CN115717709B - 基于注意力机制lstm模型的入炉垃圾热值实时预测方法 - Google Patents

基于注意力机制lstm模型的入炉垃圾热值实时预测方法 Download PDF

Info

Publication number
CN115717709B
CN115717709B CN202211417405.6A CN202211417405A CN115717709B CN 115717709 B CN115717709 B CN 115717709B CN 202211417405 A CN202211417405 A CN 202211417405A CN 115717709 B CN115717709 B CN 115717709B
Authority
CN
China
Prior art keywords
garbage
model
content
furnace
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211417405.6A
Other languages
English (en)
Other versions
CN115717709A (zh
Inventor
林晓青
温朝军
谢昊源
黄群星
李晓东
严建华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN202211417405.6A priority Critical patent/CN115717709B/zh
Publication of CN115717709A publication Critical patent/CN115717709A/zh
Application granted granted Critical
Publication of CN115717709B publication Critical patent/CN115717709B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • Incineration Of Waste (AREA)

Abstract

本发明涉及入炉垃圾的热值预测技术,旨在提供一种基于注意力机制LSTM模型的入炉垃圾热值实时预测方法。包括:从历史数据记录中提取DCS控制参量,筛选出用于模型训练的输入特征参量,从中提取部分S参量计算入炉垃圾热值并以用于模型训练;建立基于时间注意力机制的LSTM时序模型作为训练模型;筛选多次训练后保存的模型,选取其中均方根误差最小的作为最终的预测模型;从当前时刻DCS控制参数中提取输入特征参量,输入预测模型,经计算获得下一个时间步长的入炉垃圾热值预测值。本发明能够高效准确地测算垃圾焚烧炉入炉垃圾的热值,进一步将垃圾热值预测结果用于控制策略的调整,能够减少污染物排放并提高焚烧发电的效能。

Description

基于注意力机制LSTM模型的入炉垃圾热值实时预测方法
技术领域
本发明涉及入炉垃圾的热值预测技术领域,尤其涉及一种基于注意力机制LSTM模型的入炉垃圾热值实时预测方法。
背景技术
垃圾焚烧技术是生活垃圾资源化、无害化利用的主要手段,但由于生活垃圾组分复杂、热值波动剧烈,无法实时估算入炉垃圾的热值。因此,需要对垃圾焚烧炉入炉垃圾热值进行实时测算和预测,实现垃圾处理的无害化、资源化和可持续发展。
目前,技术人员针对垃圾热值测算与估计所采用的技术或主要测量方法包括:氧弹热量法、公式估计法(Dulong/Scheurer-Kestner等)、利用灰色关联度预测生活垃圾热值法,以及使用各类神经网络建立垃圾热值预测模型的方法。但这些方法存在着精度不高、计算模型复杂难以部署、泛化性弱等特点,并且不能做到垃圾热值的实时预测。在现阶段的研究中,缺少一个能够对垃圾热值实时进行预测的有效技术方法。
目前仅依靠电厂现场的运维人员通过蒸汽负荷的变化趋势人为粗略估计垃圾热值。由于人工监视方式无法精准估算出垃圾热值,控制调节存在滞后性,容易使得焚烧炉内燃烧产生较大的波动。因此,亟需提出一种更符合现实需要的入炉垃圾热值实时测算方法以解决上述问题。
发明内容
本发明要解决的技术问题是,克服现有技术中的不足,提供一种基于注意力机制LSTM模型的入炉垃圾热值实时预测方法。
为解决技术问题,本发明的解决方案是:
提供一种基于注意力机制LSTM模型的入炉垃圾热值实时预测方法,包括以下步骤:
(1)从垃圾焚烧炉DCS控制***的历史数据记录中,提取的不同时间点位的DCS控制参量;按固定的时间间隔将数据导入工控机,得到待整理数据集;
(2)基于相关性系数的计算,从待整理数据集中筛选出SO2浓度、烟气温度、炉燃烧炉排上部温度、一次风温温度、烟尘浓度、NOx含量、HCl含量、CO含量、湿基CO2含量、氟化物含量、干基O2含量和烟气湿度,共12个输入特征参量;进行数据清洗后,将这12个输入特征的数据用于模型训练;
(3)从步骤(2)得到的输入特征参量中提取用于计算C、H、O、S、含水率参数的DCS参量,并计算出各时刻的入炉垃圾热值,为计算结果添加标签以用于模型训练;
(4)对步骤(2)得到的输入特征参量和步骤(3)得到的各时刻的入炉垃圾热值进行整合处理;然后将全部数据中的80%用作训练集数据,20%用作测试集数据;
(5)建立基于时间注意力机制的LSTM时序模型作为训练模型;
将训练集数据输入训练模型进行训练,通过将LSTM模型的隐藏层状态量h与注意力矩阵进行点积相乘,优化隐藏层的状态量h;
同步使用均方根误差损失计算预测值和真实值之间的损失,每轮训练后需反向传播更新预测模型的下一时刻状态量h,使炉垃圾热值的预测值与入计算结果之间的欧式距离逐步缩小,直至均方根误差损失小于1%,保存该模型;
筛选多次训练后保存的模型,选取其中均方根误差最小的作为最终的预测模型;
(6)从当前时刻下的DCS控制参数中提取输入特征参量,输入步骤(5)得到的预测模型,经计算获得下一个时间步长的入炉垃圾热值预测值。
本发明还提供了利用前述预测方法获得的预测结果进一步改进垃圾焚烧炉控制策略的方法,包括:
(a)参照权利要求1中步骤(1)-(3)的内容,计算当前时刻下的入炉垃圾热值;
(b)计算当前时刻下的入炉垃圾热值与下一个时间步长的入炉垃圾热值预测值之间的差值,以及差值幅度变化情况;
(c)根据步骤(b)的计算结果,调整优化垃圾给料速率,保证单位时间内的入炉垃圾总热值趋于稳定,使焚烧炉内的垃圾燃烧状态保持平稳。
发明原理描述:
生活垃圾炉排焚烧炉中垃圾的热值是由输入物料的结构、组分等关键因素决定的,由于垃圾中的组分具有一定随机性,在连续的不同时间点上垃圾热值并无周期性变化并且波动距离。对于时序模型来讲,尽管垃圾热值受到入炉垃圾组分、含水量等不确定因素干扰,但未来垃圾热值变化趋势与历史变化趋势有着较强的关联。本发明通过利用LSTM时序模型挖掘这种未来时间段热值趋势与历史时间段热值趋势间存在的变化规律,加入时间注意力机制是为了让计算机在不同尺度的时间区域内都能够找到与模型对应的规律。
垃圾热值因其组分复杂,且在不同时刻因垃圾组分差别较大而难被实时测量。运行人员现有做法是采用抽样法检测垃圾热值,其周期通常为一个星期或一个月。由于无法获取实时垃圾热值作为目标值参与神经网络训练,研究人员即便通过数据学习方法也只能在现有的监督神经网络中进行训练,因此到目前仍未见能够符合实际应用场景需求的预测模型被报道,更没有公开文献记载过利用LSTM时序模型进行热值预测的研究成果。
本发明创新性地提出,采用实时提取DCS参数中实时CO含量、CO2含量、氧气含量和烟气含水量来计算C、H、O、S和含水量的实时数值,采用元素含量计算实时热值,来完成有监督学习的LSTM时序模型训练过程。另外,基于时间注意力机制的LSTM时序模型相较传统的时序模型,通过调整权重大小来模拟人的注意力在处理信息时的侧重,能够使模型集中在寻找局部时间序列上各特征量与目标量的关系。尤其对于本应用场景,预测时间间隔要求并不长,利用本发明经改造的模型更有利于寻找短时间间隔内的特征量变化趋势。
本发明最终通过实时提取各点位的DCS数据并输入到基于时间注意力机制的LSTM时序模型中,由神经网络拟合并挖掘出垃圾热值与各项DCS数据及历史工况间的关联性,从而实现垃圾热值的实时预测。
与现有技术相比,本发明的有益效果是:
1、相较现场运行人员根据炉膛负荷等数据或人工不精确估算垃圾热值,本发明更具有科学性和实时性,其能够高效和准确的测算垃圾焚烧炉入炉垃圾的热值,实现对入炉垃圾热值的预测和对炉膛内稳定燃烧的诊断。
2、与现有研究中利用监督神经网络进行训练得到的模型相比,本发明通过实时提取各点位的DCS数据并输入到基于时间注意力机制的LSTM时序模型中,由神经网络拟合并挖掘出垃圾热值与各项DCS数据及历史工况间的关联性,从而实现垃圾热值的实时预测并用于控制策略的调整,减少污染物排放并提高焚烧发电的效能。因此,本发明更符合实际应用场景的需求。
附图说明
图1为生活垃圾焚烧炉DCS各指定点位示意图;
图2为入炉垃圾热值实时预测流程的示意图;
图3为具体应用示例中训练后MSE_loss变化情况趋势图;
图4为具体应用示例中测试集热值预测值和真实值对比图。
具体实施方式
首先需要说明的是,本发明涉及深度学习技术,是计算机技术在工业预测及工业控制领域的一种应用。在本发明的实现过程中,会涉及到多个软件功能模块的应用。申请人认为,如在仔细阅读申请文件、准确理解本发明的实现原理和发明目的以后,在结合现有公知技术的情况下,本领域技术人员完全可以运用其掌握的软件编程技能实现本发明。前述软件功能模块包括但不限于:DCS参数提取模块、入炉垃圾热值预测模块等,凡本发明申请文件提及的均属此范畴,申请人不再一一列举。
为了使本发明的目的、技术方案和优点更加清晰,下面结合附图以及具体实施例对本发明作进一步的说明,显然,所述实施例仅仅是本发明最基础的实施例,而不是全部实施例。基于本发明的其他实施例,均属于本发明保护的范围。
本发明所述基于注意力机制LSTM模型的入炉垃圾热值实时预测方法,包括步骤:
1、从垃圾焚烧炉DCS控制***的历史数据记录中,提取不同时间点位下的DCS控制参量;然后将数据导入工控机,得到待整理数据集;
如图1所示,提取的DCS控制参量包括:在垃圾焚烧炉中,点位1处的炉排上部温度、点位2处的一次风温温度;在烟囱中,点位3处的烟气SO2浓度、点位4处的烟气温度、点位5处的烟尘浓度、点位6处的NOx浓度,点位7处的HCl浓度、点位8处的CO浓度、点位9处的CO2浓度、点位10处的氟化物浓度、点位11处的O2浓度、点位12处的烟气湿度。
2、基于相关性系数的计算,从待整理数据集中筛选出SO2浓度、烟气温度、炉燃烧炉排上部温度、一次风温温度、烟尘浓度、NOx含量、HCl含量、CO含量、湿基CO2含量、氟化物含量、干基O2含量和烟气湿度共12个输入特征参量,共12个输入特征参量:进行数据清洗后,将这12个输入特征的数据用于模型训练。
所述筛选是指:计算输入特征参量与实时目标热值的皮尔逊相关性系数,保留相关系数大于0.3的输入特征参量用于训练模型的输入;
其中,皮尔逊相关性系数pearson的计算如下式所示:
式中:xi为某待选输入参量,yi为实时目标热值的计算结果;为输入参量组的均值,/>为实时目标热值组的均值;i=1,2...n。
所述数据清洗是指:根据垃圾焚烧炉运行过程中的控制参数范围,对提取到的输入特征参量数据进行清洗,去除异常工况值。
3、从步骤2得到的输入特征参量中,提取用于计算计算C、H、O、S、含水率等参数的DCS参量,并计算出各时刻的入炉垃圾热值,为计算结果添加标签以用于模型训练;
从数据集中提取的DCS参量包括:用于计算碳含量的CO含量、CO2含量;用于计算氢含量的烟气含水量;用于计算氧含量的氧气含量;用于计算水分含量的烟气含水量,以及用于各元素含量计算的干烟气密度和烟气含水量。
通过下述公式计算获得各时刻的入炉垃圾热值;其中,当氧含量超过10%时使用公式(2),当氧含量低于10%时使用公式(3):
式中,Q为入炉垃圾热值,单位:kJ/kg;C为入炉垃圾中的碳含量,单位:%;H为入炉垃圾中的氢含量,单位:%;o为入炉垃圾中的氧含量,单位:%;S为入炉垃圾的硫含量,单位:%;W为入炉垃圾的水分含量,单位:%。
其中,碳含量按(CO与CO2的含量总和)/(干烟气密度和烟气含水量总和)计算;氢含量按(1/9的烟气含水量)/(干烟气密度和烟气含水量总和)计算;氧含量按(氧气含量/(干烟气密度和烟气含水量总和)计算;硫含量在烟气成分中比例较小,按定值0.1%计算;水分含量按烟气含水量/(干烟气密度和烟气含水量总和)计算。
4、对步骤2得到的输入特征参量和步骤3得到的各时刻的入炉垃圾热值进行整合处理;然后将全部数据中的80%用作训练集数据,20%用作测试集数据。
5、建立基于时间注意力机制的LSTM时序模型作为训练模型。
训练模型为基于时间注意力机制的LSTM时序模型,其中输入时序步长为3,输出时序步长为1,输入特征维度为12,LSTM模型的隐藏层为128层,训练轮数为60,学习率为0.48。
将训练集数据输入训练模型进行训练,通过下述公式(4)-(6)的计算,将LSTM模型的隐藏层状态量h与注意力矩阵进行点积相乘,优化隐藏层的状态量h:
a·b=a1b1+a2b2+...+anbn (6)
其中,a和b均为某向量数组,内含有n个元素。
同步使用均方根误差损失计算预测值和真实值之间的损失:
式中,MSE_loss为均方根误差损失;n为预测实例的数量,yi为LSTM时序模型某个预测热值,为LSTM时序模型预测热值的均值;i=1,2...n。
每轮训练后需反向传播更新预测模型的下一时刻状态量h,使炉垃圾热值的预测值与入计算结果之间的欧式距离逐步缩小,直至均方根误差损失小于1%,保存该模型;
所述反向传播更新具体是指:使用相同的计算单元重复作用于不同时刻t的输入特征向量xt与此刻的状态向量ht-1,产生下一时刻的新状态向量ht;将用于更新的状态量ht进行反向梯度传播,从模型的输出层开始,利用函数求导的链式法则逐层从后向前求出模型梯度,从而实现最优化解,省去重复的求导步骤。
筛选多次训练后保存的模型,选取其中均方根误差最小的作为最终的预测模型。
6、从当前时刻下的DCS控制参数中提取输入特征参量,输入步骤5得到的预测模型,经计算获得下一个时间步长的入炉垃圾热值预测值。
本发明进一步提出了利用前述预测结果进一步改进垃圾焚烧炉控制策略,具体包括以下步骤:
(a)参照前述步骤1-3的内容,计算当前时刻下的入炉垃圾热值;
(b)计算当前时刻下的入炉垃圾热值与下一个时间步长的入炉垃圾热值预测值之间的差值,以及差值幅度变化情况;
(c)根据步骤(b)的计算结果,调整优化垃圾给料速率,保证单位时间内的入炉垃圾总热值趋于稳定,使焚烧炉内的垃圾燃烧状态保持平稳。
具体的应用示例:
选取国内某处理量为750吨/天的典型垃圾焚烧发电厂进行试验,其处理的垃圾主要是城市生活垃圾,数据为某个月30天的焚烧炉各点位DCS控制参量正常运行数据,数据采集间隔为1小时,数据共有533条,共计28种传感器参数。同步提取相同时间段的C、H、O、S、含水率,根据经验公式计算实时目标热值的具体数据,并将目标热值与各类传感器参数进行皮尔逊相关系数计算。
通过提取某月30天数据中各点位DCS控制参量,得到SO2浓度、烟气温度、炉燃烧炉排上部温度、一次风温温度、烟尘浓度、NOx含量,HCl含量,CO含量,CO2含量(湿基),氟化物含量,O2含量(干基),烟气湿度的实时数据,共12种参数的皮尔逊相关系数均大于0.3,属于有相关参数。
去除以上参数中的工业异常值,并送入基于时间注意力机制的LSTM时序神经网络中,并使用80%的数据集进行模型训练,使用20%的数据进行模型测试。其中该训练模型为基于时间注意力机制的LSTM时序模型,其中输入时序步长为3,输出时序步长为1,输入特征维度为12,LSTM模型的隐藏层为128层,训练轮数为60,学习率为0.48。
将80%的训练集送入时序模型进行训练,图3为训练的MSE_loss变化情况趋势图。其中,选取MSE_loss最低的模型保存,作为用于后续模型推理的最佳模型。
将20%的测试集送入基于时间注意力机制的LSTM时序模型进行推理,最终得到图4,从图中可以看出真实值和目标值之间的趋势变化相似,时间间隔为1小时,共计106个小时数据,最终测试集中的平均相对误差为0.68%。虚线的预测值基本能将实线目标值的变化趋势成功预测。

Claims (9)

1.一种基于注意力机制LSTM模型的入炉垃圾热值实时预测方法,其特征在于,包括以下步骤:
(1)从垃圾焚烧炉DCS控制***的历史数据记录中,提取的不同时间点位的DCS控制参量;按固定的时间间隔将数据导入工控机,得到待整理数据集;
(2)基于相关性系数的计算,从待整理数据集中筛选出SO2浓度、烟气温度、炉燃烧炉排上部温度、一次风温温度、烟尘浓度、NOx含量、HCl含量、CO含量、湿基CO2含量、氟化物含量、干基O2含量和烟气湿度,共12个输入特征参量;进行数据清洗后,将这12个输入特征的数据用于模型训练;
(3)从步骤(2)得到的输入特征参量中提取用于计算C、H、O、S、含水率参数的DCS参量,并使用公式(2)或公式(3)计算出各时刻的入炉垃圾热值,为计算结果添加标签以用于模型训练;具体地,
当氧含量超过10%时使用公式(2),当氧含量低于10%时使用公式(3);
式中,Q为入炉垃圾热值,单位:kJ/kg;C为入炉垃圾中的碳含量,单位:%;H为入炉垃圾中的氢含量,单位:%;O为入炉垃圾中的氧含量,单位:%;S为入炉垃圾的硫含量,单位:%;W为入炉垃圾的水分含量,单位:%;
其中,碳含量按(CO与CO2的含量总和)/(干烟气密度和烟气含水量总和)计算;氢含量按(1/9的烟气含水量)/(干烟气密度和烟气含水量总和)计算;氧含量按(氧气含量/(干烟气密度和烟气含水量总和)计算;硫含量在烟气成分中比例较小,按定值0.1%计算;水分含量按烟气含水量/(干烟气密度和烟气含水量总和)计算;
(4)对步骤(2)得到的输入特征参量和步骤(3)得到的各时刻的入炉垃圾热值进行整合处理;然后将全部数据中的80%用作训练集数据,20%用作测试集数据;
(5)建立基于时间注意力机制的LSTM时序模型作为训练模型;
将训练集数据输入训练模型进行训练,通过将LSTM模型的隐藏层状态量h与注意力矩阵进行点积相乘,优化隐藏层的状态量h;
同步使用均方根误差损失计算预测值和真实值之间的损失,每轮训练后需反向传播更新预测模型的下一时刻状态量h,使炉垃圾热值的预测值与入计算结果之间的欧式距离逐步缩小,直至均方根误差损失小于1%,保存该模型;
筛选多次训练后保存的模型,选取其中均方根误差最小的作为最终的预测模型;
(6)从当前时刻下的DCS控制参数中提取输入特征参量,输入步骤(5)得到的预测模型,经计算获得下一个时间步长的入炉垃圾热值预测值。
2.根据权利要求1所述的方法,其特征在于,步骤(2)中所述筛选是指,计算输入特征参量与实时目标热值的皮尔逊相关性系数,保留相关系数大于0.3的输入特征参量用于训练模型的输入;
其中,皮尔逊相关性系数pearson的计算如下式所示:
式中:xi为某待选输入参量,yi为实时目标热值的计算结果;为输入参量组的均值,/>为实时目标热值组的均值;i=1,2…n。
3.根据权利要求1所述的方法,其特征在于,步骤(2)中所述数据清洗是指,根据垃圾焚烧炉运行过程中的控制参数范围,对提取到的输入特征参量数据进行清洗,去除异常工况值。
4.根据权利要求1所述的方法,其特征在于,所述步骤(3)中,所述提取的DCS参量包括:用于计算碳含量的CO含量、CO2含量;用于计算氢含量的烟气含水量;用于计算氧含量的氧气含量;用于计算水分含量的烟气含水量,以及用于各元素含量计算的干烟气密度和烟气含水量。
5.根据权利要求1所述的方法,其特征在于,所述步骤(5)中,训练模型的输入时序步长为3,输出时序步长为1,输入特征维度为12,LSTM模型的隐藏层为128层,训练轮数为60,学习率为0.48。
6.根据权利要求1所述的方法,其特征在于,所述步骤(5)中,通过下述公式计算,将LSTM模型的隐藏层状态量h与注意力矩阵进行点积相乘:
a·b=a1b1+a2b2+…+anbn (6)
其中,a和b均为某向量数组,内含有n个元素。
7.根据权利要求1所述的方法,其特征在于,所述步骤(5)中,根据下述公式计算计算预测值和真实值之间的损失:
式中,MSE_loss为均方根误差损失;n为预测实例的数量,yi为LSTM时序模型某个预测热值,为LSTM时序模型预测热值的均值;i=1,2…n。
8.根据权利要求1所述的方法,其特征在于,所述步骤(5)中,反向传播更新具体是指:
使用相同的计算单元重复作用于不同时刻t的输入特征向量xt与此刻的状态向量ht-1,产生下一时刻的新状态向量ht;将用于更新的状态量ht进行反向梯度传播,从模型的输出层开始,利用函数求导的链式法则逐层从后向前求出模型梯度,从而实现最优化解,省去重复的求导步骤。
9.利用权利要求1所述入炉垃圾热值实时预测方法获得的预测结果进一步改进垃圾焚烧炉控制策略的方法,其特征在于,包括:
(a)参照权利要求1中步骤(1)-(3)的内容,计算当前时刻下的入炉垃圾热值;
(b)计算当前时刻下的入炉垃圾热值与下一个时间步长的入炉垃圾热值预测值之间的差值,以及差值幅度变化情况;
(c)根据步骤(b)的计算结果,调整优化垃圾给料速率,保证单位时间内的入炉垃圾总热值趋于稳定,使焚烧炉内的垃圾燃烧状态保持平稳。
CN202211417405.6A 2022-11-11 2022-11-11 基于注意力机制lstm模型的入炉垃圾热值实时预测方法 Active CN115717709B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211417405.6A CN115717709B (zh) 2022-11-11 2022-11-11 基于注意力机制lstm模型的入炉垃圾热值实时预测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211417405.6A CN115717709B (zh) 2022-11-11 2022-11-11 基于注意力机制lstm模型的入炉垃圾热值实时预测方法

Publications (2)

Publication Number Publication Date
CN115717709A CN115717709A (zh) 2023-02-28
CN115717709B true CN115717709B (zh) 2023-08-04

Family

ID=85255052

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211417405.6A Active CN115717709B (zh) 2022-11-11 2022-11-11 基于注意力机制lstm模型的入炉垃圾热值实时预测方法

Country Status (1)

Country Link
CN (1) CN115717709B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105864797A (zh) * 2016-04-01 2016-08-17 浙江大学 循环流化床生活垃圾焚烧锅炉入炉热值实时预测***及方法
CN106096763A (zh) * 2016-06-03 2016-11-09 河北省电力建设调整试验所 一种预测运行机组的燃煤发热值的方法
CN109446187A (zh) * 2018-10-16 2019-03-08 浙江大学 基于注意力机制与神经网络的复杂装备健康状态监测方法
CN111144609A (zh) * 2019-11-13 2020-05-12 瀚蓝绿电固废处理(佛山)有限公司 一种锅炉废气排放预测模型建立方法、预测方法及装置
CN111855953A (zh) * 2019-09-23 2020-10-30 江苏方天电力技术有限公司 一种燃煤电站入炉煤发热量快速反馈方法及***
CN111931346A (zh) * 2020-07-13 2020-11-13 西安热工研究院有限公司 一种燃煤锅炉入炉煤低位热值的实时计算方法及应用
CN113076623A (zh) * 2021-03-02 2021-07-06 西安交通大学 一种火电机组燃煤发热量的动态估计方法及***
CN114675607A (zh) * 2022-03-23 2022-06-28 浙江浙能兰溪发电有限责任公司 结合火焰温度的入炉煤热值预测与校正控制方法
CN115111594A (zh) * 2022-07-08 2022-09-27 浙江大学 一种蓄热式热力氧化炉智能调控***及方法
JP2022161065A (ja) * 2021-04-08 2022-10-21 Jfeエンジニアリング株式会社 ごみ質予測装置、焼却炉の燃焼制御装置、ごみ質予測方法、ごみ質予測モデルの学習方法およびごみ質予測モデルプログラム

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105864797A (zh) * 2016-04-01 2016-08-17 浙江大学 循环流化床生活垃圾焚烧锅炉入炉热值实时预测***及方法
CN106096763A (zh) * 2016-06-03 2016-11-09 河北省电力建设调整试验所 一种预测运行机组的燃煤发热值的方法
CN109446187A (zh) * 2018-10-16 2019-03-08 浙江大学 基于注意力机制与神经网络的复杂装备健康状态监测方法
CN111855953A (zh) * 2019-09-23 2020-10-30 江苏方天电力技术有限公司 一种燃煤电站入炉煤发热量快速反馈方法及***
CN111144609A (zh) * 2019-11-13 2020-05-12 瀚蓝绿电固废处理(佛山)有限公司 一种锅炉废气排放预测模型建立方法、预测方法及装置
CN111931346A (zh) * 2020-07-13 2020-11-13 西安热工研究院有限公司 一种燃煤锅炉入炉煤低位热值的实时计算方法及应用
CN113076623A (zh) * 2021-03-02 2021-07-06 西安交通大学 一种火电机组燃煤发热量的动态估计方法及***
JP2022161065A (ja) * 2021-04-08 2022-10-21 Jfeエンジニアリング株式会社 ごみ質予測装置、焼却炉の燃焼制御装置、ごみ質予測方法、ごみ質予測モデルの学習方法およびごみ質予測モデルプログラム
CN114675607A (zh) * 2022-03-23 2022-06-28 浙江浙能兰溪发电有限责任公司 结合火焰温度的入炉煤热值预测与校正控制方法
CN115111594A (zh) * 2022-07-08 2022-09-27 浙江大学 一种蓄热式热力氧化炉智能调控***及方法

Also Published As

Publication number Publication date
CN115717709A (zh) 2023-02-28

Similar Documents

Publication Publication Date Title
Wang et al. Forecasting the industrial solar energy consumption using a novel seasonal GM (1, 1) model with dynamic seasonal adjustment factors
Song et al. Hourly heat load prediction model based on temporal convolutional neural network
CN111144609A (zh) 一种锅炉废气排放预测模型建立方法、预测方法及装置
CN114742294A (zh) 一种碳排放预测的神经网络算法
Song et al. Estimate the daily consumption of natural gas in district heating system based on a hybrid seasonal decomposition and temporal convolutional network model
CN111260149A (zh) 一种二噁英排放浓度预测方法
Senthil Kumar et al. Feature selection used for wind speed forecasting with data driven approaches
Ding et al. Estimating energy-related CO2 emissions using a novel multivariable fuzzy grey model with time-delay and interaction effect characteristics
Zhang et al. A novel grey Lotka–Volterra model driven by the mechanism of competition and cooperation for energy consumption forecasting
Ye et al. A nonlinear interactive grey multivariable model based on dynamic compensation for forecasting the economy-energy-environment system
CN113947013A (zh) 基于混合深度神经网络建模的锅炉短期NOx排放预测方法
CN115717709B (zh) 基于注意力机制lstm模型的入炉垃圾热值实时预测方法
Karaçor et al. Life performance prediction of natural gas combined cycle power plant with intelligent algorithms
WO2023231667A1 (zh) 基于集成t-s模糊回归树的mswi过程二噁英排放软测量方法
CN116401948A (zh) 基于lstm的电站锅炉灰渣生成量在线预测方法及***
Cui et al. Multi-condition operational optimization with adaptive knowledge transfer for municipal solid waste incineration process
CN116629553A (zh) 基于非完全区间多目标模糊优化的区域综合能源调度方法
CN115860232A (zh) 一种蒸汽负荷预测方法、***、电子设备及介质
CN110689156A (zh) 一种泛能站优化方法及装置
Kang et al. Research on forecasting method for effluent ammonia nitrogen concentration based on GRA-TCN
CN113516269A (zh) 一种多能互补能源枢纽设备的管理方法
Li et al. Prediction of typical flue gas pollutants from municipal solid waste incineration plants
Tan Carbon Emission Prediction with Macroeconomic Variables and Machine Learning
CN113887130B (zh) 一种基于集成学习的工业锅炉运行优化方法
CN112669169B (zh) 一种短期光伏功率预测装置及方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant