置。作为更优选的例子,优选的是,将OS晶体管用于被用作控制布线间的导通/非导通的开关的晶体管等且将LTPS晶体管用于控制电流的晶体管等。此外,有时将组合LTPS晶体管和OS晶体管这两种晶体管的结构称为LTPO。通过采用LTPO结构,可以实现一种功耗低且驱动能力高的显示面板。
例如,设置在像素电路中的晶体管之一被用作用来控制流过发光器件的电流的晶体管,也可以被称为驱动晶体管。驱动晶体管的源极和漏极中的一个与发光器件的像素电极电连接。作为该驱动晶体管优选使用LTPS晶体管。因此,可以增大在像素电路中流过发光器件的电流。
另一方面,设置在像素电路中的晶体管中的另一个被用作控制像素的选择/非选择的开关,也可以被称为选择晶体管。选择晶体管的栅极与栅极线电连接,源极和漏极中的一个与源极线(信号线)电连接。选择晶体管优选使用OS晶体管。因此,即便使帧频显著小(例如,1fps以下)也可以保持像素的灰度,由此通过在显示静态图像时停止驱动器,可以降低功耗。
在将氧化物半导体用于半导体膜的情况下,装置720具有将氧化物半导体用于半导体膜且包括具有MML(不用精细金属掩模版)结构的发光器件的结构。通过采用该结构,可以使可流过晶体管的泄漏电流以及可在相邻的发光元件间流过的泄漏电流(也称为横向泄漏电流、侧泄漏电流等)极低。另外,通过采用上述结构,在图像显示在显示装置上时观看者可以观测到图像的鲜锐度、图像的锐度、高色饱和度和高对比度中的任一个或多个。另外,通过采用可流过晶体管的泄漏电流及发光元件间的横向泄漏电流极低的结构,可以进行在显示黑色时可发生的光泄露(所谓的泛黑)等极少的显示(也称为全黑色显示)。
尤其是,在从MML结构的发光器件中采用上述SBS结构时,设置在发光元件间的层(例如是在发光元件间共同使用的有机层,也称为公共层)被分割,由此可以进行没有侧泄漏或侧泄漏极少的显示。
此外,根据显示面板的屏幕尺寸适当地选择用于显示面板的晶体管的结构即可。例如,在作为显示面板的晶体管使用单晶Si晶体管时,可以将其适用于对角线尺寸为0.1英寸以上且3英寸以下的屏幕尺寸的显示面板。另外,在作为显示面板的晶体管使用LTPS晶体管时,可以将其适用于对角线尺寸为0.1英寸以上且30英寸的屏幕尺寸的显示面板,优选将其适用于1英寸以上且30英寸以下的屏幕尺寸的显示面板。另外。在显示面板采用LTPO(将LTPS晶体管和OS晶体管组合的结构)时,可以将其适用于对角线尺寸为0.1英寸以上且50英寸以下的屏幕尺寸的显示面板,优选将其适用于1英寸以上且50英寸以下的屏幕尺寸的显示面板。另外,在作为显示面板的晶体管使用OS晶体管时,可以将其适用于对角线尺寸为0.1英寸以上且200英寸以下的屏幕尺寸的显示面板,优选将其适用于50英寸以上且100英寸以下的屏幕尺寸的显示面板。
注意,由于单晶Si衬底的尺寸,使用单晶Si晶体管很难使显示面板大型化。另外,LTPS晶体管在制造工序中使用激光晶化装置,很难将其应用于大型化(典型的是对角线尺寸超过30英寸的屏幕尺寸)。另一方面,OS晶体管在制造工序中没有使用激光晶化装置等限制,另外可以以较低的工艺温度(典型的是450℃以下)进行制造,因此可以将其应用到较大面积(典型的是对角线尺寸为50英寸以上且100英寸以下)的显示面板。另外,在采用LTPO时,可以将其适用于使用LTPS晶体管的情况与使用OS晶体管的情况之间的区域的显示面板尺寸(典型的是对角线尺寸为1英寸以上且50英寸以下)。
接着,图11A及图11B是装置的截面图。
图11A及图11B是图9A所示的装置为发光装置时的截面图。具体而言,图11A及图11B是分别截断了包括FPC713及布线706的区域的一部分、包括像素703(i,j)的显示区域701的一部分时的截面图。图11A示出具有从附图上方(第二衬底770一侧)提取发光的结构(顶部发射型)的发光装置,图11B示出具有从附图下方(第一衬底510一侧)提取光的结构(底部发射型)的发光装置。
在图11A中,装置(发光装置)700在第一衬底510与第二衬底770之间包括功能层520。功能层520除了上述晶体管(M15、M16、M17)及电容器(C3)等以外还包括使它们电连接的布线(VS、VG、V4、V5)等。图11A示出功能层520包括像素电路530B(i,j)、像素电路530G(i,j)以及驱动电路GD的结构,但是不局限于该结构。
功能层520所包括的各像素电路(例如,图11A所示的像素电路530B(i,j)、像素电路530G(i,j))与形成在功能层520上的各发光器件(例如,图11A所示的发光器件550B(i,j)及发光器件550G(i,j))电连接。具体而言,发光器件550B(i,j)通过布线591B与像素电路530B(i,j)电连接,发光器件550G(i,j)通过布线591G与像素电路530G(i,j)电连接。此外,功能层520及各发光器件上设置有绝缘层705,绝缘层705具有使第二衬底770与功能层520贴合的功能。
注意,作为第二衬底770可以使用以矩阵状具备触摸传感器的衬底。例如,可以将包括静电电容式触摸传感器或者光学式触摸传感器的衬底用于第二衬底770。由此,可以将本发明的一个方式的发光装置用作触摸面板。
虽然图11A及图11B说明有源矩阵型的发光装置,但是实施方式1及2所示的发光器件的结构也可以用于无源矩阵型的发光装置。
实施方式5
在本实施方式中,参照图12A至图14B对本发明的一个方式的电子设备的结构进行说明。
图12A至图14B是说明本发明的一个方式的电子设备的结构的图。图12A是电子设备的方框图,图12B至图12E是说明电子设备的结构的立体图。图13A至图13E是说明电子设备的结构的立体图。图14A及图14B是说明电子设备的结构的立体图。
在本实施方式中说明的电子设备5200B包括运算装置5210及输入/输出装置5220(参照图12A)。
运算装置5210具有被供应操作数据的功能,并具有根据操作数据供应图像数据的功能。
输入/输出装置5220包括显示部5230、输入部5240、检测部5250及通信部5290,并具有供应操作数据的功能及被供应图像数据的功能。此外,输入/输出装置5220具有供应检测数据的功能、供应通信数据的功能及被供应通信数据的功能。
输入部5240具有供应操作数据的功能。例如,输入部5240根据电子设备5200B的使用者的操作供应操作数据。
具体而言,可以将键盘、硬件按钮、指向装置、触摸传感器、照度传感器、摄像装置、音频输入装置、视线输入装置、姿态检测装置等用于输入部5240。
显示部5230包括显示面板并具有显示图像数据的功能。例如,可以将实施方式3所说明的显示面板用于显示部5230。
检测部5250具有供应检测数据的功能。例如,具有使用检测电子设备的周围的环境而供应检测数据的功能。
具体地,可以将照度传感器、摄像装置、姿态检测装置、压力传感器、人体感应传感器等用于检测部5250。
通信部5290具有被供应通信数据的功能及供应通信数据的功能。例如,具有以无线通信或有线通信与其他电子设备或通信网连接的功能。具体而言,具有无线局域网通信、电话通信、近距离无线通信等的功能。
图12B示出具有沿着圆筒状的柱子等的外形的电子设备。作为一个例子,可以举出数字标牌等。本发明的一个方式的显示面板可以用于显示部5230。注意,也可以具有根据使用环境的照度改变显示方法的功能。此外,具有感应人体存在改变显示内容的功能。因此,例如可以设置于建筑物的柱子上。或者,能够显示广告或指南。
图12C示出具有根据使用者所使用的指示器的轨迹生成图像数据的功能的电子设备。作为一个例子可以举出电子黑板、电子留言板、数字标牌等。具体而言,可以使用对角线的长度为20英寸以上、优选为40英寸以上,更优选为55英寸以上的显示面板。或者,可以将多个显示面板排列而用作一个显示区域。或者,可以将多个显示面板排列而用作多屏幕显示面板。
图12D示出可以从其他装置接收数据并将其显示在显示部5230上的电子设备。作为一个例子,可以举出可穿戴电子设备等。具体而言,可以显示几个选择项或使用者可以从选择项选择几个项且将其回复至该数据的发信者。另外,例如,具有根据使用环境的照度改变显示方法的功能。由此,例如可以降低可穿戴电子设备的功耗。另外,例如以即使在晴天的户外等外光强的环境下也能够适宜地使用可穿戴电子设备的方式将图像显示在可穿戴电子设备上。
图12E示出包括具有沿着外壳的侧面平缓弯曲的曲面的显示部5230的电子设备。作为一个例子,可以举出手机等。此外,显示部5230包括显示面板,显示面板例如具有在其前面、侧面、顶面以及背面显示的功能。由此,例如可以将数据不仅显示于手机的前面,而且显示于手机的侧面、顶面及背面。
图13A示出可以从因特网接收数据并将其显示在显示部5230上的电子设备。作为一个例子可以举出智能手机等。例如,可以在显示部5230上确认所制作的通知。另外,可以将所制作的通知发送到其他装置。此外,例如,具有根据使用环境的照度改变显示方法的功能。由此,可以降低智能手机的功耗。此外,例如以即使在晴天的户外等外光强的环境下也能够适宜地使用智能手机的方式将图像显示在智能手机上。
图13B示出能够将遥控器用作输入部5240的电子设备。作为一个例子,可以举出电视***等。例如,可以从广播电台或因特网接收数据且将其显示在显示部5230上。另外,可以使用检测部5250拍摄使用者。另外,可以发送使用者的图像。另外,可以取得使用者的收看履历且将其提供给云服务。此外,可以从云服务取得推荐数据且将其显示在显示部5230上。此外,可以根据推荐数据显示节目或动态图像。另外,例如,具有根据使用环境的照度改变显示方法的功能。由此,以即使在晴天射入户内的外光强的环境下也能够适宜地使用电视***的方式将影像显示在电视***上。
图13C示出可以从因特网接收教材且将其显示在显示部5230上的电子设备。作为一个例子可以举出平板电脑等。可以使用输入部5240输入报告且将其发送到因特网。另外,可以从云服务取得报告的批改结果或评价且将其显示在显示部5230上。另外,可以根据评价选择适当的教材且将其显示在显示部5230上。
例如,可以从其他电子设备接收图像信号且将其显示在显示部5230上。另外,可以将显示部5230靠在支架等上且将显示部5230用作副显示器。例如以在晴天的户外等外光强的环境下也能够适宜地使用电子设备的方式将图像显示在平板电脑上。
图13D示出包括多个显示部5230的电子设备。作为一个例子,可以举出数码相机等。例如,可以在显示部5230上显示使用检测部5250进行拍摄的图像。此外,可以在检测部上显示所拍摄的图像。另外,可以使用输入部5240进行所拍摄的图像的修饰。此外,可以对所拍摄的图像添加文字。另外,可以将其发送到因特网。另外,具有根据使用环境的照度改变拍摄条件的功能。由此,例如可以以在晴天的户外等外光强的环境下也能够适宜地看到图像的方式将被摄体显示在数码相机上。
图13E示出可以通过使用其他电子设备作为从(slave)且使用本实施方式的电子设备作为主(master)控制其他电子设备的电子设备。作为一个例子,可以举出能够携带的个人计算机等。例如,可以将图像数据的一部分显示在显示部5230上且将图像数据的其他一部分显示在其他电子设备的显示部上。另外,可以供应图像信号。此外,可以使用通信部5290取得从其他电子设备的输入部写入的数据。由此,例如,可以使用可携带的个人计算机利用较大的显示区域。
图14A示出包括检测加速度或方位的检测部5250的电子设备。作为一个例子可以举出护目镜型电子设备等。检测部5250可以供应使用者的位置或使用者朝向的方向的数据。此外,电子设备可以根据使用者的位置或使用者朝向的方向生成右眼用图像数据及左眼用图像数据。此外,显示部5230包括右眼用显示区域及左眼用显示区域。由此,例如,可以将能够得到逼真感的虚拟现实空间图像显示在护目镜型电子设备。
图14B示出包括摄像装置、检测加速度或方位的检测部5250的电子设备。作为一个例子可以举出眼镜型电子设备等。检测部5250可以供应使用者的位置或使用者朝向的方向的数据。此外,电子设备可以根据使用者的位置或使用者朝向的方向生成图像数据。由此,例如,可以对现实风景添加数据而显示。另外,可以将增强现实空间的图像显示在眼镜型电子设备。
注意,本实施方式可以与本说明书所示的其他实施方式适当地组合。
实施方式6
在本实施方式中,参照图15A及图15B对将实施方式1及2所示的发光器件用于照明装置的结构进行说明。注意,图15A是沿着图15B所示的照明装置的俯视图中的线段e-f的截面图。
在本实施方式的照明装置中,在用作支撑体的具有透光性的衬底400上形成有第一电极401。第一电极401相当于实施方式1及2中的第一电极101。当从第一电极401一侧取出光时,第一电极401使用具有透光性的材料形成。
此外,在衬底400上形成用来对第二电极404供应电压的焊盘412。
在第一电极401上形成有EL层403。EL层403相当于实施方式1及2中的EL层103的结构。注意,作为它们的结构,参照各记载。
以覆盖EL层403的方式形成第二电极404。第二电极404相当于实施方式1及2中的第二电极102。当从第一电极401一侧提取光时,第二电极404使用反射率高的材料形成。通过使第二电极404与焊盘412连接,将电压供应到第二电极404。
如上所述,本实施方式所示的照明装置具备包括第一电极401、EL层403以及第二电极404的发光器件。由于该发光器件是发光效率高的发光器件,所以本实施方式的照明装置可以是低功耗的照明装置。
使用密封材料405、406将形成有具有上述结构的发光器件的衬底400和密封衬底407固定来进行密封,由此制造照明装置。此外,也可以仅使用密封材料405和406中的一个。此外,也可以使内侧的密封材料406(在图15B中未图示)与干燥剂混合,由此可以吸收水分而提高可靠性。
此外,通过以延伸到密封材料405、406的外部的方式设置焊盘412和第一电极401的一部分,可以将其用作外部输入端子。此外,也可以在外部输入端子上设置安装有转换器等的IC芯片420等。
实施方式7
在本实施方式中,参照图16对适用本发明的一个方式的发光装置或其一部分的发光器件而制造的照明装置的应用例子进行说明。
作为室内的照明装置,可以使用天花射灯8001。作为天花射灯8001,有直接安装型及嵌入型。这种照明装置由发光装置与外壳或盖的组合而制造。除此以外,也可以应用于吊灯(用电线吊装在天花板上)的照明装置。
此外,地脚灯8002照射地面,可以提高脚下的安全性。例如,将其用在卧室、楼梯及通道很有效。在此情况下,可以根据房间的大小或结构而适当地改变地脚灯的尺寸及形状。此外,地脚灯8002也可以为组合发光装置和支架而形成的安装型照明装置。
此外,片状照明8003为薄膜状的照明装置。因为是将其贴在墙上而使用,所以不占空间而可以应用于各种用途。此外,容易实现大面积化。此外,也可以将其贴在具有曲面的墙或外壳上。
此外,也可以使用来自光源的光被控制为只沿着所希望的方向的照明装置8004。
台灯8005包括光源8006,作为光源8006可以使用本发明的一个方式的发光装置或其一部分的发光器件。
通过将本发明的一个方式的发光装置或其一部分的发光器件用于上述以外的室内家具的一部分,可以提供具有家具的功能的照明装置。
如上所述,可以得到适用发光装置的各种各样的照明装置。此外,这种照明装置包括在本发明的一个方式中。
本实施方式所示的结构可以与其他实施方式所示的结构适当地组合而实施。
实施方式8
在本实施方式中,参照图17A至图17C说明能够用于本发明的一个方式的显示装置的发光器件及受光器件。
图17A示出本发明的一个方式的显示装置810所包括的发光器件805a及受光器件805b的截面示意图。
发光器件805a具有发射光的功能(以下,也记为发光功能)。发光器件805a包括电极801a、EL层803a及电极802。发光器件805a优选为在实施方式1及2中示出的利用有机EL的发光器件(有机EL器件)。因此,夹在电极801a与电极802之间的EL层803a至少包括发光层。发光层包含发光物质。通过在电极801a与电极802之间施加电压,从EL层803a发射光。EL层803a除了发光层以外还包括空穴注入层、空穴传输层、电子传输层、电子注入层、载流子(空穴或电子)阻挡层、电荷产生层等各种层。
受光器件805b具有检测光的功能(以下,也记为受光功能)。受光器件805b例如可以使用pn型或pin型光电二极管。受光器件805b包括电极801b、受光层803b及电极802。夹在电极801b与电极802之间的受光层803b至少包括活性层。此外,受光层803b也可以使用应用于上述EL层803a所包括的各种层(空穴注入层、空穴传输层、发光层、电子传输层、电子注入层、载流子(空穴或电子)阻挡层、电荷产生层等)的材料。受光器件805b被用作光电转换器件,可以通过入射到受光层803b的光产生电荷,由此将其提取为电流。此时,也可以在电极801b与电极802之间施加电压。所产生的电荷量取决于入射到受光层803b的光量。
受光器件805b具有检测可见光的功能。受光器件805b对可见光具有灵敏度。受光器件805b更优选具有检测可见光及红外光的功能。受光器件805b优选对可见光及红外光具有灵敏度。
注意,本说明书等中的蓝色(B)的波长区域是指400nm以上且小于490nm,蓝色(B)的光在该波长区域至少具有一个发射光谱的峰值。此外,绿色(G)的波长区域是指490nm以上且小于580nm,绿色(G)的光在该波长区域至少具有一个发射光谱的峰值。此外,红色(R)的波长区域是指580nm以上且小于700nm,红色(R)的光在该波长区域至少具有一个发射光谱的峰值。此外,在本说明书等中,可见光的波长区域是指400nm以上且小于700nm,可见光在该波长区域至少具有一个发射光谱的峰值。此外,红外(IR)的波长区域是指700nm以上且小于900nm,红外(IR)光在该波长区域至少具有一个发射光谱的峰值。
受光器件805b的活性层包含半导体。作为该半导体,可以举出硅等无机半导体及包含有机化合物的有机半导体等。作为受光器件805b优选使用在活性层中包含有机半导体的有机半导体器件(或有机光电二极管)。有机光电二极管容易实现薄型化、轻量化及大面积化且其形状及设计的自由度高,所以可以应用于各种各样的显示装置。此外,通过使用有机半导体,可以利用相同方法(例如,真空蒸镀法)形成发光器件805a所包括的EL层803a及受光器件805b所包括的受光层803b,可以使用共同的制造装置,因此是优选的。注意,受光器件805b的受光层803b可以使用本发明的一个方式的有机化合物。
本发明的一个方式的显示装置可以作为发光器件805a及受光器件805b分别适当地使用有机EL器件及有机光电二极管。有机EL器件及有机光电二极管能够形成在同一衬底上。因此,在使用有机EL器件的显示装置中可以内置有机光电二极管。本发明的一个方式的显示装置除了显示图像的功能以外还具有摄像功能和感测功能中的一个或两个。
电极801a及电极801b设置于同一面上。图17A示出电极801a及电极801b设置于衬底800上的结构。注意,电极801a及电极801b例如可以通过将形成于衬底800上的导电膜加工为岛状来形成。也就是说,电极801a及电极801b可以通过同一工序形成。
衬底800可以使用具有能够承受发光器件805a及受光器件805b的形成的耐热性的衬底。在使用绝缘衬底作为衬底800的情况下,可以使用玻璃衬底、石英衬底、蓝宝石衬底、陶瓷衬底、有机树脂衬底等。此外,还可以使用以硅或碳化硅等为材料的单晶半导体衬底或多晶半导体衬底、以硅锗等为材料的化合物半导体衬底、SOI衬底等半导体衬底。
尤其是,衬底800优选使用在上述绝缘衬底或半导体衬底上形成包括晶体管等半导体元件的半导体电路的衬底。该半导体电路例如优选构成像素电路、栅极线驱动电路(栅极驱动器)、源极线驱动电路(源极驱动器)等。此外,除了上述以外也可以构成运算电路、存储电路等。
此外,电极802为由在发光器件805a及受光器件805b中共同的层构成的电极。这些电极中的发射光或入射光一侧的电极使用透过可见光及红外光的导电膜。不发射光或不入射光一侧的电极优选使用反射可见光及红外光的导电膜。
本发明的一个方式的显示装置的电极802被用作发光器件805a及受光器件805b各自的一个电极。
图17B示出发光器件805a的电极801a的电位比电极802高的情况。此时,电极801a被用作发光器件805a的阳极,电极802被用作阴极。此外,受光器件805b的电极801b的电位比电极802低。注意,在图17B中,为了容易理解电流流过的方向,发光器件805a的左侧示出发光二极管的电路标记,受光器件805b的右侧示出光电二极管的电路标记。此外,在各器件中以箭头示意性地示出载流子(电子及空穴)流过的方向。
在图17B所示的结构中,在发光器件805a中,在电极801a通过第一布线被供应第一电位,电极802通过第二布线被供应第二电位,电极801a通过第三布线被供应第三电位时,各电位的大小关系满足第一电位>第二电位>第三电位。
图17C示出发光器件805a的电极801a的电位比电极802低的情况。此时,电极801a被用作发光器件805a的阴极,电极802被用作阳极。此外,受光器件805b的电极801b的电位比电极802低且比电极801a高。注意,在图17C中,为了容易理解电流流过的方向,发光器件805a的左侧示出发光二极管的电路标记,受光器件805b的右侧示出光电二极管的电路标记。此外,在各器件中以箭头示意性地示出载流子(电子及空穴)流过的方向。
在图17C所示的结构中,在发光器件805a中,在电极801a通过第一布线被供应第一电位,电极802通过第二布线被供应第二电位,电极801a通过第三布线被供应第三电位时,各电位的大小关系满足第二电位>第三电位>第一电位。
注意,在本实施方式中示出的受光器件805b的清晰度可以为100ppi以上,优选为200ppi以上,更优选为300ppi以上,进一步优选为400ppi以上,更进一步优选为500ppi以上,为2000ppi以下、1000ppi以下或600ppi以下等。尤其是,通过以200ppi以上且600ppi以下,优选为300ppi以上且600ppi以下的清晰度配置受光器件805b,可以适当地用于指纹的拍摄。在使用本发明的一个方式的显示装置进行指纹识别时,通过提高受光器件805b的清晰度,例如可以以高精度提取指纹的特征点(Minutia),由此可以提高指纹识别的精度。此外,在清晰度为500ppi以上时,可以符合美国国家标准与技术研究院(NIST:NationalInstitute of Standards and Technology)等的规格,因此是优选的。注意,在假设受光器件的清晰度为500ppi时,每个像素的尺寸为50.8μm,可确认到为了拍摄指纹隆线的间距(典型的是300μm以上且500μm以下),有充分的清晰度。
本实施方式所示的结构可以与其他实施方式所示的结构适当地组合而实施。
实施例1
在本实施例中,对本发明的一个方式的发光器件1(Device 1)及比较发光器件2(Device 2)进行说明。
如图18所示,本实施例所示的各发光器件具有如下结构:形成于衬底900上的第一电极901上依次层叠有空穴注入层911、空穴传输层912、发光层913、电子传输层914(第一电子传输层、第二电子传输层)以及电子注入层915,且电子注入层915上层叠有第二电极903,第二电极903上层叠有覆盖层904。
下面示出在本实施例中使用的有机化合物的结构式。
[化学式18]
Figure BDA0003755485300001191
(发光器件的制造方法)
首先,在玻璃衬底900上作为反射电极通过溅射法以100nm的厚度沉积银(Ag),然后作为透明电极通过溅射法以10nm的厚度沉积包含氧化硅的铟锡氧化物(ITSO),来形成第一电极901。注意,其电极面积为4mm2(2mm×2mm)。此外,第一电极901是透明电极,并可以与上述反射电极组合而被视为第一电极。
接着,作为用来在衬底上形成发光器件的预处理,用水洗涤衬底表面,以200℃烘烤1小时,然后进行370秒的UV臭氧处理。
然后,将衬底放入其内部被减压到10-4Pa左右的真空蒸镀装置中,并在真空蒸镀装置内的加热室中,以170℃进行真空烘烤30分钟,然后对衬底进行冷却30分钟左右。
接着,在第一电极901上形成空穴注入层911。在真空蒸镀装置内被减压到10-4Pa之后,以由上述结构式(i)表示的N-(1,1’-联苯-4-基)-N-[4-(9-苯基-9H-咔唑-3-基)苯基]-9,9-二甲基-9H-芴-2-胺(简称:PCBBiF)与以分子量672包含氟的电子受体材料(OCHD-003)的重量比为1:0.03(=PCBBiF:OCHD-003)且厚度为10nm的方式进行共蒸镀,由此形成空穴注入层911。
接着,在空穴注入层911上形成空穴传输层912。以厚度为110nm的方式蒸镀PCBBiF,以形成空穴传输层912。
接着,在空穴传输层912上以厚度为10nm的方式蒸镀由上述结构式(ii)表示的N,N-双[4-(二苯并呋喃-4-基)苯基]-4-氨基-对三联苯(简称:DBfBB1TP),由此形成电子阻挡层。
然后,以由上述结构式(iii)表示的9-(1-萘基)-10-[4-(2-萘基)苯基]蒽(简称:αN-βNPAnth)、由上述结构式(iv)表示的3,10-双[N-(9-苯基-9H-咔唑-2-基)-N-苯基氨]萘并[2,3-b;6,7-b’]双苯并呋喃(简称:3,10PCA2Nbf(IV)-02)的重量比为1:0.015(=αN-βNPAnth:3,10PCA2Nbf(IV)-02)且厚度为25nm的方式进行共蒸镀,由此形成发光层913。
在此,发光器件1作为第一电子传输层以厚度为20nm的方式蒸镀由上述结构式(v)表示的2-{3-[3-(N-苯基-9H-咔唑-3-基)-9H-咔唑-9-基]苯基}二苯并[f,h]喹喔啉(简称:2mPCCzPDBq)(Tg:160℃),由此形成空穴阻挡层。
另一方面,比较发光器件2作为第一电子传输层以厚度为20nm的方式蒸镀由上述结构式(x)表示的2-[3-(3’-二苯并噻吩-4-基)联苯]二苯并[f,h]喹喔啉(简称:2mDBTBPDBq-II)(Tg:112℃),由此形成空穴阻挡层。
然后,在各发光器件中,作为第二电子传输层以厚度为10nm的方式蒸镀由上述结构式(vi)表示的2,9-二(2-萘基)-4,7-二苯基-1,10-菲咯啉(简称:NBPhen),由此形成电子传输层914。
接着,在形成电子传输层914之后,以厚度为1nm的方式蒸镀氟化锂(LiF)来形成电子注入层915,最后以厚度为15nm的方式以10:1的体积比共蒸镀银(Ag)和镁(Mg)来形成第二电极903,由此制造发光器件。注意,第二电极903是具有反射光的功能及透过光的功能的半透射-半反射电极,本实施例的发光器件是从第二电极903取出光的顶部发射元件。此外,在第二电极903上作为覆盖层904以厚度为80nm的方式蒸镀由上述结构式(vii)表示的4,4’,4”-(苯-1,3,5-三基)三(二苯并噻吩)(简称:DBT3P-II),由此提高提取效率。
以下的表示出发光器件1及比较发光器件2的结构。
[表1]
Figure BDA0003755485300001221
在氮气氛的手套箱中,以不使上述发光器件1及比较发光器件2暴露于大气的方式使用玻璃衬底进行密封处理(将密封材料涂敷在元件的周围,在密封时进行UV照射处理并在80℃的温度下进行1小时的热处理),然后对上述发光器件的初始特性(第一次,加热保存测试前)进行测量。然后,将发光器件1及比较发光器件2设置于恒温槽的加热板上,在120℃下保存1小时再次对同样的初始特性(第二次,120℃保存测试后)进行测量。接着,将第二次测量结束之后的发光器件1及比较发光器件2再次设置于恒温槽的加热板上,在130℃下保存1小时,同样地对初始特性(第三次,130℃保存测试后)进行测量。最后,将第三次测量结束之后的发光器件1设置于恒温槽的加热板上,在140℃下保存1小时之后,同样地对初始特性(第四次,140℃保存测试后)进行测量。
图19、图20及图21分别示出发光器件1及比较发光器件2的电流-电压特性、蓝色指标-亮度特性及发射光谱。在加热保存测试前(ref)、120℃保存测试后、130℃保存测试后及140℃保存测试后测量电流-电压特性、蓝色指标-亮度特性及发射光谱
注意,蓝色指标(BI)是指将电流效率(cd/A)除以以CIE1931表色***算出的y色度而得的值,是表示蓝色发光的特性的指标之一。蓝色发光为y色度越小色纯度越高的发光。色纯度高的蓝色发光可以显示出较宽的波长区域的蓝色。此外,在制造白色发光面板时,通过使用这种色纯度高的蓝色发光的像素,显示出蓝色时所需的亮度降低,因此可以得到面板整体的功耗降低的效果。另一方面,在这种色纯度高的蓝色区域的发光中相当于人眼的灵敏度的相对可见度变小。此外,使用受标准相对可见度的影响的物理量的亮度的电流效率根据颜色数值大大变化。因此,作为表示蓝色发光的效率的方法,适当地使用考虑到成为蓝色纯度的指标之一的y色度的BI,可以说发光器件的BI越高,作为用于显示器的蓝色发光器件的效率越良好。
另外,表2示出发光器件1及比较发光器件2的1000cd/m2附近的主要特性。使用分光辐射计(拓普康公司制造、SR-UL1R)测量亮度、CIE色度及发射光谱。此外,各发光元件在室温(保持为23℃的气氛)下进行测量。
[表2]
Figure BDA0003755485300001241
从图19至图21可知,发光器件1在进行140℃下的保存测试之后也示出良好的特性而没有发生显著的劣化。另一方面,比较发光器件2在120℃下的保存测试之后特性劣化,在130℃下的保存测试中几乎没有示出特性。由此可知,在发光器件1中,用于空穴阻挡层的2mPCCzPDBq与在比较发光器件2中用于空穴阻挡层的2mDBTBPDBq-II相比具有高耐热性,通过使用2mPCCzPDBq,可以提供耐热性极好的发光器件。
[实施例2]
在本实施例中,对本发明的一个方式的发光器件3(Device 3)及比较发光器件4(Device 4)进行说明。
如图18所示,本实施例所示的各发光器件具有如下结构:形成于衬底900上的第一电极901上依次层叠有空穴注入层911、空穴传输层912、发光层913、电子传输层914(第一电子传输层、第二电子传输层)以及电子注入层915,且电子注入层915上层叠有第二电极903,第二电极903上层叠有覆盖层904。
下面示出在本实施例中使用的有机化合物的结构式。
[化学式19]
Figure BDA0003755485300001251
(发光器件的制造方法)
首先,在玻璃衬底900上作为反射电极通过溅射法以100nm的厚度沉积银(Ag),然后作为透明电极通过溅射法以85nm的厚度沉积包含氧化硅的铟锡氧化物(ITSO),来形成第一电极901。注意,其电极面积为4mm2(2mm×2mm)。此外,第一电极901是透明电极,并可以与上述反射电极组合而被视为第一电极。
接着,作为用来在衬底上形成发光器件的预处理,用水洗涤衬底表面,以200℃烘烤1小时,然后进行370秒的UV臭氧处理。
然后,将衬底放入其内部被减压到10-4Pa左右的真空蒸镀装置中,并在真空蒸镀装置内的加热室中,以170℃进行真空烘烤30分钟,然后对衬底进行冷却30分钟左右。
接着,在第一电极901上形成空穴注入层911。在真空蒸镀装置内被减压到10-4Pa之后,以由上述结构式(i)表示的N-(1,1’-联苯-4-基)-N-[4-(9-苯基-9H-咔唑-3-基)苯基]-9,9-二甲基-9H-芴-2-胺(简称:PCBBiF)与以分子量672包含氟的电子受体材料(OCHD-003)的重量比为1:0.03(=PCBBiF:OCHD-003)且厚度为10nm的方式进行共蒸镀,由此形成空穴注入层911。
接着,在空穴注入层911上形成空穴传输层912。以厚度为25nm的方式蒸镀PCBBiF,以形成空穴传输层912。
接着,在空穴传输层912上以厚度为10nm的方式蒸镀由上述结构式(ii)表示的N,N-双[4-(二苯并呋喃-4-基)苯基]-4-氨基-对三联苯(简称:DBfBB1TP),由此形成电子阻挡层。
然后,以由上述结构式(iii)表示的9-(1-萘基)-10-[4-(2-萘基)苯基]蒽(简称:αN-βNPAnth)、由上述结构式(iv)表示的3,10-双[N-(9-苯基-9H-咔唑-2-基)-N-苯基氨]萘并[2,3-b;6,7-b’]双苯并呋喃(简称:3,10PCA2Nbf(IV)-02)的重量比为1:0.015(=αN-βNPAnth:3,10PCA2Nbf(IV)-02)且厚度为25nm的方式进行共蒸镀,由此形成发光层913。
在此,发光器件3作为第一电子传输层以厚度为10nm的方式蒸镀由上述结构式(v)表示的2-{3-[3-(N-苯基-9H-咔唑-3-基)-9H-咔唑-9-基]苯基}二苯并[f,h]喹喔啉(简称:2mPCCzPDBq)(Tg:160℃),由此形成空穴阻挡层。
另一方面,比较发光器件4作为第一电子传输层以厚度为10nm的方式蒸镀由上述结构式(x)表示的2-[3-(3’-二苯并噻吩-4-基)联苯]二苯并[f,h]喹喔啉(简称:2mDBTBPDBq-II)(Tg:112℃),由此形成空穴阻挡层。
然后,在各发光器件中,作为第二电子传输层以厚度为20nm的方式蒸镀由上述结构式(vi)表示的2,9-二(2-萘基)-4,7-二苯基-1,10-菲咯啉(简称:NBPhen),由此形成电子传输层914。
接着,进行假设使用抗蚀剂加工EL层的一部分的工序的处理。具体而言,形成到电子传输层914的各发光器件中利用ALD法沉积30nm的氧化铝膜。注意,在沉积条件中,使用三甲基铝(简称:TMA)作为前驱物,使用水蒸气作为氧化剂。
在此,在各器件中,进行120℃的加热处理或130℃的加热处理。注意,120℃的加热处理及130℃的加热处理分别进行1小时。
然后,在利用显影液去除该氧化铝膜之后,进行纯水洗涤。最后在80℃下加热各发光器件1小时,使溶剂挥发。
接着,将氟化锂(LiF)和Yb以厚度为2nm且LiF:Yb=1:1(体积比)的方式共蒸镀,由此形成电子注入层915。最后,将银(Ag)和镁(Mg)以厚度为15nm且体积比为10:1的方式共蒸镀来形成第二电极903,由此制造发光器件。注意,第二电极903是具有反射光的功能及使光透过的功能的半透射-半反射电极,本实施例的发光器件是从第二电极903取出光的顶部发射元件。此外,在第二电极903上作为覆盖层904以厚度为70nm的方式蒸镀由上述结构式(vii)表示的4,4’,4”-(苯-1,3,5-三基)三(二苯并噻吩)(简称:DBT3P-II),由此提高提取效率。
以下的表示出发光器件3及比较发光器件4的元件结构。
[表3]
Figure BDA0003755485300001291
在氮气氛的手套箱中,以不使上述发光器件3及比较发光器件4暴露于大气的方式使用玻璃衬底进行密封处理(将密封材料涂敷在元件的周围,在密封时进行UV处理并在80℃的温度下进行1小时的热处理),然后对上述发光器件的初始特性进行测量。注意,发光器件3、比较发光器件4都准备三个具有相同结构的元件,根据加热条件分别使用。就是说,实施例1的元件对同一的元件在不同加热条件下进行高温保存测试,在实施例2中具有相同的元件结构但使用不同元件,对每个元件进行不同温度条件的高温保存测试。
图22、图23及图24分别示出各发光器件的电流-电压特性、蓝色指标-亮度特性及发射光谱,各发光器件为不进行加热处理的器件(ref)、进行120℃的加热处理的器件以及进行130℃的加热处理的器件。
另外,表4示出各发光器件的1000cd/m2附近的主要特性。使用分光辐射计(拓普康公司制造、SR-UL1R)测量亮度、CIE色度及发射光谱。此外,各发光元件在室温(保持为23℃的气氛)下进行测量。
[表4]
Figure BDA0003755485300001301
从图22至图24可知,发光器件3即使进行加热处理也示出良好的特性而没有发生显著的劣化。另一方面,比较发光器件4因120℃以上的加热处理导致特性劣化。由此可知,在发光器件3中,用于空穴阻挡层的2mPCCzPDBq与在比较发光器件4中用于空穴阻挡层的2mDBTBPDBq-II相比具有高耐热性,通过使用2mPCCzPDBq,可以提供耐热性极好的发光器件。

Claims (19)

1.一种发光器件,包括:
阳极;
阴极;以及
所述阳极与所述阴极之间的EL层,
其中,所述EL层包括发光层及第一层,
所述第一层位于所述发光层与所述阴极之间,
所述发光层与所述第一层接触,
所述发光层包含第一有机化合物及发光物质,
所述第一层包含第二有机化合物,
所述发光物质为发射蓝光的物质,
所述第一有机化合物为具有稠合芳香烃环的有机化合物,
并且,所述第二有机化合物为一种有机化合物,包含:
具有选自吡啶环、二嗪环和三嗪环中的一个的杂芳环骨架;以及
联咔唑骨架。
2.根据权利要求1所述的发光器件,其中所述稠合芳香烃环为由苯环构成的稠环。
3.根据权利要求1所述的发光器件,
其中所述杂芳环骨架为包含所述吡啶环或所述二嗪环的稠合杂芳环骨架。
4.根据权利要求1所述的发光器件,
其中所述第一有机化合物的玻璃化转变点及所述第二有机化合物的玻璃化转变点都为100℃以上且180℃以下。
5.根据权利要求1所述的发光器件,
其中所述发光物质发射荧光。
6.根据权利要求1所述的发光器件,还包括与所述阳极接触且在所述阳极与所述发光层之间的第二层,
其中所述第二层包含第三有机化合物及第四有机化合物,
所述第四有机化合物从所述第三有机化合物接收电子,
并且所述第二层的电阻率为1×104[Ω·cm]以上且1×107[Ω·cm]以下。
7.一种发光器件,包括:
阳极;
阴极;以及
所述阳极与所述阴极之间的EL层,
其中,所述EL层包括发光层及第一层,
所述第一层位于所述发光层与所述阴极之间,
所述发光层与所述第一层接触,
所述发光层包含第一有机化合物及发光物质,
所述第一层包含第二有机化合物,
所述发光物质为发射蓝光的物质,
所述第一有机化合物为具有蒽环、苯并蒽环、二苯并蒽环、
Figure FDA0003755485290000021
环、萘环、菲环和三亚苯环中的任一个的有机化合物,
并且,所述第二有机化合物为一种有机化合物,包含:
具有选自吡啶环、二嗪环和三嗪环中的一个的杂芳环骨架;以及
联咔唑骨架。
8.根据权利要求7所述的发光器件,
其中所述第一有机化合物的玻璃化转变点及所述第二有机化合物的玻璃化转变点都为100℃以上且180℃以下。
9.一种在阳极与阴极之间包括EL层的发光器件,
其中,所述EL层至少包括发光层,
与所述发光层接触的第一层位于所述发光层与所述阴极之间,
所述发光层包含发光物质及第一有机化合物,
所述第一层包含第二有机化合物,
所述第二有机化合物为具有电子传输性的有机化合物,
所述发光物质为发射蓝光的物质,
所述第一有机化合物为由通式(G1)表示的有机化合物,
所述第二有机化合物为由通式(G300)表示的有机化合物,
Figure FDA0003755485290000031
R1至R18分别独立地表示氢和碳原子数为1至25的芳基中的任意个,
Figure FDA0003755485290000032
并且,A300表示具有吡啶骨架的杂芳环、具有二嗪骨架的杂芳环和具有三嗪骨架的杂芳环中的任意个,R301至R315分别独立地表示氢、取代或未取代的碳原子数为1至6的烷基、取代或未取代的碳原子数为5至7的环烷基、取代或未取代的碳原子数为6至13的芳基、取代或未取代的碳原子数为3至13的杂芳基中的任意个,Ar300表示取代或未取代的碳原子数为6至25的亚芳基或单键。
10.根据权利要求9所述的发光器件,还包括与所述阳极接触且在所述阳极与所述发光层之间的第二层,
其中所述第一有机化合物的玻璃化转变点及所述第二有机化合物的玻璃化转变点都为100℃以上且180℃以下,
所述第二层包含第三有机化合物及第四有机化合物,
所述第四有机化合物从所述第三有机化合物接收电子,
并且所述第二层的电阻率为1×104[Ω·cm]以上且1×107[Ω·cm]以下。
11.根据权利要求9所述的发光器件,
其中所述第一有机化合物的玻璃化转变点及所述第二有机化合物的玻璃化转变点都为100℃以上且180℃以下。
12.一种包括相邻的第一发光器件以及第二发光器件的发光装置,
其中,所述第一发光器件在第一阳极上隔着第一EL层包括阴极,
所述第一EL层至少包括第一发光层,
与所述第一发光层接触的第一层位于所述第一发光层与所述阴极之间,
所述第一发光层包含第一发光物质及第一有机化合物,
所述第一层包含第二有机化合物,
第一绝缘层与所述第一发光层的侧面及所述第一层的侧面接触,
第一电子注入层位于所述第一层上,
所述第一绝缘层位于所述第一电子注入层与所述第一发光层的所述侧面及所述第一层的所述侧面之间,
所述第二发光器件在第二阳极上隔着第二EL层包括所述阴极,
所述第二EL层至少包括第二发光层,
与所述第二发光层接触的第二层位于所述第二发光层与所述阴极之间,
所述第二发光层包含第二发光物质,
所述第二层包含所述第二有机化合物,
第二绝缘层与所述第二发光层的侧面及所述第二层的侧面接触,
第二电子注入层位于所述第二层上,
所述第二绝缘层位于所述第二电子注入层与所述第二发光层的所述侧面及所述第二层的所述侧面之间,
所述第二有机化合物为具有电子传输性的有机化合物,
所述第一发光物质为发射蓝光的物质,
所述第一有机化合物为由通式(G1)表示的有机化合物或者所述第二有机化合物为由通式(G300)表示的有机化合物,
Figure FDA0003755485290000051
R1至R18分别独立地表示氢和碳原子数为1至25的芳基中的任意个,
并且,A300表示具有吡啶骨架的杂芳环、具有二嗪骨架的杂芳环和具有三嗪骨架的杂芳环中的任意个,R301至R315分别独立地表示氢、取代或未取代的碳原子数为1至6的烷基、取代或未取代的碳原子数为5至7的环烷基、取代或未取代的碳原子数为6至13的芳基、取代或未取代的碳原子数为3至13的杂芳基中的任意个,Ar300表示取代或未取代的碳原子数为6至25的亚芳基或单键。
13.根据权利要求12所述的发光装置,
其中所述第一有机化合物为由所述通式(G1)表示的所述有机化合物且所述第二有机化合物为由所述通式(G300)表示的所述有机化合物。
14.根据权利要求12所述的发光装置,
其中所述第一有机化合物的玻璃化转变点为100℃以上且180℃以下。
15.根据权利要求13所述的发光装置,
其中所述第一有机化合物的玻璃化转变点为100℃以上且180℃以下。
16.根据权利要求12所述的发光装置,
其中所述第二有机化合物的玻璃化转变点为100℃以上且180℃以下。
17.根据权利要求12所述的发光装置,
其中所述第二发光物质为发射绿光或红光的物质。
18.根据权利要求12所述的发光装置,
其中所述第一发光物质发射荧光。
19.根据权利要求12所述的发光装置,
其中所述第二发光物质发射磷光。
CN202210853246.8A 2021-07-20 2022-07-20 发光器件、发光装置、受发光装置、电子设备及照明装置 Pending CN115915798A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021119899 2021-07-20
JP2021-119899 2021-07-20

Publications (1)

Publication Number Publication Date
CN115915798A true CN115915798A (zh) 2023-04-04

Family

ID=85101542

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210853246.8A Pending CN115915798A (zh) 2021-07-20 2022-07-20 发光器件、发光装置、受发光装置、电子设备及照明装置

Country Status (4)

Country Link
US (1) US20230089346A1 (zh)
JP (1) JP2023016022A (zh)
KR (1) KR20230014062A (zh)
CN (1) CN115915798A (zh)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080238297A1 (en) 2007-03-29 2008-10-02 Masuyuki Oota Organic el display and method of manufacturing the same

Also Published As

Publication number Publication date
US20230089346A1 (en) 2023-03-23
KR20230014062A (ko) 2023-01-27
JP2023016022A (ja) 2023-02-01

Similar Documents

Publication Publication Date Title
CN115643782A (zh) 发光器件、发光装置、电子设备及照明装置
CN115148919A (zh) 发光器件用混合材料
CN115347118A (zh) 受光器件、受发光装置以及电子设备
WO2023156886A1 (ja) 有機金属錯体、発光デバイス、発光装置、電子機器および照明装置
CN115915798A (zh) 发光器件、发光装置、受发光装置、电子设备及照明装置
US20240130229A1 (en) High Molecular Compound, Light-Emitting Device, Light-Emitting Apparatus, Electronic Device, and Lighting Device
WO2023100019A1 (ja) 有機化合物、有機デバイス、発光装置および電子機器
WO2023052905A1 (ja) 有機化合物、発光デバイス、薄膜、発光装置、電子機器、および照明装置
CN115548239A (zh) 发光器件及发光装置
CN115241389A (zh) 发光器件、发光装置、电子设备以及照明装置
CN115942769A (zh) 发光器件、发光装置、电子设备以及照明装置
CN114975836A (zh) 混合材料
KR20240002706A (ko) 발광 디바이스, 발광 장치, 전자 기기, 및 조명 장치
CN116848953A (zh) 发光器件、发光装置、电子设备以及照明装置
CN115141108A (zh) 有机化合物、发光器件、发光装置、电子设备及照明装置
JP2023090678A (ja) 有機化合物、発光デバイス、発光装置、電子機器、および照明装置
JP2023097426A (ja) 有機化合物、発光デバイス、薄膜、発光装置、電子機器、および照明装置
KR20240022408A (ko) 발광 디바이스, 발광 장치, 전자 기기, 및 조명 장치
CN116830803A (zh) 发光器件、发光装置、电子设备以及照明装置
JP2024007356A (ja) 発光デバイス、発光装置、電子機器、および照明装置
CN117016047A (zh) 发光器件、发光装置、电子设备以及照明装置
CN116830804A (zh) 发光器件、发光装置、电子设备以及照明装置
CN117337120A (zh) 发光器件、发光装置、电子设备以及照明装置
CN116981268A (zh) 光电转换器件及受发光装置
TW202306210A (zh) 受光器件、受發光裝置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication