CN115773624A - 一种恒温恒湿冷库内外双循环温湿调控***及调控方法 - Google Patents

一种恒温恒湿冷库内外双循环温湿调控***及调控方法 Download PDF

Info

Publication number
CN115773624A
CN115773624A CN202211454556.9A CN202211454556A CN115773624A CN 115773624 A CN115773624 A CN 115773624A CN 202211454556 A CN202211454556 A CN 202211454556A CN 115773624 A CN115773624 A CN 115773624A
Authority
CN
China
Prior art keywords
temperature
humidity
cold
constant
internal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211454556.9A
Other languages
English (en)
Inventor
张会鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Wanwei Refrigeration Equipment Engineering Co ltd
Original Assignee
Guangzhou Wanwei Refrigeration Equipment Engineering Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Wanwei Refrigeration Equipment Engineering Co ltd filed Critical Guangzhou Wanwei Refrigeration Equipment Engineering Co ltd
Priority to CN202211454556.9A priority Critical patent/CN115773624A/zh
Publication of CN115773624A publication Critical patent/CN115773624A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

本发明提供了一种恒温恒湿冷库内外双循环温湿调控***及调控方法,包括:内部制冷制热循环模块:用于通过主动压缩制冷及内部加热升温,进行恒温恒湿冷库的内部主动制冷制热循环;外部冷热交换循环模块:用于通过外部冷热交换循环媒介储存,进行恒温恒湿冷库的外部环境中自然冷热能源存储;冷热交替内部温湿模块:用于通过内部冷热交换湿度调节环网,进行内部主动冷热交换温度调节、温差冷热交换温度调节及蒸发冷凝湿度调节;温湿监测***控制模块:用于通过分布温湿监测及自动控制智能管理,进行恒温恒湿冷库内外双循环***控制及智能化管理。

Description

一种恒温恒湿冷库内外双循环温湿调控***及调控方法
技术领域
本发明涉及创新智能制冷节能环保技术领域,更具体地说,本发明涉及一种恒温恒湿冷库内外双循环温湿调控***及调控方法。
背景技术
目前,一般传统恒温恒湿***需要加抽湿机等辅助设备,在节能环保方面未能全面进行多种循环利用且效率不够高,恒温恒湿冷库尚较少涉及内外双循环温湿调控;如何进行恒温恒湿冷库的内部主动制冷制热循环、如何进行恒温恒湿冷库的外部环境中自然冷热能源存储、如何进行内部主动冷热交换温度调节、温差冷热交换温度调节及蒸发冷凝湿度调节以及如何进行恒温恒湿冷库内外双循环***控制及智能化管理等问题仍待解决;因此,有必要提出一种恒温恒湿冷库内外双循环温湿调控***及调控方法,以至少部分地解决现有技术中存在的问题。
发明内容
在发明内容部分中引入了一系列简化形式的概念,这将在具体实施方式部分中进一步详细说明;本发明的发明内容部分并不意味着要试图限定出所要求保护的技术方案的关键特征和必要技术特征,更不意味着试图确定所要求保护的技术方案的保护范围。
为至少部分地解决上述问题,本发明提供了一种恒温恒湿冷库内外双循环温湿调控***,包括:
内部制冷制热循环模块:用于通过主动压缩制冷及内部加热升温,进行恒温恒湿冷库的内部主动制冷制热循环;
外部冷热交换循环模块:用于通过外部冷热交换循环媒介储存,进行恒温恒湿冷库的外部环境中自然冷热能源存储;
冷热交替内部温湿模块:用于通过内部冷热交换湿度调节环网,进行内部主动冷热交换温度调节、温差冷热交换温度调节及蒸发冷凝湿度调节;
温湿监测***控制模块:用于通过分布温湿监测及自动控制智能管理,进行恒温恒湿冷库内外双循环***控制及智能化管理。
优选的,所述内部制冷制热循环模块,包括:
冷库压缩机制冷单元:用于通过制冷压缩机进行恒温恒湿冷库的主动制冷降温,当冷库外部可利用环境温度无法满足冷库内部制冷温度要求时,进行主动制冷降温;
自主加热除霜调湿单元:用于通过自主加热进行恒温恒湿冷库的自主加热升温,当冷库外部可利用环境温度无法满足冷库内部制热温度要求时,进行自主加热升温;
高低压输入输出单元:用于连接内部制冷制热循环模块的制冷制热单元输入输出端,并密封保持输入输出端高低压力差。
优选的,所述外部冷热交换循环模块,包括:
外部冷凝交换单元:通过冷凝集散热器进行冷库外部环境中的环境冷热温度交换;
外部冷热储存单元:通过热交换循环介质存储器进行热交换循环介质的存储;
冷热循环连接单元:通过多层隔热保温管网,进行***各单元的热交换循环介质联通。
优选的,所述冷热交替内部温湿模块,包括:
内部蒸发冷风交换单元:通过内部蒸发器件进行恒温恒湿冷库内的制冷温度调节;
外部冷热温湿交换单元:通过位于内部蒸发冷风交换单元下部的压缩高压制热交换网,进行外部环境高温状态的热交换介质导入内部制热及除湿;
制冷制热循环气流单元:通过冷热湿度联动控制风机组,进行外部冷热温湿交换单元及内部蒸发冷风交换单元的风机吹动空气流动加速冷热交换。
优选的,所述温湿监测***控制模块,包括:
多点分布温湿监测单元:通过在恒温恒湿冷库内外各温度监控点位及湿度监控点位进行多点位温度监测及多点位湿度监测,获得多点位温度监测数据及多点位湿度监测数据;
***管网控制单元:根据多点位温度监测数据及多点位湿度监测数据,通过多向控制阀门及过滤器,进行内外双循环热交换介质的流动控制;
恒温恒湿智能管理单元:通过恒温恒湿智能管理平台,进行***各部分及***电源供电的平台化智能管理,智能调控冷库内温度湿度保持恒定平稳,智能管理冷库外部环境自然冷热资源循环利用。
本发明提供了一种恒温恒湿冷库内外双循环温湿调控方法,包括:
S100:通过主动压缩制冷及内部加热升温,进行恒温恒湿冷库的内部主动制冷制热循环;
S200:通过外部冷热交换循环媒介储存,进行恒温恒湿冷库的外部环境中自然冷热能源存储;
S300:通过内部冷热交换湿度调节环网,进行内部主动冷热交换温度调节、温差冷热交换温度调节及蒸发冷凝湿度调节;
S400:通过分布温湿监测及自动控制智能管理,进行恒温恒湿冷库内外双循环***控制及智能化管理。
优选的,所述S100,包括:
S101:通过制冷压缩机进行恒温恒湿冷库的主动制冷降温,当冷库外部可利用环境温度无法满足冷库内部制冷温度要求时,进行主动制冷降温;
S102:通过自主加热进行恒温恒湿冷库的自主加热升温,当冷库外部可利用环境温度无法满足冷库内部制热温度要求时,进行自主加热升温;
S103:连接内部制冷制热循环模块的制冷制热单元输入输出端,并密封保持输入输出端高低压力差。
优选的,所述S200,包括:
S201:通过冷凝集散热器进行冷库外部环境中的环境冷热温度交换;
S202:通过热交换循环介质存储器进行热交换循环介质的存储;
S203:通过多层隔热保温管网,进行***各单元的热交换循环介质联通。
优选的,所述S300,包括:
S301:通过内部蒸发器件进行恒温恒湿冷库内的制冷温度调节;
S302:通过位于内部蒸发冷风交换单元下部的压缩高压制热交换网,进行外部环境高温状态的热交换介质导入内部制热及除湿;
S303:通过冷热湿度联动控制风机组,进行外部冷热温湿交换单元及内部蒸发冷风交换单元的风机吹动空气流动加速冷热交换。
优选的,所述S400,包括:
S401:通过在恒温恒湿冷库内外各温度监控点位及湿度监控点位进行多点位温度监测及多点位湿度监测,获得多点位温度监测数据及多点位湿度监测数据;
S402:根据多点位温度监测数据及多点位湿度监测数据,通过多向控制阀门及过滤器,进行内外双循环热交换介质的流动控制;
S403:通过恒温恒湿智能管理平台,进行***各部分及***电源供电的平台化智能管理,智能调控冷库内温度湿度保持恒定平稳,智能管理冷库外部环境自然冷热资源循环利用。
相比现有技术,本发明至少包括以下有益效果:
上述技术方案的有益效果为:本发明提供了一种恒温恒湿冷库内外双循环温湿调控***,包括:内部制冷制热循环模块:用于通过主动压缩制冷及内部加热升温,进行恒温恒湿冷库的内部主动制冷制热循环;外部冷热交换循环模块:用于通过外部冷热交换循环媒介储存,进行恒温恒湿冷库的外部环境中自然冷热能源存储;冷热交替内部温湿模块:用于通过内部冷热交换湿度调节环网,进行内部主动冷热交换温度调节、温差冷热交换温度调节及蒸发冷凝湿度调节;温湿监测***控制模块:用于通过分布温湿监测及自动控制智能管理,进行恒温恒湿冷库内外双循环***控制及智能化管理;所述内部制冷制热循环模块,包括:冷库压缩机制冷单元:用于通过制冷压缩机进行恒温恒湿冷库的主动制冷降温,当冷库外部可利用环境温度无法满足冷库内部制冷温度要求时,进行主动制冷降温;自主加热除霜调湿单元:用于通过自主加热进行恒温恒湿冷库的自主加热升温,当冷库外部可利用环境温度无法满足冷库内部制热温度要求时,进行自主加热升温;高低压输入输出单元:用于连接内部制冷制热循环模块的制冷制热单元输入输出端,并密封保持输入输出端高低压力差;所述外部冷热交换循环模块,包括:外部冷凝交换单元:通过冷凝集散热器进行冷库外部环境中的环境冷热温度交换;外部冷热储存单元:通过热交换循环介质存储器进行热交换循环介质的存储;冷热循环连接单元:通过多层隔热保温管网,进行***各单元的热交换循环介质联通;所述冷热交替内部温湿模块,包括:内部蒸发冷风交换单元:通过内部蒸发器件进行恒温恒湿冷库内的制冷温度调节;外部冷热温湿交换单元:通过位于内部蒸发冷风交换单元下部的压缩高压制热交换网,进行外部环境高温状态的热交换介质导入内部制热及除湿;制冷制热循环气流单元:通过冷热湿度联动控制风机组,进行外部冷热温湿交换单元及内部蒸发冷风交换单元的风机吹动空气流动加速冷热交换;所述温湿监测***控制模块,包括:多点分布温湿监测单元:通过在恒温恒湿冷库内外各温度监控点位及湿度监控点位进行多点位温度监测及多点位湿度监测,获得多点位温度监测数据及多点位湿度监测数据;***管网控制单元:根据多点位温度监测数据及多点位湿度监测数据,通过多向控制阀门及过滤器,进行内外双循环热交换介质的流动控制;恒温恒湿智能管理单元:通过恒温恒湿智能管理平台,进行***各部分及***电源供电的平台化智能管理,智能调控冷库内温度湿度保持恒定平稳,智能管理冷库外部环境自然冷热资源循环利用;
内部制冷制热循环,通过主动压缩制冷及内部加热升温,进行恒温恒湿冷库的内部主动制冷制热循环;外部冷热交换循环,通过外部冷热交换循环媒介储存,进行恒温恒湿冷库的外部环境中自然冷热能源存储;冷热交替内部温湿调节,通过内部冷热交换湿度调节环网,进行内部主动冷热交换温度调节、温差冷热交换温度调节及蒸发冷凝湿度调节;温湿监测***控制,通过分布温湿监测及自动控制智能管理,进行恒温恒湿冷库内外双循环***控制及智能化管理;内部设置通过制冷机组冷凝器末端连接到蒸发器管通,外部利用自然环境调节内部温度湿度及内部空气质量,制冷的同时加热达到温度湿度的多种状态协调控制恒温恒湿及按需定制;适用于包括:一般冷库***及医药冷库***或试验冷库***,保鲜温度湿度通过能耗主动压缩制冷、蒸发控制湿度;本发明制冷的同时加热达到温度湿度的多种状态协调控制恒温恒湿及按需定制;能够实现内外温度湿度双循环充分利用自然环境调节内部温度湿度及内部空气质量,具有高效的节能环保技术效果;并大幅提高本领域节能环保效率及自然环境资源的高效循环可持续利用。
本发明所述的一种恒温恒湿冷库内外双循环温湿调控***及调控方法,本发明的其它优点、目标和特征将部分通过下面的说明体现,部分还将通过对本发明的研究和实践而为本领域的技术人员所理解。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。在附图中:
图1为本发明所述的一种恒温恒湿冷库内外双循环温湿调控***主结构图。
图2为本发明所述的一种恒温恒湿冷库内外双循环温湿调控***框图。
图3为本发明所述的一种恒温恒湿冷库内外双循环温湿调控方法步骤图。
具体实施方式
下面结合附图以及实施例对本发明做进一步的详细说明,以令本领域技术人员参照说明书文字能够据以实施;如图1-3所示,本发明提供了一种恒温恒湿冷库内外双循环温湿调控***,包括:
内部制冷制热循环模块:用于通过主动压缩制冷及内部加热升温,进行恒温恒湿冷库的内部主动制冷制热循环;
外部冷热交换循环模块:用于通过外部冷热交换循环媒介储存,进行恒温恒湿冷库的外部环境中自然冷热能源存储;
冷热交替内部温湿模块:用于通过内部冷热交换湿度调节环网,进行内部主动冷热交换温度调节、温差冷热交换温度调节及蒸发冷凝湿度调节;
温湿监测***控制模块:用于通过分布温湿监测及自动控制智能管理,进行恒温恒湿冷库内外双循环***控制及智能化管理。
上述技术方案的工作原理为:本发明提供了一种恒温恒湿冷库内外双循环温湿调控***,包括:
内部制冷制热循环模块100:用于通过主动压缩制冷及内部加热升温,进行恒温恒湿冷库的内部主动制冷制热循环;
外部冷热交换循环模块200:用于通过外部冷热交换循环媒介储存,进行恒温恒湿冷库的外部环境中自然冷热能源存储;
冷热交替内部温湿模块300:用于通过内部冷热交换湿度调节环网,进行内部主动冷热交换温度调节、温差冷热交换温度调节及蒸发冷凝湿度调节;
温湿监测***控制模块400:用于通过分布温湿监测及自动控制智能管理,进行恒温恒湿冷库内外双循环***控制及智能化管理;
内部制冷制热循环,通过主动压缩制冷及内部加热升温,进行恒温恒湿冷库的内部主动制冷制热循环;外部冷热交换循环,通过外部冷热交换循环媒介储存,进行恒温恒湿冷库的外部环境中自然冷热能源存储;冷热交替内部温湿调节,通过内部冷热交换湿度调节环网,进行内部主动冷热交换温度调节、温差冷热交换温度调节及蒸发冷凝湿度调节;温湿监测***控制,通过分布温湿监测及自动控制智能管理,进行恒温恒湿冷库内外双循环***控制及智能化管理;
本发明内部设置通过制冷机组冷凝器末端连接到蒸发器管通,外部利用自然环境调节内部温度湿度及内部空气质量,制冷的同时加热达到温度湿度的多种状态协调控制恒温恒湿及按需定制;适用于包括:一般冷库***及医药冷库***或试验冷库***,保鲜温度湿度通过能耗主动压缩制冷、蒸发控制湿度。
上述技术方案的有益效果为:本发明提供了一种恒温恒湿冷库内外双循环温湿调控***,包括:内部制冷制热循环模块:用于通过主动压缩制冷及内部加热升温,进行恒温恒湿冷库的内部主动制冷制热循环;外部冷热交换循环模块:用于通过外部冷热交换循环媒介储存,进行恒温恒湿冷库的外部环境中自然冷热能源存储;冷热交替内部温湿模块:用于通过内部冷热交换湿度调节环网,进行内部主动冷热交换温度调节、温差冷热交换温度调节及蒸发冷凝湿度调节;温湿监测***控制模块:用于通过分布温湿监测及自动控制智能管理,进行恒温恒湿冷库内外双循环***控制及智能化管理;所述内部制冷制热循环模块,包括:冷库压缩机制冷单元:用于通过制冷压缩机进行恒温恒湿冷库的主动制冷降温,当冷库外部可利用环境温度无法满足冷库内部制冷温度要求时,进行主动制冷降温;自主加热除霜调湿单元:用于通过自主加热进行恒温恒湿冷库的自主加热升温,当冷库外部可利用环境温度无法满足冷库内部制热温度要求时,进行自主加热升温;高低压输入输出单元:用于连接内部制冷制热循环模块的制冷制热单元输入输出端,并密封保持输入输出端高低压力差;所述外部冷热交换循环模块,包括:外部冷凝交换单元:通过冷凝集散热器进行冷库外部环境中的环境冷热温度交换;外部冷热储存单元:通过热交换循环介质存储器进行热交换循环介质的存储;冷热循环连接单元:通过多层隔热保温管网,进行***各单元的热交换循环介质联通;所述冷热交替内部温湿模块,包括:内部蒸发冷风交换单元:通过内部蒸发器件进行恒温恒湿冷库内的制冷温度调节;外部冷热温湿交换单元:通过位于内部蒸发冷风交换单元下部的压缩高压制热交换网,进行外部环境高温状态的热交换介质导入内部制热及除湿;制冷制热循环气流单元:通过冷热湿度联动控制风机组,进行外部冷热温湿交换单元及内部蒸发冷风交换单元的风机吹动空气流动加速冷热交换;所述温湿监测***控制模块,包括:多点分布温湿监测单元:通过在恒温恒湿冷库内外各温度监控点位及湿度监控点位进行多点位温度监测及多点位湿度监测,获得多点位温度监测数据及多点位湿度监测数据;***管网控制单元:根据多点位温度监测数据及多点位湿度监测数据,通过多向控制阀门及过滤器,进行内外双循环热交换介质的流动控制;恒温恒湿智能管理单元:通过恒温恒湿智能管理平台,进行***各部分及***电源供电的平台化智能管理,智能调控冷库内温度湿度保持恒定平稳,智能管理冷库外部环境自然冷热资源循环利用;
内部制冷制热循环,通过主动压缩制冷及内部加热升温,进行恒温恒湿冷库的内部主动制冷制热循环;外部冷热交换循环,通过外部冷热交换循环媒介储存,进行恒温恒湿冷库的外部环境中自然冷热能源存储;冷热交替内部温湿调节,通过内部冷热交换湿度调节环网,进行内部主动冷热交换温度调节、温差冷热交换温度调节及蒸发冷凝湿度调节;温湿监测***控制,通过分布温湿监测及自动控制智能管理,进行恒温恒湿冷库内外双循环***控制及智能化管理;内部设置通过制冷机组冷凝器末端连接到蒸发器管通,外部利用自然环境调节内部温度湿度及内部空气质量,制冷的同时加热达到温度湿度的多种状态协调控制恒温恒湿及按需定制;适用于包括:一般冷库***及医药冷库***或试验冷库***,保鲜温度湿度通过能耗主动压缩制冷、蒸发控制湿度;本发明制冷的同时加热达到温度湿度的多种状态协调控制恒温恒湿及按需定制;能够实现内外温度湿度双循环充分利用自然环境调节内部温度湿度及内部空气质量,具有高效的节能环保技术效果;并大幅提高本领域节能环保效率及自然环境资源的高效循环可持续利用。
在一个实施例中,所述内部制冷制热循环模块,包括:
冷库压缩机制冷单元:用于通过制冷压缩机进行恒温恒湿冷库的主动制冷降温,当冷库外部可利用环境温度无法满足冷库内部制冷温度要求时,进行主动制冷降温;
自主加热除霜调湿单元:用于通过自主加热进行恒温恒湿冷库的自主加热升温,当冷库外部可利用环境温度无法满足冷库内部制热温度要求时,进行自主加热升温;
高低压输入输出单元:用于连接内部制冷制热循环模块的制冷制热单元输入输出端,并密封保持输入输出端高低压力差。
上述技术方案的工作原理为:所述内部制冷制热循环模块,包括:冷库压缩机制冷单元:用于通过制冷压缩机进行恒温恒湿冷库的主动制冷降温,当冷库外部可利用环境温度无法满足冷库内部制冷温度要求时,进行主动制冷降温;自主加热除霜调湿单元:用于通过自主加热进行恒温恒湿冷库的自主加热升温,当冷库外部可利用环境温度无法满足冷库内部制热温度要求时,进行自主加热升温;高低压输入输出单元:用于连接内部制冷制热循环模块的制冷制热单元输入输出端,并密封保持输入输出端高低压力差;内部制冷制热循环的冷库压缩机制冷,通过制冷压缩机进行恒温恒湿冷库的主动制冷降温,当冷库外部可利用环境温度无法满足冷库内部制冷温度要求时,进行主动制冷降温;自主加热除霜调湿,通过自主加热进行恒温恒湿冷库的自主加热升温,当冷库外部可利用环境温度无法满足冷库内部制热温度要求时,进行自主加热升温;高低压输入输出,连接内部制冷制热循环模块的制冷制热单元输入输出端,并密封保持输入输出端高低压力差。
上述技术方案的有益效果为:内部制冷制热循环的冷库压缩机制冷,通过制冷压缩机进行恒温恒湿冷库的主动制冷降温,当冷库外部可利用环境温度无法满足冷库内部制冷温度要求时,进行主动制冷降温;自主加热除霜调湿,通过自主加热进行恒温恒湿冷库的自主加热升温,当冷库外部可利用环境温度无法满足冷库内部制热温度要求时,进行自主加热升温;高低压输入输出,连接内部制冷制热循环模块的制冷制热单元输入输出端,并密封保持输入输出端高低压力差;内部设置通过制冷机组冷凝器末端连接到蒸发器管通,外部利用自然环境调节内部温度湿度及内部空气质量。
在一个实施例中,所述外部冷热交换循环模块,包括:
外部冷凝交换单元:通过冷凝集散热器进行冷库外部环境中的环境冷热温度交换;
外部冷热储存单元:通过热交换循环介质存储器进行热交换循环介质的存储;
冷热循环连接单元:通过多层隔热保温管网,进行***各单元的热交换循环介质联通。
上述技术方案的工作原理为:所述外部冷热交换循环模块,包括:外部冷凝交换单元:通过冷凝集散热器进行冷库外部环境中的环境冷热温度交换;外部冷热储存单元:通过热交换循环介质存储器进行热交换循环介质的存储;冷热循环连接单元:通过多层隔热保温管网,进行***各单元的热交换循环介质联通;
计算环境温度与外部冷热交换循环媒介热交换值:
Figure BDA0003952689620000081
其中,THCR代表环境温度与外部冷热交换循环媒介热交换值,k代表环境温度与外部冷热交换循环媒介的第k个热交换点位,M代表环境温度与外部冷热交换循环媒介的热交换点位总数,Tk代表第k个热交换点位的环境温度值,Uk代表第k个热交换点位的空间纵向轴坐标值,U代表热交换点位的空间纵向轴参照坐标值,Vk代表第k个热交换点位的空间横向轴坐标值,V代表热交换点位的空间横向轴参照坐标值,Wk代表第k个热交换点位的空间垂直轴坐标值,W代表热交换点位的空间垂直轴参照坐标值。
上述技术方案的有益效果为:所述外部冷热交换循环模块,包括:外部冷凝交换单元:通过冷凝集散热器进行冷库外部环境中的环境冷热温度交换;外部冷热储存单元:通过热交换循环介质存储器进行热交换循环介质的存储;冷热循环连接单元:通过多层隔热保温管网,进行***各单元的热交换循环介质联通;能够将外部能量进行大量存储及进行能源缓冲,提高自然能源利用的可持续性;
计算环境温度与外部冷热交换循环媒介热交换值:其中,THCR代表环境温度与外部冷热交换循环媒介热交换值,k代表环境温度与外部冷热交换循环媒介的第k个热交换点位,M代表环境温度与外部冷热交换循环媒介的热交换点位总数,Tk代表第k个热交换点位的环境温度值,Uk代表第k个热交换点位的空间纵向轴坐标值,U代表热交换点位的空间纵向轴参照坐标值,Vk代表第k个热交换点位的空间横向轴坐标值,V代表热交换点位的空间横向轴参照坐标值,Wk代表第k个热交换点位的空间垂直轴坐标值,W代表热交换点位的空间垂直轴参照坐标值;通过计算环境温度与外部冷热交换循环媒介热交换值,可以进一步精确控制环境温度的利用效率。
在一个实施例中,所述冷热交替内部温湿模块,包括:
内部蒸发冷风交换单元:通过内部蒸发器件进行恒温恒湿冷库内的制冷温度调节;
外部冷热温湿交换单元:通过位于内部蒸发冷风交换单元下部的压缩高压制热交换网,进行外部环境高温状态的热交换介质导入内部制热及除湿;
制冷制热循环气流单元:通过冷热湿度联动控制风机组,进行外部冷热温湿交换单元及内部蒸发冷风交换单元的风机吹动空气流动加速冷热交换。
上述技术方案的工作原理为:所述冷热交替内部温湿模块,包括:内部蒸发冷风交换单元:通过内部蒸发器件进行恒温恒湿冷库内的制冷温度调节;外部冷热温湿交换单元:通过位于内部蒸发冷风交换单元下部的压缩高压制热交换网,进行外部环境高温状态的热交换介质导入内部制热及除湿;制冷制热循环气流单元:通过冷热湿度联动控制风机组,进行外部冷热温湿交换单元及内部蒸发冷风交换单元的风机吹动空气流动加速冷热交换;制冷状态时湿度进行保持或调整;外部冷热温湿交换及内部蒸发冷风交换的风机吹动空气流动加速冷热交换。
上述技术方案的有益效果为:所述冷热交替内部温湿模块,包括:内部蒸发冷风交换单元:通过内部蒸发器件进行恒温恒湿冷库内的制冷温度调节;外部冷热温湿交换单元:通过位于内部蒸发冷风交换单元下部的压缩高压制热交换网,进行外部环境高温状态的热交换介质导入内部制热及除湿;制冷制热循环气流单元:通过冷热湿度联动控制风机组,进行外部冷热温湿交换单元及内部蒸发冷风交换单元的风机吹动空气流动加速冷热交换;制冷状态时湿度进行保持或调整;外部冷热温湿交换及内部蒸发冷风交换的风机吹动空气流动加速冷热交换;能够同时进行制冷状态时温度湿度保持或调整,外部冷热温湿交换及内部蒸发冷风交换的风机吹动空气流动,能够进一步加速冷热交换。
在一个实施例中,所述温湿监测***控制模块,包括:
多点分布温湿监测单元:通过在恒温恒湿冷库内外各温度监控点位及湿度监控点位进行多点位温度监测及多点位湿度监测,获得多点位温度监测数据及多点位湿度监测数据;
***管网控制单元:根据多点位温度监测数据及多点位湿度监测数据,通过多向控制阀门及过滤器,进行内外双循环热交换介质的流动控制;
恒温恒湿智能管理单元:通过恒温恒湿智能管理平台,进行***各部分及***电源供电的平台化智能管理,智能调控冷库内温度湿度保持恒定平稳,智能管理冷库外部环境自然冷热资源循环利用。
上述技术方案的工作原理为:所述温湿监测***控制模块,包括:多点分布温湿监测单元:通过在恒温恒湿冷库内外各温度监控点位及湿度监控点位进行多点位温度监测及多点位湿度监测,获得多点位温度监测数据及多点位湿度监测数据;***管网控制单元:根据多点位温度监测数据及多点位湿度监测数据,通过多向控制阀门及过滤器,进行内外双循环热交换介质的流动控制;恒温恒湿智能管理单元:通过恒温恒湿智能管理平台,进行***各部分及***电源供电的平台化智能管理,智能调控冷库内温度湿度保持恒定平稳,智能管理冷库外部环境自然冷热资源循环利用;恒温恒湿智能管理平台综合判断冷库外部自然环境温度及冷库内部的温度、冷库外部自然环境湿度及冷库内部的湿度以及***存储的自然能量;当冷库外部自然环境温度及***存储的自然能量与冷库内部的温度有温度差、湿度差时或内部需要能量补充时,进行温度、湿度及压差能量交换。
上述技术方案的有益效果为:所述温湿监测***控制模块,包括:多点分布温湿监测单元:通过在恒温恒湿冷库内外各温度监控点位及湿度监控点位进行多点位温度监测及多点位湿度监测,获得多点位温度监测数据及多点位湿度监测数据;***管网控制单元:根据多点位温度监测数据及多点位湿度监测数据,通过多向控制阀门及过滤器,进行内外双循环热交换介质的流动控制;恒温恒湿智能管理单元:通过恒温恒湿智能管理平台,进行***各部分及***电源供电的平台化智能管理,智能调控冷库内温度湿度保持恒定平稳,智能管理冷库外部环境自然冷热资源循环利用;恒温恒湿智能管理平台综合判断冷库外部自然环境温度及冷库内部的温度、冷库外部自然环境湿度及冷库内部的湿度以及***存储的自然能量;当冷库外部自然环境温度及***存储的自然能量与冷库内部的温度有温度差、湿度差时或内部需要能量补充时,进行温度、湿度及压差能量交换;能够实现内外温度湿度双循环充分利用自然环境调节内部温度湿度及内部空气质量,具有高效的节能环保技术效果。
本发明提供了一种恒温恒湿冷库内外双循环温湿调控方法,包括:
S100:通过主动压缩制冷及内部加热升温,进行恒温恒湿冷库的内部主动制冷制热循环;
S200:通过外部冷热交换循环媒介储存,进行恒温恒湿冷库的外部环境中自然冷热能源存储;
S300:通过内部冷热交换湿度调节环网,进行内部主动冷热交换温度调节、温差冷热交换温度调节及蒸发冷凝湿度调节;
S400:通过分布温湿监测及自动控制智能管理,进行恒温恒湿冷库内外双循环***控制及智能化管理。
上述技术方案的工作原理为:本发明提供了一种恒温恒湿冷库内外双循环温湿调控方法,包括:通过主动压缩制冷及内部加热升温,进行恒温恒湿冷库的内部主动制冷制热循环;通过外部冷热交换循环媒介储存,进行恒温恒湿冷库的外部环境中自然冷热能源存储;通过内部冷热交换湿度调节环网,进行内部主动冷热交换温度调节、温差冷热交换温度调节及蒸发冷凝湿度调节;通过分布温湿监测及自动控制智能管理,进行恒温恒湿冷库内外双循环***控制及智能化管理;
内部制冷制热循环,通过主动压缩制冷及内部加热升温,进行恒温恒湿冷库的内部主动制冷制热循环;外部冷热交换循环,通过外部冷热交换循环媒介储存,进行恒温恒湿冷库的外部环境中自然冷热能源存储;冷热交替内部温湿调节,通过内部冷热交换湿度调节环网,进行内部主动冷热交换温度调节、温差冷热交换温度调节及蒸发冷凝湿度调节;温湿监测***控制,通过分布温湿监测及自动控制智能管理,进行恒温恒湿冷库内外双循环***控制及智能化管理;
本发明内部设置通过制冷机组冷凝器末端连接到蒸发器管通,外部利用自然环境调节内部温度湿度及内部空气质量,制冷的同时加热达到温度湿度的多种状态协调控制恒温恒湿及按需定制;适用于包括:一般冷库***及医药冷库***或试验冷库***,保鲜温度湿度通过能耗主动压缩制冷、蒸发控制湿度。
上述技术方案的有益效果为:本发明提供了一种恒温恒湿冷库内外双循环温湿调控方法,通过主动压缩制冷及内部加热升温,进行恒温恒湿冷库的内部主动制冷制热循环;通过外部冷热交换循环媒介储存,进行恒温恒湿冷库的外部环境中自然冷热能源存储;通过内部冷热交换湿度调节环网,进行内部主动冷热交换温度调节、温差冷热交换温度调节及蒸发冷凝湿度调节;通过分布温湿监测及自动控制智能管理,进行恒温恒湿冷库内外双循环***控制及智能化管理;
内部制冷制热循环,通过主动压缩制冷及内部加热升温,进行恒温恒湿冷库的内部主动制冷制热循环;外部冷热交换循环,通过外部冷热交换循环媒介储存,进行恒温恒湿冷库的外部环境中自然冷热能源存储;冷热交替内部温湿调节,通过内部冷热交换湿度调节环网,进行内部主动冷热交换温度调节、温差冷热交换温度调节及蒸发冷凝湿度调节;温湿监测***控制,通过分布温湿监测及自动控制智能管理,进行恒温恒湿冷库内外双循环***控制及智能化管理;内部设置通过制冷机组冷凝器末端连接到蒸发器管通,外部利用自然环境调节内部温度湿度及内部空气质量,制冷的同时加热达到温度湿度的多种状态协调控制恒温恒湿及按需定制;适用于包括:一般冷库***及医药冷库***或试验冷库***,保鲜温度湿度通过能耗主动压缩制冷、蒸发控制湿度;本发明制冷的同时加热达到温度湿度的多种状态协调控制恒温恒湿及按需定制;能够实现内外温度湿度双循环充分利用自然环境调节内部温度湿度及内部空气质量,具有高效的节能环保技术效果;并大幅提高本领域节能环保效率及自然环境资源的高效循环可持续利用。
在一个实施例中,所述S100,包括:
S101:通过制冷压缩机进行恒温恒湿冷库的主动制冷降温,当冷库外部可利用环境温度无法满足冷库内部制冷温度要求时,进行主动制冷降温;
S102:通过自主加热进行恒温恒湿冷库的自主加热升温,当冷库外部可利用环境温度无法满足冷库内部制热温度要求时,进行自主加热升温;
S103:连接内部制冷制热循环模块的制冷制热单元输入输出端,并密封保持输入输出端高低压力差。
上述技术方案的工作原理为:通过制冷压缩机进行恒温恒湿冷库的主动制冷降温,当冷库外部可利用环境温度无法满足冷库内部制冷温度要求时,进行主动制冷降温;通过自主加热进行恒温恒湿冷库的自主加热升温,当冷库外部可利用环境温度无法满足冷库内部制热温度要求时,进行自主加热升温;连接内部制冷制热循环模块的制冷制热单元输入输出端,并密封保持输入输出端高低压力差;内部制冷制热循环的冷库压缩机制冷,通过制冷压缩机进行恒温恒湿冷库的主动制冷降温,当冷库外部可利用环境温度无法满足冷库内部制冷温度要求时,进行主动制冷降温;自主加热除霜调湿,通过自主加热进行恒温恒湿冷库的自主加热升温,当冷库外部可利用环境温度无法满足冷库内部制热温度要求时,进行自主加热升温;高低压输入输出,连接内部制冷制热循环模块的制冷制热单元输入输出端,并密封保持输入输出端高低压力差。
上述技术方案的有益效果为:通过制冷压缩机进行恒温恒湿冷库的主动制冷降温,当冷库外部可利用环境温度无法满足冷库内部制冷温度要求时,进行主动制冷降温;通过自主加热进行恒温恒湿冷库的自主加热升温,当冷库外部可利用环境温度无法满足冷库内部制热温度要求时,进行自主加热升温;连接内部制冷制热循环模块的制冷制热单元输入输出端,并密封保持输入输出端高低压力差;内部设置通过制冷机组冷凝器末端连接到蒸发器管通,外部利用自然环境调节内部温度湿度及内部空气质量。
在一个实施例中,所述S200,包括:
S201:通过冷凝集散热器进行冷库外部环境中的环境冷热温度交换;
S202:通过热交换循环介质存储器进行热交换循环介质的存储;
S203:通过多层隔热保温管网,进行***各单元的热交换循环介质联通。
上述技术方案的工作原理为:通过冷凝集散热器进行冷库外部环境中的环境冷热温度交换;通过热交换循环介质存储器进行热交换循环介质的存储;通过多层隔热保温管网,进行***各单元的热交换循环介质联通;制冷的同时加热达到温度湿度的多种状态协调控制恒温恒湿及按需定制;
计算环境温度与外部冷热交换循环媒介热交换值:
Figure BDA0003952689620000131
其中,THCR代表环境温度与外部冷热交换循环媒介热交换值,k代表环境温度与外部冷热交换循环媒介的第k个热交换点位,M代表环境温度与外部冷热交换循环媒介的热交换点位总数,Tk代表第k个热交换点位的环境温度值,Uk代表第k个热交换点位的空间纵向轴坐标值,U代表热交换点位的空间纵向轴参照坐标值,Vk代表第k个热交换点位的空间横向轴坐标值,V代表热交换点位的空间横向轴参照坐标值,Wk代表第k个热交换点位的空间垂直轴坐标值,W代表热交换点位的空间垂直轴参照坐标值。
上述技术方案的有益效果为:通过冷凝集散热器进行冷库外部环境中的环境冷热温度交换;通过热交换循环介质存储器进行热交换循环介质的存储;通过多层隔热保温管网,进行***各单元的热交换循环介质联通;能够将外部能量进行大量存储及进行能源缓冲,提高自然能源利用的可持续性;
计算环境温度与外部冷热交换循环媒介热交换值:其中,THCR代表环境温度与外部冷热交换循环媒介热交换值,k代表环境温度与外部冷热交换循环媒介的第k个热交换点位,M代表环境温度与外部冷热交换循环媒介的热交换点位总数,Tk代表第k个热交换点位的环境温度值,Uk代表第k个热交换点位的空间纵向轴坐标值,U代表热交换点位的空间纵向轴参照坐标值,Vk代表第k个热交换点位的空间横向轴坐标值,V代表热交换点位的空间横向轴参照坐标值,Wk代表第k个热交换点位的空间垂直轴坐标值,W代表热交换点位的空间垂直轴参照坐标值;通过计算环境温度与外部冷热交换循环媒介热交换值,可以进一步精确控制环境温度的利用效率。
在一个实施例中,所述S300,包括:
S301:通过内部蒸发器件进行恒温恒湿冷库内的制冷温度调节;
S302:通过位于内部蒸发冷风交换单元下部的压缩高压制热交换网,进行外部环境高温状态的热交换介质导入内部制热及除湿;
S303:通过冷热湿度联动控制风机组,进行外部冷热温湿交换单元及内部蒸发冷风交换单元的风机吹动空气流动加速冷热交换。
上述技术方案的工作原理为:通过内部蒸发器件进行恒温恒湿冷库内的制冷温度调节;通过位于内部蒸发冷风交换单元下部的压缩高压制热交换网,进行外部环境高温状态的热交换介质导入内部制热及除湿;通过冷热湿度联动控制风机组,进行外部冷热温湿交换单元及内部蒸发冷风交换单元的风机吹动空气流动加速冷热交换;外部冷热温湿交换及内部蒸发冷风交换的风机吹动空气流动加速冷热交换。
上述技术方案的有益效果为:通过内部蒸发器件进行恒温恒湿冷库内的制冷温度调节;通过位于内部蒸发冷风交换单元下部的压缩高压制热交换网,进行外部环境高温状态的热交换介质导入内部制热及除湿;通过冷热湿度联动控制风机组,进行外部冷热温湿交换单元及内部蒸发冷风交换单元的风机吹动空气流动加速冷热交换;制冷状态时湿度进行保持或调整;外部冷热温湿交换及内部蒸发冷风交换的风机吹动空气流动加速冷热交换;能够同时进行制冷状态时温度湿度保持或调整,外部冷热温湿交换及内部蒸发冷风交换的风机吹动空气流动,能够进一步加速冷热交换。
在一个实施例中,所述S400,包括:
S401:通过在恒温恒湿冷库内外各温度监控点位及湿度监控点位进行多点位温度监测及多点位湿度监测,获得多点位温度监测数据及多点位湿度监测数据;
S402:根据多点位温度监测数据及多点位湿度监测数据,通过多向控制阀门及过滤器,进行内外双循环热交换介质的流动控制;
S403:通过恒温恒湿智能管理平台,进行***各部分及***电源供电的平台化智能管理,智能调控冷库内温度湿度保持恒定平稳,智能管理冷库外部环境自然冷热资源循环利用。
上述技术方案的工作原理为:通过在恒温恒湿冷库内外各温度监控点位及湿度监控点位进行多点位温度监测及多点位湿度监测,获得多点位温度监测数据及多点位湿度监测数据;根据多点位温度监测数据及多点位湿度监测数据,通过多向控制阀门及过滤器,进行内外双循环热交换介质的流动控制;通过恒温恒湿智能管理平台,进行***各部分及***电源供电的平台化智能管理,智能调控冷库内温度湿度保持恒定平稳,智能管理冷库外部环境自然冷热资源循环利用;恒温恒湿智能管理平台综合判断冷库外部自然环境温度及冷库内部的温度、冷库外部自然环境湿度及冷库内部的湿度以及***存储的自然能量;当冷库外部自然环境温度及***存储的自然能量与冷库内部的温度有温度差、湿度差时或内部需要能量补充时,进行温度、湿度及压差能量交换。
上述技术方案的有益效果为:通过在恒温恒湿冷库内外各温度监控点位及湿度监控点位进行多点位温度监测及多点位湿度监测,获得多点位温度监测数据及多点位湿度监测数据;根据多点位温度监测数据及多点位湿度监测数据,通过多向控制阀门及过滤器,进行内外双循环热交换介质的流动控制;通过恒温恒湿智能管理平台,进行***各部分及***电源供电的平台化智能管理,智能调控冷库内温度湿度保持恒定平稳,智能管理冷库外部环境自然冷热资源循环利用;恒温恒湿智能管理平台综合判断冷库外部自然环境温度及冷库内部的温度、冷库外部自然环境湿度及冷库内部的湿度以及***存储的自然能量;当冷库外部自然环境温度及***存储的自然能量与冷库内部的温度有温度差、湿度差时或内部需要能量补充时,进行温度、湿度及压差能量交换;能够实现内外温度湿度双循环充分利用自然环境调节内部温度湿度及内部空气质量,具有高效的节能环保技术效果。
尽管本发明的实施方案已公开如上,但其并不仅仅限于说明书和实施方式中所列运用,它完全可以被适用于各种适合本发明的领域,对于熟悉本领域的人员而言,可容易地实现另外的修改,因此在不背离权利要求及等同范围所限定的一般概念下,本发明并不限于特定的细节与这里示出与描述的图例。

Claims (10)

1.一种恒温恒湿冷库内外双循环温湿调控***,其特征在于,包括:
内部制冷制热循环模块:用于通过主动压缩制冷及内部加热升温,进行恒温恒湿冷库的内部主动制冷制热循环;
外部冷热交换循环模块:用于通过外部冷热交换循环媒介储存,进行恒温恒湿冷库的外部环境中自然冷热能源存储;
冷热交替内部温湿模块:用于通过内部冷热交换湿度调节环网,进行内部主动冷热交换温度调节、温差冷热交换温度调节及蒸发冷凝湿度调节;
温湿监测***控制模块:用于通过分布温湿监测及自动控制智能管理,进行恒温恒湿冷库内外双循环***控制及智能化管理。
2.根据权利要求1所述的一种恒温恒湿冷库内外双循环温湿调控***,其特征在于,所述内部制冷制热循环模块,包括:
冷库压缩机制冷单元:用于通过制冷压缩机进行恒温恒湿冷库的主动制冷降温,当冷库外部可利用环境温度无法满足冷库内部制冷温度要求时,进行主动制冷降温;
自主加热除霜调湿单元:用于通过自主加热进行恒温恒湿冷库的自主加热升温,当冷库外部可利用环境温度无法满足冷库内部制热温度要求时,进行自主加热升温;
高低压输入输出单元:用于连接内部制冷制热循环模块的制冷制热单元输入输出端,并密封保持输入输出端高低压力差。
3.根据权利要求1所述的一种恒温恒湿冷库内外双循环温湿调控***,其特征在于,所述外部冷热交换循环模块,包括:
外部冷凝交换单元:通过冷凝集散热器进行冷库外部环境中的环境冷热温度交换;
外部冷热储存单元:通过热交换循环介质存储器进行热交换循环介质的存储;
冷热循环连接单元:通过多层隔热保温管网,进行***各单元的热交换循环介质联通。
4.根据权利要求1所述的一种恒温恒湿冷库内外双循环温湿调控***,其特征在于,所述冷热交替内部温湿模块,包括:
内部蒸发冷风交换单元:通过内部蒸发器件进行恒温恒湿冷库内的制冷温度调节;
外部冷热温湿交换单元:通过位于内部蒸发冷风交换单元下部的压缩高压制热交换网,进行外部环境高温状态的热交换介质导入内部制热及除湿;
制冷制热循环气流单元:通过冷热湿度联动控制风机组,进行外部冷热温湿交换单元及内部蒸发冷风交换单元的风机吹动空气流动加速冷热交换。
5.根据权利要求4所述的一种恒温恒湿冷库内外双循环温湿调控***,其特征在于,所述温湿监测***控制模块,包括:
多点分布温湿监测单元:通过在恒温恒湿冷库内外各温度监控点位及湿度监控点位进行多点位温度监测及多点位湿度监测,获得多点位温度监测数据及多点位湿度监测数据;
***管网控制单元:根据多点位温度监测数据及多点位湿度监测数据,通过多向控制阀门及过滤器,进行内外双循环热交换介质的流动控制;
恒温恒湿智能管理单元:通过恒温恒湿智能管理平台,进行***各部分及***电源供电的平台化智能管理,智能调控冷库内温度湿度保持恒定平稳,智能管理冷库外部环境自然冷热资源循环利用。
6.一种恒温恒湿冷库内外双循环温湿调控方法,其特征在于,包括:
S100:通过主动压缩制冷及内部加热升温,进行恒温恒湿冷库的内部主动制冷制热循环;
S200:通过外部冷热交换循环媒介储存,进行恒温恒湿冷库的外部环境中自然冷热能源存储;
S300:通过内部冷热交换湿度调节环网,进行内部主动冷热交换温度调节、温差冷热交换温度调节及蒸发冷凝湿度调节;
S400:通过分布温湿监测及自动控制智能管理,进行恒温恒湿冷库内外双循环***控制及智能化管理。
7.根据权利要求6所述的一种恒温恒湿冷库内外双循环温湿调控方法,其特征在于,所述S100,包括:
S101:通过制冷压缩机进行恒温恒湿冷库的主动制冷降温,当冷库外部可利用环境温度无法满足冷库内部制冷温度要求时,进行主动制冷降温;
S102:通过自主加热进行恒温恒湿冷库的自主加热升温,当冷库外部可利用环境温度无法满足冷库内部制热温度要求时,进行自主加热升温;
S103:连接内部制冷制热循环模块的制冷制热单元输入输出端,并密封保持输入输出端高低压力差。
8.根据权利要求6所述的一种恒温恒湿冷库内外双循环温湿调控方法,其特征在于,所述S200,包括:
S201:通过冷凝集散热器进行冷库外部环境中的环境冷热温度交换;
S202:通过热交换循环介质存储器进行热交换循环介质的存储;
S203:通过多层隔热保温管网,进行***各单元的热交换循环介质联通。
9.根据权利要求6所述的一种恒温恒湿冷库内外双循环温湿调控方法,其特征在于,所述S300,包括:
S301:通过内部蒸发器件进行恒温恒湿冷库内的制冷温度调节;
S302:通过位于内部蒸发冷风交换单元下部的压缩高压制热交换网,进行外部环境高温状态的热交换介质导入内部制热及除湿;
S303:通过冷热湿度联动控制风机组,进行外部冷热温湿交换单元及内部蒸发冷风交换单元的风机吹动空气流动加速冷热交换。
10.根据权利要求6所述的一种恒温恒湿冷库内外双循环温湿调控方法,其特征在于,所述S400,包括:
S401:通过在恒温恒湿冷库内外各温度监控点位及湿度监控点位进行多点位温度监测及多点位湿度监测,获得多点位温度监测数据及多点位湿度监测数据;
S402:根据多点位温度监测数据及多点位湿度监测数据,通过多向控制阀门及过滤器,进行内外双循环热交换介质的流动控制;
S403:通过恒温恒湿智能管理平台,进行***各部分及***电源供电的平台化智能管理,智能调控冷库内温度湿度保持恒定平稳,智能管理冷库外部环境自然冷热资源循环利用。
CN202211454556.9A 2022-11-21 2022-11-21 一种恒温恒湿冷库内外双循环温湿调控***及调控方法 Pending CN115773624A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211454556.9A CN115773624A (zh) 2022-11-21 2022-11-21 一种恒温恒湿冷库内外双循环温湿调控***及调控方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211454556.9A CN115773624A (zh) 2022-11-21 2022-11-21 一种恒温恒湿冷库内外双循环温湿调控***及调控方法

Publications (1)

Publication Number Publication Date
CN115773624A true CN115773624A (zh) 2023-03-10

Family

ID=85389519

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211454556.9A Pending CN115773624A (zh) 2022-11-21 2022-11-21 一种恒温恒湿冷库内外双循环温湿调控***及调控方法

Country Status (1)

Country Link
CN (1) CN115773624A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116928984A (zh) * 2023-08-22 2023-10-24 广州万为制冷设备工程有限公司 一种恒温恒湿冷库内外双循环温湿调控***及调控方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08303840A (ja) * 1995-05-11 1996-11-22 Jdc Corp 室温調節機能付除湿機を有する冷暖房システム
CN104121625A (zh) * 2013-04-23 2014-10-29 艾默生网络能源有限公司 一种节能空调及其控制方法
CN204388292U (zh) * 2015-01-07 2015-06-10 成都理工大学 氡室恒温恒湿自动控制装置
CN205783455U (zh) * 2015-12-31 2016-12-07 宁波惠康实业有限公司 双冷源双热源恒温恒湿空调机组
CN110779274A (zh) * 2019-11-21 2020-02-11 郑州轻工业大学 一种储存柜恒温恒湿***
CN113405304A (zh) * 2021-06-17 2021-09-17 东莞市振发机电冷气工程有限公司 一种低温型恒温恒湿冷库机组控制***

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08303840A (ja) * 1995-05-11 1996-11-22 Jdc Corp 室温調節機能付除湿機を有する冷暖房システム
CN104121625A (zh) * 2013-04-23 2014-10-29 艾默生网络能源有限公司 一种节能空调及其控制方法
CN204388292U (zh) * 2015-01-07 2015-06-10 成都理工大学 氡室恒温恒湿自动控制装置
CN205783455U (zh) * 2015-12-31 2016-12-07 宁波惠康实业有限公司 双冷源双热源恒温恒湿空调机组
CN110779274A (zh) * 2019-11-21 2020-02-11 郑州轻工业大学 一种储存柜恒温恒湿***
CN113405304A (zh) * 2021-06-17 2021-09-17 东莞市振发机电冷气工程有限公司 一种低温型恒温恒湿冷库机组控制***

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116928984A (zh) * 2023-08-22 2023-10-24 广州万为制冷设备工程有限公司 一种恒温恒湿冷库内外双循环温湿调控***及调控方法
CN116928984B (zh) * 2023-08-22 2024-03-19 广州万为制冷设备工程有限公司 一种恒温恒湿冷库内外双循环温湿调控***及调控方法

Similar Documents

Publication Publication Date Title
CN109237925B (zh) 一种除湿烘干用热泵控制***
CN100404966C (zh) 空气调节***
WO2020218563A1 (ja) 機械学習装置、空調システム及び機械学習方法
US20150027156A1 (en) HVAC System and Method of Operation
CN106369718A (zh) 用于数据中心的模块化节能制冷装置
CN113654113B (zh) 一种具有除湿功能的热泵空调
CN106839172A (zh) 一种优化的高精度恒温恒湿空调控制***
CN111442575A (zh) 可调式制冷装置及制冷调节方法
CN115773624A (zh) 一种恒温恒湿冷库内外双循环温湿调控***及调控方法
EP4372289A1 (en) Multi-split central air conditioning system for simultaneous cooling and heating
CN110939995A (zh) 空调***
CN109713399A (zh) 一种储能集装箱温湿度调节***及其联合使用方法
CN109121371A (zh) 一种组合式集装箱数据中心
CN108444203B (zh) 一种冷库温度同步监控***及调节方法
CN112015207B (zh) 一种野外人工气候室温度控制***及温度控制方法
CN105135552A (zh) 空调***
JP2020183856A (ja) 機械学習装置、空調システム及び機械学習方法
CN201866872U (zh) 一种户式辐射平面空调流量分配调节***
CN106152318A (zh) 一种基于冷却水总线的变负荷调节一体化***及运行方法
CN104776636B (zh) 多不稳定冷热源联合供冷供热混水***及其供冷供热方法
CN206637755U (zh) 一种优化的高精度恒温恒湿空调控制***
CN206959219U (zh) 一种动力式热管背板空调***
CN108548236A (zh) 一种一体化节能型空调机
CN112556225B (zh) 桶泵制冷***
CN112594949B (zh) 节能型焓差试验室

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20230310

RJ01 Rejection of invention patent application after publication