CN115716731B - 适于超高泵送的低收缩徐变机制砂石骨料c55混凝土 - Google Patents

适于超高泵送的低收缩徐变机制砂石骨料c55混凝土 Download PDF

Info

Publication number
CN115716731B
CN115716731B CN202211419293.8A CN202211419293A CN115716731B CN 115716731 B CN115716731 B CN 115716731B CN 202211419293 A CN202211419293 A CN 202211419293A CN 115716731 B CN115716731 B CN 115716731B
Authority
CN
China
Prior art keywords
concrete
content
aggregate
parts
cement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211419293.8A
Other languages
English (en)
Other versions
CN115716731A (zh
Inventor
潘立洋
汪青杰
赵健
曲智富
高健
钟玉刚
韩成龙
杨长鹏
陈鸣宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fourth Engineering Co Ltd of China Railway Construction Bridge Engineering Bureau Group Co Ltd
Original Assignee
Fourth Engineering Co Ltd of China Railway Construction Bridge Engineering Bureau Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fourth Engineering Co Ltd of China Railway Construction Bridge Engineering Bureau Group Co Ltd filed Critical Fourth Engineering Co Ltd of China Railway Construction Bridge Engineering Bureau Group Co Ltd
Priority to CN202211419293.8A priority Critical patent/CN115716731B/zh
Publication of CN115716731A publication Critical patent/CN115716731A/zh
Application granted granted Critical
Publication of CN115716731B publication Critical patent/CN115716731B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

适于超高泵送的低收缩徐变机制砂石骨料C55混凝土,它属于建筑材料领域。它要解决地形复杂山区施工中缺乏天然砂石骨料,且现有高标号混凝土经超高泵送后力学性能受影响、养护难度加大、收缩徐变要求高以及泵送难度高的问题。C55混凝土由水泥、粉煤灰、矿渣粉、硅灰、细集料、粗集料、减水剂和水组成。本发明中矿物掺合料高达50%,不仅实现固废大掺量,而且实现了低水泥高标号,同时显著降低水化热。100%采用机制砂和机制碎石,完全替代天然砂石骨料,通过最佳配比,保障低水泥含量的高标号混凝土,混凝土抗压强度普遍高于65MPa,不仅适于超高泵送,且有效解决高塔水泥混凝土收缩徐变问题。本发明中C55混凝土适用于超高泵送。

Description

适于超高泵送的低收缩徐变机制砂石骨料C55混凝土
技术领域
本发明属于建筑材料领域;具体涉及适于超高泵送的低收缩徐变机制砂石骨料C55混凝土。
背景技术
现代斜拉桥可以追溯到1956年瑞典建成的斯特伦松德桥,主跨182.6m。斜拉桥这种桥型在世界范围内的应用是从20世纪70年代开始的,历经半个世纪,斜拉桥技术得到空前发展,世界上已建成的主跨在200m以上的斜拉桥有200余座,其中跨径大于400m的有40余座。
早期,大多数斜拉桥都是采用钢结构主梁,双箱或单箱配以正交异性板。1957年第一座混凝土斜拉桥(以混凝土为主梁)出现了,但跨径仅为17.5m+51.9m+17.53m。该桥可以被看作为五年后建成的马拉开波湖桥的试验桥。1962年建成的经过修改的马拉开波湖桥是第一座现代混凝土斜拉桥。以此为起点,揭开了混凝土斜拉桥的序幕。进入20年代70年代以后,预应力混凝土桥大量兴起,如1977年法国建成的普鲁东(Bro-tonne)桥,西班牙修建了Luna斜拉桥。日本修了多座跨径300~600m的钢斜拉桥;在1986年也开始修建跨径245m的混凝土斜拉桥,在此之前,混凝土斜拉桥跨径没有超过100m。目前世界上最大跨径的混凝土斜拉桥为挪威的Skarnsund桥,主跨530m。
中国是建造混凝土斜拉桥最多的国家。1975年和1976年分别修建了两座试验桥,即重庆的云阳桥和上海松江的新五桥,主跨分别为76m和54m。1980年在广西建成了我国第一座铁路预应力混凝土斜拉桥—红河桥(48m+96m+48m),从此我国的斜拉桥进入快速发展阶段。1995年建成铜陵长江大桥(主跨432m,当时为世界最大的肋板式混凝土斜拉桥)标志着我国斜拉桥设计进入轻型化时代。2002年建成荆州长江大桥(主跨500m)是世界上最大的肋板式混凝土斜拉桥;广东金马大桥(主桥233m+283m)是世界上最大的独塔混凝土斜拉桥。
比如:南孟溪特大桥位于贵州省黔东南州剑河县南加镇境内,是贵州剑黎高速公路的控制性工程,为2×30m+(160m+360m+160m)+6×40m双塔双索面预应力混凝土斜拉桥,桥长987.5m,主跨360m,塔墩梁固结体系,索塔为H型,高244.5m/253.5m,主梁为双边箱结构,桥面宽29.5m,斜拉索采用钢绞线斜拉索。
项目地处贵州山区,施工条件恶劣:线路位于贵州中部丘原山地向湖南丘陵过渡的斜坡地带,地形复杂,地势起伏较大,坡度较陡、基岩破碎,沿线具备条件的平整施工场地不多,多为山地,对大临选址及施工、主体结构施工、材料运输等影响较大,主塔防护工程量大。
山谷地区高墩大跨混凝土斜拉桥:南孟溪特大桥两座主塔高度分别为244.5m、253.5m,主桥跨度360m,是典型的高墩大跨混凝土斜拉桥,桥址区位于V型山谷,地形条件、气象条件复杂。
安全风险高:主跨(160+360+160)m的南孟溪特大桥为主塔高度253.5m的斜拉桥,为全线控制性工程,两侧山体坡度大,施工场地狭小,材料运输困难,两侧主塔均有防护工程,工期异常紧张,工期风险极大,安全风险极高。
泵送高度达到250m以上,对混凝土性能、泵送设备要求极高。不仅要保证超高泵送的工作性能,也要确保高标号的力学性能。然而,由于施工环境缺乏天然骨料,只能采用人造砂石骨料,这样对于高标号混凝土的力学性能、工作性能难度较高,并且保障超高桥塔主体不能出现较大变形,更要避免收缩徐变的影响,现有材料和技术很难***解决上述系列问题。
发明内容
本发明目的是为了解决地形复杂山区施工中缺乏天然砂石骨料,且现有高标号混凝土经超高泵送后力学性能受影响、养护难度加大、收缩徐变要求高以及泵送难度高的问题,而提供适于超高泵送的低收缩徐变机制砂石骨料C55混凝土。
适于超高泵送的低收缩徐变机制砂石骨料C55混凝土,它的容重为2400-2500kg/m3;它按重量份的组成:225-275份的水泥、50-100份的粉煤灰、100-150份的矿渣粉、40-60份的硅灰、700-800份的细集料、1000-1200份的粗集料、4-6份的减水剂和140-170份的水。
进一步的,所述水泥为P.O42.5水泥,比表面积为300-350㎡/㎏,C2S含量为35-40%,C3S含量为40-50%。
进一步的,所述粉煤灰为F类Ⅱ级,比表面积为300-350㎡/㎏,需水量比为100-105%。
进一步的,所述矿渣粉的等级为S105,比表面积为300-350㎡/㎏,需水量比为95-100%。
进一步的,所述硅灰中SiO2含量为85%-95%。
进一步的,所述细集料粒径为4.75mm以下,细集料为机制砂,机制砂加工母料岩石的抗压强度为100-350MPa,细度模数为2.8-3.2;细集料中各种粒径的质量配比为:0.075mm以下含量为2-5%,0.075mm-0.15mm含量为2-5%,0.15mm-0.3mm含量为6-8%,0.3mm-0.6mm含量为19-21%,0.6mm-1.18mm含量为18-22%,1.18mm-2.36mm含量为28-32%,2.36mm-4.75mm含量为18-22%。
进一步的,所述细集料中CL含量为0-0.01%,SO3含量为0-0.1%,云母含量为0-0.5%,轻物质含量为0-0.5;细集料的堆积密度为1600-1700g/cm3,表观密度为2600-2800g/cm3,含泥量0-0.2%,坚固性为3-5%,孔隙率为35-40%,压碎值为12-20%,吸水率为0.80-0.85%。
进一步的,所述粗集料粒径为5-20mm机制碎石,机制碎石加工母料岩石的抗压强度为100-350MPa;其中粒径5-10mm和粒径10-20mm的质量配比为(2.8-3.2):(6.8-7.2);粗集料的堆积密度为1300-1500g/cm3,表观密度为2600-2800g/cm3,孔隙率40-45,含泥量0-0.2%,针片状含量0-5%。
进一步的,所述减水剂为高性能缓凝型减水剂,减水率为25-30%,泌水率比为40-50%。
进一步的,所述减水剂为缓凝型聚羧酸高性能减水剂。
本发明的优点:
本发明中适于超高泵送的低收缩徐变机制砂石骨料C55混凝土,其矿物掺合料高达50%,不仅实现固废大掺量,而且实现了低水泥高标号,并且显著降低水化热,有效降低收缩徐变。
本发明中提高了机制砂和机制碎石的比重(砂率为40-43%),并且利用机制砂石骨料的机械咬合作用,通过严格的级配设置,有效改善堆积模型,不仅确保高标号强度,而且显著改善混凝土收缩徐变。
本发明中100%采用机制砂和机制碎石,完全替代天然砂石骨料,通过大量采用粉煤灰和硅灰,并结合矿渣粉、减水剂,不仅达到高标号的力学要求,更解决了机制砂石骨料工作性能差的问题,获得十分理想的塌落度(塌落度为170-200mm),实现超高泵送。
本发明中通过系列正交实验和优化设计,获得最佳配比,保障100%采用机制砂、机制碎石代替天然砂石骨料制备、低水泥含量的高标号混凝土,混凝土抗压强度普遍高于65MPa,不仅适于超高泵送,而且有效解决高塔水泥混凝土收缩徐变问题。
本发明中水泥、粉煤灰、矿渣粉采用较低的比表面积,较好地调整了放热速率,并整体降低放热量,并且通过调整C2S和C3S的量,不仅降低水化热,解决高标号混凝土收缩徐变,而且保障高标号混凝土的强度。
本发明中通过紧密堆积模型和正交实验,优化设计机制砂的最佳级配,尤其通过控制5-10mm和10-20mm的级配,确保机制砂的强度和弹性模量,尤其通过严格控制堆积密度、孔隙率和吸水率,不仅提高混凝土强度、更是显著降低高标号混凝土收缩徐变,确保混凝土的工作性能,实现超高泵送顺利施工。
本发明中低收缩徐变机制砂石骨料C55混凝土适用于超高泵送。
附图说明
图1为实施例中P.O42.5水泥的各项实测性能指标图;
图2为实施例中粉煤灰试验检测报告图;
图3为实施例中细集料各项性能指标图;
图4为实施例中细集料细度模数检测结果图;
图5为实施例中粗集料检测结果图;
图6为实施例中粗细集料成分检测结果图;
图7为实施例中减水剂检测结果图;
图8为实施例中江水检测结果图;
图9为实施例中混凝土配合比时间强度检测结果图;
图10为实施例中强度与水灰比关系曲线图;
图11为实施例中南孟溪特大桥实物图;
图12为实施例中工程项目水泥混凝土配合比设计试验检测记录图;
图13为实施例中累计筛余量图;
图14为实施例中实验室配合比强度图;
图15为实施例中强度与水灰比关系曲线图;
图16为实施例中公路项目1水泥混凝土抗压强度检测结果图;
图17为实施例中公路项目2水泥混凝土抗压强度检测结果图;
图18为实施例中水泥混凝土拌合物稠度检测结果图;
图19为实施例中水泥混凝土表观密度检测结果图;
图20为实施例中水泥混凝土拌合物凝结时间检测结果图;
图21为实施例中水泥混凝土抗压弹性模量检测结果图。
具体实施方式
本发明技术方案不局限于以下所列举具体实施方式,还包括各具体实施方式间的任意组合。
具体实施方式一:本实施方式适于超高泵送的低收缩徐变机制砂石骨料C55混凝土,它的容重为2400-2500kg/m3;它按重量份的组成:225-275份的水泥、50-100份的粉煤灰、100-150份的矿渣粉、40-60份的硅灰、700-800份的细集料、1000-1200份的粗集料、4-6份的减水剂和140-170份的水。
本实施方式中所述减水剂为市售商品。
具体实施方式二:本实施方式与具体实施方式一不同的是,所述水泥为P.O42.5水泥,比表面积为300-350㎡/㎏,C2S含量为35-40%,C3S含量为40-50%。其它步骤及参数与具体实施方式一相同。
具体实施方式三:本实施方式与具体实施方式一或二不同的是,所述粉煤灰为F类Ⅱ级,比表面积为300-350㎡/㎏,需水量比为100-105%。其它步骤及参数与具体实施方式一或二相同。
具体实施方式四:本实施方式与具体实施方式一至三之一不同的是,所述矿渣粉的等级为S105,比表面积为300-350㎡/㎏,需水量比为95-100%。其它步骤及参数与具体实施方式一至三之一相同。
具体实施方式五:本实施方式与具体实施方式一至四之一不同的是,所述硅灰中SiO2含量为85%-95%。其它步骤及参数与具体实施方式一至四之一相同。
具体实施方式六:本实施方式与具体实施方式一至五之一不同的是,所述细集料粒径为4.75mm以下,细集料为机制砂,机制砂加工母料岩石的抗压强度为100-350MPa,细度模数为2.8-3.2;细集料中各种粒径的质量配比为:0.075mm以下含量为2-5%,0.075mm-0.15mm含量为2-5%,0.15mm-0.3mm含量为6-8%,0.3mm-0.6mm含量为19-21%,0.6mm-1.18mm含量为18-22%,1.18mm-2.36mm含量为28-32%,2.36mm-4.75mm含量为18-22%。其它步骤及参数与具体实施方式一至五之一相同。
具体实施方式七:本实施方式与具体实施方式一至六之一不同的是,所述细集料中CL含量为0-0.01%,SO3含量为0-0.1%,云母含量为0-0.5%,轻物质含量为0-0.5;细集料的堆积密度为1600-1700g/cm3,表观密度为2600-2800g/cm3,含泥量0-0.2%,坚固性为3-5%,孔隙率为35-40%,压碎值为12-20%,吸水率为0.80-0.85%。其它步骤及参数与具体实施方式一至六之一相同。
具体实施方式八:本实施方式与具体实施方式一至七之一不同的是,所述粗集料粒径为5-20mm机制碎石,机制碎石加工母料岩石的抗压强度为100-350MPa;其中粒径5-10mm和粒径10-20mm的质量比为(2.8-3.2):(6.8-7.2);粗集料的堆积密度为1300-1500g/cm3,表观密度为2600-2800g/cm3,孔隙率40-45,含泥量0-0.2%,针片状含量0-5%。其它步骤及参数与具体实施方式一至七之一相同。
具体实施方式九:本实施方式与具体实施方式一至八之一不同的是,所述减水剂为高性能缓凝型减水剂,减水率为25-30%,泌水率比为40-50%。其它步骤及参数与具体实施方式一至八之一相同。
具体实施方式十:本实施方式与具体实施方式九不同的是,所述减水剂为缓凝型聚羧酸高性能减水剂。其它步骤及参数与具体实施方式九相同。
通过以下实施例验证本发明的有益效果:
实施例1:
适于超高泵送的低收缩徐变机制砂石骨料C55混凝土,它的容重为2455kg/m3;它按重量份的组成:250份的水泥、75份的粉煤灰、125份的矿渣粉、50份的硅灰、740份的细集料、1065份的粗集料、5份的减水剂和145份的水。
本实施例中C55混凝土,水灰比为0.29,砂率为41%。
本实施例中水泥采用贵州锦屏和泰水泥有限公司P.O42.5水泥,各项实测性能指标见图1。
本实施例中粉煤灰采用贵州黔东火电厂F类Ⅱ级灰;试验检测报见图2:
本实施例中矿渣粉的等级为S105,比表面积为300-350㎡/㎏,需水量比为95-100%。
本实施例中硅灰中SiO2含量为85%-95%。
本实施例中细集料采用黎平鑫坤石料有限公司机制砂4.75mm以下;筛分结果为中砂,各项性能指标见图3;细集料的细度模数检测结果见图4。
本实施例中粗集料采用黎平鑫坤石料有限公司机制碎石5-20mm;其中5-10mm和10-20mm,碎石掺配比例为3:7;检测结果见图5。
本实施例中粗细集料成分检测结果见图6。
本实施例中减水剂采用贵州凯襄新材料有限公司高性能减水剂缓凝型,检测结果见图7。
本实施例中水采用江水,检测结果见图8。
本实施例中混凝土成型时采用不变水量法,另外两个配合比的水灰比基准配合比分别增加和减少0.05,砂率(粗细集料的比例)按递增1%、递减1%进行适配,混凝土配合比时间强度检测结果见图9。强度与水灰比关系曲线见图10。
根据混凝土试拌工作性能及28d室内试验结果,C55混凝土最优配合比如表1所示:
表1
在系列工程中采用上述比例进行施工建设,下面以南孟溪特大桥为例进行论述:
贵州剑黎高速公路南孟溪特大桥位于贵州省黔东南自治州剑河县南加镇,起止里程K34+815.0K35+802.5横跨清水江支流南孟溪,距三板溪电站大坝约27公里是剑黎高速公路的控制性工程;
大桥实物如图11所示,桥梁全长987.5m,孔跨布置为2×30m+(160+360+160)m+6×40m。主桥为160+360+160m双塔双索面预应力混凝土斜拉桥,全桥共152根钢绞线斜拉索,主梁采用双边箱断面,桥面全宽29.5m梁高3.0m,标准节段长度9.0m,3#主塔高度244.5m,4#主塔高度253.5m,主塔承台尺寸35m×29m×6.5m,下设30根直径2.8m桩基础。桩基础根据地质条件采用旋挖钻成孔、人工挖孔工艺;主塔采用液压爬模施工,分节浇筑高度6m;主梁采用前支点挂篮施工,最大悬浇节段重量约630t。
有害物质检测,混凝土配合比Cl-含量、碱含量和SO3含量如下:
Cl含量合计0.168kg/m3,胶凝材料重量500kg/m3,占胶凝材料总量0.03%。
碱含量合计2.05kg/m3,小于2.1kg/m3
SO3含量合计10.722kg/m3,胶凝材料重量500kg/m3,占胶凝材料总量2.14%。
工程项目水泥混凝土配合比设计试验检测记录见图12。累计筛余量见图13。实验室配合比强度见图14。强度与水灰比关系曲线见图15。公路项目1水泥混凝土抗压强度检测结果见图16。公路项目2水泥混凝土抗压强度检测结果见图17。水泥混凝土拌合物稠度检测结果见图18。水泥混凝土表观密度检测结果见图19。水泥混凝土拌合物凝结时间检测结果见图20。水泥混凝土抗压弹性模量检测结果见图21。
工程总结:
1、由于本实施例中的科技成果在该工程中的应用,混凝土矿物掺合料高达50%,大幅减少水泥用量,不仅成本大幅降低,而且碳排放也显著降低。
2、采用固废大掺量、机制砂、机制碎石实现了低水泥高标号,并且显著降低水化热,有效降低收缩徐变。
3、提高机制砂和机制碎石的比重,并且利用机制砂石骨料的机械咬合作用,确保高标号混凝土的强度,而且显著改善混凝土收缩徐变。
4、实现了100%机制砂和机制碎石替代天然砂石骨料,采用粉煤灰、硅灰、矿渣粉、减水剂,不仅达到高标号混凝土的力学要求,更解决了机制砂石骨料工作性能差的问题,获得十分理想的塌落度,实现超高泵送。
5、通过系列正交实验和优化设计,获得最佳配比,保障100%采用机制砂石骨料代替天然砂石骨料制备、低水泥含量的高标号混凝土,混凝土抗压强度普遍高于65MPa,不仅适于超高泵送,而且有效解决高塔水泥混凝土收缩徐变问题。
6、水泥、粉煤灰、矿渣粉采用较低的比表面积,较好地调整了放热速率,并整体降低放热量,并且通过C2S和C3S的量,不仅降低水化热,解决高标号混凝土收缩徐变,而且保障高标号混凝土的强度。
7、通过优化设计机制砂的最佳级配,确保机制砂的强度和弹性模量,尤其通过严格控制堆积密度、孔隙率和吸水率,不仅提高混凝土强度、更是显著降低高标号混凝土收缩徐变。
8、通过紧密堆积模型和正交实验,优化设计机制碎石的最佳级配,尤其通过控制5-10mm和10-20mm的级配、堆积密度、孔隙率、针片状含量不仅改善高标号混凝土的收缩徐变,而且确保混凝土的工作性能,实现超高泵送顺利施工。
以上实施例仅用以说明本发明的技术方案而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (3)

1.适于超高泵送的低收缩徐变机制砂石骨料C55混凝土,其特征在于它的容重为2400-2500kg/m³;它按重量份的组成:225-275份的水泥、50-100份的粉煤灰、100-150份的矿渣粉、40-60份的硅灰、700-800份的细集料、1000-1200份的粗集料、4-6份的减水剂和140-170份的水;
其中所述水泥为P.O42.5水泥,比表面积为300-350㎡/㎏,C2S含量为35-40%,C3S含量为40-50%;
所述粉煤灰为F类Ⅱ级,比表面积为300-350㎡/㎏,需水量比为100-105%;
所述矿渣粉的等级为S105,比表面积为300-350㎡/㎏,需水量比为95-100%;
所述细集料粒径为4.75mm以下,细集料为机制砂,机制砂加工母料岩石的抗压强度为100-350MPa,细度模数为2.8-3.2;细集料中各种粒径的质量配比为:0.075mm以下含量为2-5%,0.075mm-0.15mm含量为2-5%,0.15mm-0.3mm含量为6-8%,0.3mm-0.6mm含量为19-21%,0.6mm-1.18mm含量为18-22%,1.18mm-2.36mm含量为28-32%,2.36mm-4.75mm含量为18-22%;
所述细集料中CL含量为0-0.01%,SO3含量为0-0.1%,云母含量为0-0.5%,轻物质含量为0-0.5;细集料的堆积密度为1600-1700g/cm³,表观密度为2600-2800g/cm³,含泥量0-0.2%,坚固性为3-5%,孔隙率为35-40%,压碎值为12-20%,吸水率为0.80-0.85%;
所述粗集料粒径为5-20mm机制碎石,机制碎石加工母料岩石的抗压强度为100-350MPa;其中粒径5-10mm和粒径10-20mm的质量配比为(2.8-3.2):(6.8-7.2);粗集料的堆积密度为1300-1500g/cm³,表观密度为2600-2800g/cm³,孔隙率40-45,含泥量0-0.2%,针片状含量0-5%;
所述减水剂为缓凝型聚羧酸高性能减水剂。
2.根据权利要求1所述的适于超高泵送的低收缩徐变机制砂石骨料C55混凝土,其特征在于所述硅灰中SiO2含量为85%-95%。
3.根据权利要求1所述的适于超高泵送的低收缩徐变机制砂石骨料C55混凝土,其特征在于所述减水剂的减水率为25-30%,泌水率比为40-50%。
CN202211419293.8A 2022-11-14 2022-11-14 适于超高泵送的低收缩徐变机制砂石骨料c55混凝土 Active CN115716731B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211419293.8A CN115716731B (zh) 2022-11-14 2022-11-14 适于超高泵送的低收缩徐变机制砂石骨料c55混凝土

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211419293.8A CN115716731B (zh) 2022-11-14 2022-11-14 适于超高泵送的低收缩徐变机制砂石骨料c55混凝土

Publications (2)

Publication Number Publication Date
CN115716731A CN115716731A (zh) 2023-02-28
CN115716731B true CN115716731B (zh) 2023-11-17

Family

ID=85255085

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211419293.8A Active CN115716731B (zh) 2022-11-14 2022-11-14 适于超高泵送的低收缩徐变机制砂石骨料c55混凝土

Country Status (1)

Country Link
CN (1) CN115716731B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1192200A (ja) * 1997-09-18 1999-04-06 Hazama Gumi Ltd 低収縮コンクリート組成物
CN104628343A (zh) * 2015-02-13 2015-05-20 福州大学 一种低压缩徐变的高性能再生混凝土
CN108147746A (zh) * 2017-12-29 2018-06-12 中建西部建设贵州有限公司 一种易于超高层泵送的机制砂c120超高强混凝土
CN109369097A (zh) * 2018-11-08 2019-02-22 中国核工业华兴建设有限公司 一种低收缩低徐变抗裂高性能大体积混凝土
CN111302733A (zh) * 2020-03-13 2020-06-19 中铁大桥科学研究院有限公司 一种低收缩徐变湿接缝超高强混凝土材料及其制备方法
CN111393105A (zh) * 2020-03-25 2020-07-10 中建西部建设西南有限公司 一种全机制砂高强超高层泵送混凝土及其生产方法和应用
CA3115734A1 (en) * 2019-01-08 2020-07-16 Sika Technology Ag Cementitious compositions with accelerated curing at low temperatures
CN111798931A (zh) * 2020-06-17 2020-10-20 中国铁道科学研究院集团有限公司铁道建筑研究所 一种基于形变控制的机制砂石骨料预应力混凝土配合比设计方法
CN112979248A (zh) * 2021-03-30 2021-06-18 佛山市交通科技有限公司 一种桥梁工程用砂岩碎石c60低徐变混凝土
CN115298148A (zh) * 2020-03-17 2022-11-04 陶氏东丽株式会社 水泥组合物及其固化物

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1192200A (ja) * 1997-09-18 1999-04-06 Hazama Gumi Ltd 低収縮コンクリート組成物
CN104628343A (zh) * 2015-02-13 2015-05-20 福州大学 一种低压缩徐变的高性能再生混凝土
CN108147746A (zh) * 2017-12-29 2018-06-12 中建西部建设贵州有限公司 一种易于超高层泵送的机制砂c120超高强混凝土
CN109369097A (zh) * 2018-11-08 2019-02-22 中国核工业华兴建设有限公司 一种低收缩低徐变抗裂高性能大体积混凝土
CA3115734A1 (en) * 2019-01-08 2020-07-16 Sika Technology Ag Cementitious compositions with accelerated curing at low temperatures
CN111302733A (zh) * 2020-03-13 2020-06-19 中铁大桥科学研究院有限公司 一种低收缩徐变湿接缝超高强混凝土材料及其制备方法
CN115298148A (zh) * 2020-03-17 2022-11-04 陶氏东丽株式会社 水泥组合物及其固化物
CN111393105A (zh) * 2020-03-25 2020-07-10 中建西部建设西南有限公司 一种全机制砂高强超高层泵送混凝土及其生产方法和应用
CN111798931A (zh) * 2020-06-17 2020-10-20 中国铁道科学研究院集团有限公司铁道建筑研究所 一种基于形变控制的机制砂石骨料预应力混凝土配合比设计方法
CN112979248A (zh) * 2021-03-30 2021-06-18 佛山市交通科技有限公司 一种桥梁工程用砂岩碎石c60低徐变混凝土

Also Published As

Publication number Publication date
CN115716731A (zh) 2023-02-28

Similar Documents

Publication Publication Date Title
CN106747128B (zh) 一种大流态高强无收缩灌浆料及其制备方法
CN101323515B (zh) 具有超高泵送性能的超高强混凝土及其制备方法
CN103253921B (zh) 一种抗氯盐侵蚀的水泥混凝土及其制备方法
Kasai et al. Guidelines and the present state of the reuse of demolished concrete in Japan
CN101386518A (zh) 快硬早强磷酸镁混凝土及其制备方法
CN102173685B (zh) 一种适用于快速张拉的现浇梁混凝土组合物
JP2022542640A (ja) 沿岸異形構造の3d印刷コンクリート、加工プロセス及び応用
Baikerikar et al. Utilization of waste glass powder and waste glass sand in the production of Eco-Friendly concrete
CN113698164B (zh) 一种防裂防沉降道路水稳层材料及其制备方法
CN111018437B (zh) 一种超高韧性废弃砖砼再生混合料及其制备方法和应用
CN112694292A (zh) 一种低收缩高强度赤泥-矿渣地聚物及其制备方法
CN115594455B (zh) 一种磷石膏路面基层水稳材料的制备方法
CN108256245B (zh) 一种高性能混凝土制备方法
CN1513798A (zh) 提供一种土壤和建筑垃圾的固化剂
CN109455998A (zh) 一种钢管纤维自应力再生骨料混凝土柱的制作工艺
CN109400080A (zh) 一种无机固化粉煤灰充填材料及其制备方法
Wang et al. Properties and microstructure of total tailings cemented paste backfill material containing mining and metallurgical solid waste
CN115716731B (zh) 适于超高泵送的低收缩徐变机制砂石骨料c55混凝土
CN109467370A (zh) 一种高掺量混合瓷砖骨料c160uhpc及其制备方法
Xie et al. Study on durability of manufactured sand based on stone powder content
CN109320157A (zh) 一种利用废旧汽车轮胎分材质制备的煤矿采空区充填膏体及其制备方法
CN104671712B (zh) 一种掺加粉煤灰与砂性弃土的致密性混凝土及其制备方法
Pattanaik et al. A study of NALCO fly ash on compressive strength for effective use in high volume mass concrete for a sustainable development
CN105503100A (zh) 一种路桥工程加固用高性能灌浆料及其制备方法
Daoud et al. Production and properties of high strength concrete for heightening concrete dam in Sudan

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant