CN115713206A - 一种公交个体出行决策模型 - Google Patents

一种公交个体出行决策模型 Download PDF

Info

Publication number
CN115713206A
CN115713206A CN202211424041.4A CN202211424041A CN115713206A CN 115713206 A CN115713206 A CN 115713206A CN 202211424041 A CN202211424041 A CN 202211424041A CN 115713206 A CN115713206 A CN 115713206A
Authority
CN
China
Prior art keywords
station
bus
individual
trip
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211424041.4A
Other languages
English (en)
Inventor
龚小林
陈娴
孙嵩松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Forestry University
Original Assignee
Nanjing Forestry University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Forestry University filed Critical Nanjing Forestry University
Priority to CN202211424041.4A priority Critical patent/CN115713206A/zh
Publication of CN115713206A publication Critical patent/CN115713206A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Traffic Control Systems (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明公开了一种公交个体出行决策模型,基于对公交个体出行数据的分析获得公交个体的的出行规律,作为模型初始的基础数据输入;通过时间匹配方法、出行链理论和公交站点特征识别和推算公交出行个体的上下车站点信息,并结合多模式公交的内涵和功能层级完成个体出行链的识别和划分,为个体的出发或到达站点簇定义虚拟起终点,完成对个体出行数据的分析处理;然后基于通过上述方法获得的个体历史出行信息,以个体为单位并基于马尔可夫决策过程理论建立关于出发时刻选择、上车站点选择和公交线路选择的个体出行决策模型;可以使得个体自身在总成本尽量小的情况下到达出行终点。

Description

一种公交个体出行决策模型
技术领域
本发明涉及公共交通技术领域,具体为一种公交个体出行决策模型。
背景技术
为缓解道路交通中急剧增加的社会车辆对城市造成的不良影响,尽可能满足城市居民交通出行的需求并确保其出行的公平性,多模式公交***快速成为了大城市综合交通运输体系的关键组成部分,在承担城市大运量交通运输服务、缓解城市交通压力方面发挥了无可替代的作用;
其中,公交出行OD推算方法研究是公交客流预测的基础性工作,通过计算公交乘客的OD量可以进一步确定各个公交站点的发生和吸引量,对于判断当前城市公交网络设置是否合理,进而对网络进行优化调整具有重要作用。早期城市公交客流OD的推算主要是基于人工调查的方法,通过使用调查问卷;随着IC卡技术在公交领域的普及应用,学者们开始研究IC卡中潜藏的乘客出行信息,用于推算公交乘客的上下车站点,但是主要基于公交站点吸引权,结合站点周边土地利用性质等要素推算站点下车人数,但该方法未考虑乘客个体的出行特征差异,无法获得乘客具体的下车站点,因此亟需一种公交个体出行决策模型解决上述问题。
发明内容
本发明提供一种通过推算个体的公交上下车站点划分出行链从而建立公交个体出行决策模型,实现以个体出行数据驱动的多模式公交近期客流预测,来解决上述现有技术中存在的问题。
为实现上述目的,本发明提供如下技术方案:一种公交个体出行决策模型,包括:
基于对公交个体出行数据的分析获得公交个体的的出行规律,作为模型初始的基础数据输入;
以多模式公交的内涵和功能层级的定义为基础,对初始的基础数据进行优化:根据换乘时间阈值将出行个体的出行链划分为多模式公交出行和单模式公交出行,再根据个体出发或到达站点在道路网中的空间位置属性进行密度聚类,建立相应的虚拟OD对,并识别个体出行链的信息;
根据个体出行链的信息构造不同出行的状态空间和动作空间集合,并根据公交网络的不完全信息环境不断更新动作集合;结合历史个体出行时间成本、出行习惯定义和标定状态动作对的直接回报、未来回报以及状态转移概率,以个体为单位建立包含出发时刻选择、上车站点选择和出行路径选择的个体出行决策模型。
优选的,公交个体出行数据包括IC卡刷卡数据、公交车载GPS数据和公交线路站点位置信息,其中,结合公交线路站点位置信息,以时间作为主要连接字段并辅以公交车辆的GPS数据获得车辆到站时刻表,并通过内插法补齐稀疏GPS数据,将其与站点经纬度匹配获得车辆到站时刻,使用时间匹配方法获得乘客的IC卡刷卡时刻,完成IC卡持卡乘客的上车站点识别过程。
优选的,GPS数据内插法处理:在所选取得GPS数据中,任意两相邻GPS记录的经纬度分别为(xb,w,j,yb,w,j)、(xb,w,j+1,yb,w,j+1),记录时刻分别为RTb,w,j、RTb,w,j+1,间隔时间为Λ,以1s为插值间隔在两GPS记录之间***Λ个数据,计算被***的第λ个GPS数据的经纬度:
Figure BDA0003941176310000021
Figure BDA0003941176310000031
其中,对应的记录时刻为RTb,w,j+λ。
优选的,根据出行链理论将公交个体出行划分为闭合公交出行链和非闭合公交出行链,并结合上车站点识别结果和公交站点特征,推算不同类型公交出行链的下车站点。
优选的,下车站点推算具体包括:
步骤1、根据上车站点BSp,k,判断当前刷卡记录是否为当日最后一次,若k<K,则执行步骤2,否则执行步骤4;
步骤2、判断当前乘坐车次的上车站点BSp,k和下一乘坐车次的上车站点BSp,k+1是否隶属于同一线路,若是,则将下一乘坐车次的上车站点作为当前乘坐车次的下车站点,即ASp,k=BSp,k,否则执行步骤3;
步骤3、确定以BSp,k+1为圆心、最大步行距离D为半径的圆形区域内,当前乘坐车次途经的、从上游到下游的站点集合CASp,k={casm0≤m≥M};若该集合为空集,则该出行链属于非公交出行链;若集合中站点数M=1,则该集合的唯一站点为当前乘坐车次的下车站点ASp,k;若M>1,则分别计算以最上游站点cas1为起点、途经CASp,k中任一站点casm、以BSp,k+1为终点的出行时间tm,选择出行时间最短的站点cas*=argmin(tm)为当前乘坐车次的下车站点ASp,k,计算公式如下:
Figure BDA0003941176310000032
其中,vw为步行速度;dm为站点casm与BSp,k+1之间的距离;Lm-1,m为站点casm-1与casm之间的公交线路长度;vb为公交运营速度;
步骤4、判断末次乘坐车次的上车站点BSp,k和首次乘坐车次的上车站点BSp,1是否隶属于同一线路,若是则将首次乘坐车次的上车站点作为末次乘坐车次的下车站点,即ASp,k=BSp,1,否则执行步骤5;
步骤5、确定以首次乘坐车次的上车站点BSp,1为圆心、最大步行距离D为半径的圆形区域内,末次乘坐车次途经的、从上游到下游的站点集合,若该集合为空集,则该乘客出行链属于非闭合公交出行链,否则按照步骤3确定末次乘坐车次的下车站点。
优选的,个体出行为还包括非公交出行链,下车站点推算为:
步骤1、确定当前乘坐车次的上车站点BSp,k下游站点集合DASp,k={dasn|1≤n≤N};
步骤2、计算乘客在任意一站点dasn处下车的概率PAp,n,计算公式为:
PAp,n=fn,1·fn,2/∑(fη,1·fη,2);
其中、fn,1、fn,2分别表示站点周边开发强度、公交可达性特征参数;fn,1=BFn/∑BFη,fn,2=Rn/∑Rη,BFn为站点dasn在一定时段内的平均上客量,间接反映站点周边开发强度;Rn为途经站点dasn的公交线路条数。
步骤3、根据乘客在任意一站点dasn处下车的概率PAp,n,采用轮盘赌法推算当前乘坐车次的下车站点ASp,k
优选的,根据换乘时间阈值将个体出行链划分,具体为:
步骤1:根据乘客上车站点识别结果判断其前后两次的上车站点BSp,k和BSp,k+1是否隶属于同一线路,若属于同一线路,则该乘客当天的出行属于单模式公交出行,若不属于同一线路,判断两条公交线路是否属于同一功能层级,若属于同一功能层级,则该乘客当天的出行仍属于单模式公交出行,若不属于同一功能层级,则属于多模式公交出行;
步骤2:根据下车站点ASp,k,确定站点ASp,k对应的公交车辆运营班次wb,获得该班次车辆的到站时刻表,将ASp,k的站点名称与到站时刻表中的站点相匹配,得到车辆在站点ASp,k的到站时刻ATb,w,j;将公交车辆当前班次行程时间的0.25作为乘客的下车时间Δtp,则该乘客的下车时刻ATb,w,j,l,计算公式如下:
ATb,w,j,l=ATb,w,j+Δtp
步骤3:计算某一下车时刻ATb,w,j,l与下一上车站点BSp,k+1对应的上车时刻TTp,k+1的时间间隔μp,l,μp,l=TTp,k+1-ATb,w,p,l
步骤4:当乘客换乘属于同站换乘,即乘客前后两次的上车站点属于同一线路时,根据多模式公交不同功能层级的线路发车间隔,确定乘客在站点的最大等待时间WTp,k,将该最大等待时间作为同站换乘的最大换乘时间阈值ηp,k,即ηp,k=WTp,k;当乘客换乘属于异站换乘,即乘客前后两次的上车站点不属于同一线路时,依据乘客可接受的最大步行距离D与乘客步行速度vw计算最大换乘时间阈值;
步骤5:将出行时间间隔μp,l与最大换乘时间阈值ηp,k进行比较,若μp,k≤ηp,k,则公交个体当天完成的是单次多模式或单模式公交出行,且μp,l即为换乘时间;反之,则公交个体当天完成的是多次多模式或单模式公交出行,μp,l为活动时间。
优选的,虚拟OD对的建立具体为:
步骤1、识别公交个体的全部完整出行链并进行编号,提取每条出行链的起始上车站点,形成集合Dp,BS,集合中的每个对象包含了每条出行链的编号和对应上车站点的经纬度坐标;
步骤2、根据不同功能层级公交站点辐射的范围设定邻域参数ε,MinPts则根据具体的研究对象进行相应调整设定;根据邻域参数(ε,MinPts)对集合Dp,BS进行核心对象搜索,获得核心对象集合Ωp,BS
步骤3、从集合Ωp,BS中随机选取一个核心对象作为种子执行聚类簇生成算法,搜索出所有由其密度可达的站点,由此构成第一个簇
Figure BDA0003941176310000061
然后将
Figure BDA0003941176310000062
中包含的核心对象从Ωp,BS中筛除,再从更新后的集合中分别随机选取一个种子生成下一个簇,重复至集合为空;
步骤4、根据各个簇
Figure BDA0003941176310000063
中每个对象对应的出行链编号筛选出这些编号对应出行链的终止下车站点,对应形成各个集合
Figure BDA0003941176310000064
集合中的每个对象同样包含每条出行链的编号和对应下车站点的经纬度坐标;
步骤5、根据邻域参数(ε,MinPts)对集合
Figure BDA0003941176310000065
进行核心对象搜索,去除异常点,获得核心对象集合
Figure BDA0003941176310000066
步骤6、计算集合
Figure BDA0003941176310000067
Figure BDA0003941176310000068
的中心点;每组相对应的集合的中心点共同组成了乘客p的多组虚拟OD点对;计算公式为:
Figure BDA0003941176310000069
Figure BDA00039411763100000610
其中,
Figure BDA00039411763100000611
代表每个集合中心点的X坐标;
Figure BDA00039411763100000612
代表每组集合中心点的Y坐标;xb,w,n代表每个集合所包含对象的X坐标;yb,w,n代表每个集合所包含对象的Y坐标;n代表每个集合中的某个对象;N代表每个集合中所包含的所有对象。
优选的,所述状态空间S:
S={Destination/Origin,Departure-time,Boarding-stion,En-route,Alighting-station};
其中,Destination/Origin是个体历史某对虚拟OD点的经纬度坐标;Departure-time是个体选择的具体出发时间信息;Boarding-stion是个体选择的上车站点的经纬度、站点包含的共线线路信息;En-route是个体已选上车站点对应线路的车辆、运营车次等信息;Alighting-station是个体选择的下车站点的线路、车辆、运营车次、经纬度等信息。
动作空间A:
A={Select-departure-time,Select-boarding-station,Select-bus-route,Select-alighting-station,To-the-destination}每个动作空间都是一个待选数据集合,其中,Select-departure-time待选集合包含个体历史出行的所有出发时间信息;Select-boarding-station待选集合包含个体历史出行的所有上车站点信息;Select-bus-route待选集合包含个体历史出行的所有上车站点对应的共线公交线路信息;Select-alighting-station待选集合包含个体“公交线路选择”对应的所有历史下车站点信息;To-the-destination待选集合包含所有建立的虚拟OD点的经纬度坐标。
优选的,在个体出行决策模型得每个状态的动作选择是根据未来回报确定状态转移概率,从而选择状态转移概率最大的为当前所选择的动作并转移至下一状态,当转移至下一状态时,该次动作选择的直接回报变为已知并对历史经验值集合进行更新。
与现有技术相比,本发明的有益效果:本发明中通过时间匹配方法、出行链理论和公交站点特征识别和推算公交出行个体的上下车站点信息,并结合多模式公交的内涵和功能层级完成个体出行链的识别和划分,为个体的出发或到达站点簇定义虚拟起终点,完成对个体出行数据的分析处理;然后基于通过上述方法获得的个体历史出行信息,以个体为单位并基于马尔可夫决策过程理论建立关于出发时刻选择、上车站点选择和公交线路选择的个体出行决策模型;可以使得个体自身在总成本尽量小的情况下到达出行终点。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。
在附图中:
图1是本发明公交个体出行决策模型流程图;
图2是本发明乘客上车站点识别流程图;
图3是本发明乘客下车站点推算流程图;
图4是本发明一具体实施例中108路各站点上车人数分布图;
图5是本发明多模式公交网络中的出行个体状态转移图。
具体实施方式
以下结合附图对本发明的优选实施例进行说明,应当理解,此处所描述的优选实施例仅用于说明和解释本发明,并不用于限定本发明。
实施例:如图1所示,一种公交个体出行决策模型,包括:
公交个体出行上下车站点的识别与推算,多模式公交个体出行链的识别与虚拟OD对的建立以及多模式公交个体出行决策模型的建立,其中:
基于对公交个体出行数据的分析获得公交个体的的出行规律,作为模型初始的基础数据输入;
以多模式公交的内涵和功能层级的定义为基础,对初始的基础数据进行优化:根据换乘时间阈值将出行个体的出行链划分为多模式公交出行和单模式公交出行,再根据个体出发或到达站点在道路网中的空间位置属性进行密度聚类,建立相应的虚拟OD对,并识别个体出行链的信息;
根据个体出行链的信息构造不同出行的状态空间和动作空间集合,并根据公交网络的不完全信息环境不断更新动作集合;结合历史个体出行时间成本、出行习惯定义和标定状态动作对的直接回报、未来回报以及状态转移概率,以个体为单位建立包含出发时刻选择、上车站点选择和出行路径选择的个体出行决策模型。
公交个体出行数据是公交客流预测的基础性数据,通过对出行数据的分析和挖掘可以获得包含个体上下车站点、上下车时刻等多种要素信息,从而掌握公交出行个体的出行规律,为构建客流预测仿真模型提供初始的基础数据输入;其中,公交个体出行数据包括IC卡刷卡数据、公交车载GPS数据和公交线路站点位置信息;
参考图2所示,上车站点识别具体为:
步骤1:选取研究数据。
选取待研究公交线路r,获取任一途经站点si的经纬度(xi,yi)、选取该线路上某辆运营车辆b某次运营车次wb的GPS数据和乘坐该车辆任一乘客p的IC卡数据。
步骤2:清除冗余数据:计算每条刷卡记录与前后两次刷卡记录的间隔时间ITp,k,若0<ITp,k<LS,S+1/vb(LS,S+1为当前上车站点与下游相邻站点之间的距离,使用半正矢公式进行计算;vb为公交运营速度),则说明刷卡时间间隔较短,可认为乘客p有随行者且与随行者共用一张IC卡,这两次刷卡视作一次出行,并取其中记录时间在前的为本次刷卡时刻;
步骤3:GPS数据插值处理:若公交车辆GPS数据属于低频返回的稀疏样本,且与车辆到离站无关联,那么将通过内插法补齐GPS数据在所选取得GPS数据中,任意两相邻GPS记录的经纬度分别为(xb,w,j,yb,w,j)、(xb,w,j+1,yb,w,j+1),记录时刻分别为RTb,w,j、RTb,w,j+1,间隔时间为Λ,以1s为插值间隔在两GPS记录之间***Λ个数据,计算被***的第λ个GPS数据的经纬度:
Figure BDA0003941176310000101
Figure BDA0003941176310000102
其中,对应的记录时刻为RTb,w,j+λ;
步骤4:确定车辆到站位置、到站时刻和离站时刻:对于线路r上的任意站点si,采用半正矢公式计算由步骤2补齐的车次wb中所有GPS数据与该站点的距离,选取与该站点距离最近的GPS数据的经纬度
Figure BDA0003941176310000103
作为车辆到站位置,相应的记录时刻
Figure BDA0003941176310000104
作为到站时刻ATb,w,j;识别GPS数据中时刻ATb,w,j后速度由0转变为非0状态的时刻,该时刻即为对应的车辆离站时刻DTb,w,j
步骤5:识别乘客上车站点:将与车次wb关联的IC卡记录按照刷卡时刻进行排序,已知乘客p第k次刷卡时刻为TTp,k(1≤k≤K,K为该乘客当日刷卡次数),将任意一条刷卡记录的刷卡时刻与该车次在任一站点的到站时刻进行比较,当ATb,w,i≤TTp,k<ATb,w,i+1时,则ATb,w,i对应的站点si为乘客该次刷卡的上车站点BSp,k
参考图4所示,根据出行链理论将公交个体出行划分为,闭合公交出行链和非闭合公交出行链,以及非公交出行链,其中,非闭合公交出行链中、除末次以外的乘坐车次的下车站点推算与闭合公交出行链的下车站点推算方法相同;当日末次出行的下车站点需借助历史出行数据、判断下游站点特征进行推算,与非公交出行链处理方法相同
其中,非闭合公交出行链下车站点推算具体包括:
步骤1、根据上车站点BSp,k,判断当前刷卡记录是否为当日最后一次,若k<K,则执行步骤2,否则执行步骤4;
步骤2、判断当前乘坐车次的上车站点BSp,k和下一乘坐车次的上车站点BSp,k+1是否隶属于同一线路,若是,则将下一乘坐车次的上车站点作为当前乘坐车次的下车站点,即ASp,k=BSp,k,否则执行步骤3;
步骤3、确定以BSp,k+1为圆心、最大步行距离D为半径的圆形区域内,当前乘坐车次途经的、从上游到下游的站点集合CASp,k={casm|0≤m≥M};若该集合为空集,则该出行链属于非公交出行链;若集合中站点数M=1,则该集合的唯一站点为当前乘坐车次的下车站点ASp,k;若M>1,则分别计算以最上游站点cas1为起点、途经CASp,k中任一站点casm、以BSp,k+1为终点的出行时间tm,选择出行时间最短的站点cas*=argmin(tm)为当前乘坐车次的下车站点ASp,k,计算公式如下:
Figure BDA0003941176310000111
其中,vw为步行速度;dm为站点casm与BSp,k+1之间的距离;Lm-1,m为站点casm-1与casm之间的公交线路长度;vb为公交运营速度;
步骤4、判断末次乘坐车次的上车站点BSp,k和首次乘坐车次的上车站点BSp,1是否隶属于同一线路,若是则将首次乘坐车次的上车站点作为末次乘坐车次的下车站点,即ASp,k=BSp,1,否则执行步骤5;
步骤5、确定以首次乘坐车次的上车站点BSp,1为圆心、最大步行距离D为半径的圆形区域内,末次乘坐车次途经的、从上游到下游的站点集合,若该集合为空集,则该乘客出行链属于非闭合公交出行链,否则按照步骤3确定末次乘坐车次的下车站点。
非公交出行链下车站点推算为:
步骤1、确定当前乘坐车次的上车站点BSp,k下游站点集合DASp,k={dasn|1≤n≤N};
步骤2、计算乘客在任意一站点dasn处下车的概率PAp,n,计算公式为:
PAp,n=fn,1·fn,2/∑(fη,1·fη,2);
其中、fn,1、fn,2分别表示站点周边开发强度、公交可达性特征参数;fn,1=BFn/∑BFη,fn,2=Rn/∑Rη,BFn为站点dasn在一定时段内的平均上客量,间接反映站点周边开发强度;Rn为途经站点dasn的公交线路条数。
步骤3、根据乘客在任意一站点dasn处下车的概率PAp,n,采用轮盘赌法推算当前乘坐车次的下车站点ASp,k
在一具体实施例中,以如东县公交108路为研究对象,基础数据源采用从当地公交***中获取的公交IC卡数据和车辆GPS数据;108路东西线分别途经30个和28个公交站点,沿线主要为居住用地和工业用地。考虑到如东县居民公交需求量与大城市相比较小、乘客一天的出行次数可能无法满足本文分析需要,因此选取2018年6月4日-6月10日完整一周的数据进行研究;使用MySQL程序搭建数据库完成关键字段筛选、缺失和冗余数据清理等预处理工作,分别获得一周内共1405条待分析IC卡刷卡记录;同时使用Python语言编程完成后续上下车站点推算过程的计算;
上车站点识别:如东县公交***中的GPS数据时间间隔为1-3min不等,属稀疏GPS数据,根据上文方法确定研究时段内各车次到站时刻;下表是车辆编号为110286某一车次在部分站点的到站时刻;根据2018年6月4日—6月10日108路各车次的到站时刻识别当日所有乘客的上车站点,统计获得各站点的上车人数分布,如图4所示;将原始GPS数据和补齐后的GPS数据分别与IC卡数据匹配可发现108路有11.3%的上车站点匹配结果不同,说明原始GPS数据匹配结果存在误差,而补齐后的GPS数据可修正误差并有效提高时间匹配精度;
Figure BDA0003941176310000121
Figure BDA0003941176310000131
下车站点推算:根据上述方法,采用Python语言编写代码进行计算;108路有1405条待分析IC卡刷卡记录,最后成功推算出1183个下车站点,识别成功率为84.2%。
其中,城市公交出行个体的换乘行为可依据换乘交通方式和换乘空间距离两种方式进行划分,根据换乘时间阈值将个体出行链划分,具体为:
步骤1:根据乘客上车站点识别结果判断其前后两次的上车站点BSp,k和BSp,k+1是否隶属于同一线路,若属于同一线路,则该乘客当天的出行属于单模式公交出行,若不属于同一线路,判断两条公交线路是否属于同一功能层级,若属于同一功能层级,则该乘客当天的出行仍属于单模式公交出行,若不属于同一功能层级,则属于多模式公交出行;
步骤2:根据下车站点ASp,k,确定站点ASp,k对应的公交车辆运营班次wb,获得该班次车辆的到站时刻表,将ASp,k的站点名称与到站时刻表中的站点相匹配,得到车辆在站点ASp,k的到站时刻ATb,w,j;将公交车辆当前班次行程时间的0.25作为乘客的下车时间Δtp,则该乘客的下车时刻ATb,w,j,l,计算公式如下:
ATb,w,j,l=ATb,w,j+Δtp
步骤3:计算某一下车时刻ATb,w,j,l与下一上车站点BSp,k+1对应的上车时刻TTp,k+1的时间间隔μp,l,μp,l=TTp,k+1-ATb,w,p,l
步骤4:当乘客换乘属于同站换乘,即乘客前后两次的上车站点属于同一线路时,根据多模式公交不同功能层级的线路发车间隔,确定乘客在站点的最大等待时间WTp,k,将该最大等待时间作为同站换乘的最大换乘时间阈值ηp,k,即ηp,k=WTp,k;当乘客换乘属于异站换乘,即乘客前后两次的上车站点不属于同一线路时,依据乘客可接受的最大步行距离D与乘客步行速度vw计算最大换乘时间阈值;
步骤5:将出行时间间隔μp,l与最大换乘时间阈值ηp,k进行比较,若μp,k≤ηp,k,则公交个体当天完成的是单次多模式或单模式公交出行,且μp,l即为换乘时间;反之,则公交个体当天完成的是多次多模式或单模式公交出行,μp,l为活动时间。
在完成个体出行链的识别与划分后,需按照历史出行习惯为每个个体定义其在多模式公交网络中出行的虚拟O点和D点,考虑根据个体出发站点(到达站点)在道路网中的空间位置属性,计算不同出发站点(到达站点)之间的曼哈顿距离并进行出发站点(到达站点)聚类,为每个出发站点簇(到达站点簇)定义一个虚拟O点(D点);DBSCAN(Density-BasedSpatial Clustering of Applications with Noise)是最为经典的密度聚类算法,可以根据样本数据分布的紧密程度来确定研究对象的聚类结构,通过设定一组“邻域”参数来获得一组样本中的一个或多个核心对象,而且在聚类的同时可以发现部分异常点,并对数据集中的异常点不敏感,最终确定的核心对象(可确定出行个体)的虚拟OD对;
虚拟OD对的建立具体为:
步骤1、识别公交个体的全部完整出行链并进行编号,提取每条出行链的起始上车站点,形成集合Dp,BS,集合中的每个对象包含了每条出行链的编号和对应上车站点的经纬度坐标;
步骤2、根据不同功能层级公交站点辐射的范围设定邻域参数ε,MinPts则根据具体的研究对象进行相应调整设定;根据邻域参数(ε,MinPts)对集合Dp,BS进行核心对象搜索,获得核心对象集合Ωp,BS
步骤3、从集合Ωp,BS中随机选取一个核心对象作为种子执行聚类簇生成算法,搜索出所有由其密度可达的站点,由此构成第一个簇
Figure BDA0003941176310000151
然后将
Figure BDA0003941176310000152
中包含的核心对象从Ωp,BS中筛除,再从更新后的集合中分别随机选取一个种子生成下一个簇,重复至集合为空;
步骤4、根据各个簇
Figure BDA0003941176310000153
中每个对象对应的出行链编号筛选出这些编号对应出行链的终止下车站点,对应形成各个集合
Figure BDA0003941176310000154
集合中的每个对象同样包含每条出行链的编号和对应下车站点的经纬度坐标;
步骤5、根据邻域参数(ε,MinPts)对集合
Figure BDA0003941176310000155
进行核心对象搜索,去除异常点,获得核心对象集合
Figure BDA0003941176310000156
步骤6、计算集合
Figure BDA0003941176310000157
Figure BDA0003941176310000158
的中心点;每组相对应的集合的中心点共同组成了乘客p的多组虚拟OD点对;计算公式为:
Figure BDA0003941176310000159
Figure BDA00039411763100001510
其中,
Figure BDA00039411763100001511
代表每个集合中心点的X坐标;
Figure BDA00039411763100001512
代表每组集合中心点的Y坐标;xb,w,n代表每个集合所包含对象的X坐标;yb,w,n代表每个集合所包含对象的Y坐标;n代表每个集合中的某个对象;N代表每个集合中所包含的所有对象。
在完成个体出行链的识别和划分以及虚拟OD对的建立后,个体形成了完整的出行链。考虑到出行习惯的延续性,个体在同一出行链上会有多次出行记录,这些出行记录数据形成了多模式公交近期客流预测模型的基础数据来源。为使个体出行决策模型具有准确的数据输入,需要对个体出行链的关键信息进行识别,这些信息包含了个体出行起终点、前往上车站点时间、上车站点、站点等候时间、车辆停靠时间、上车时刻、下车站点、下车时刻、换乘时间、前往终点时间。
如图5所示,在多模式公交网络中,出行个体作为决策者在“出行终点(即下一次出行的起点)”状态首先进行出发时刻选择决策,确定出发时刻后将转移至“出发时刻已选”状态。随后将根据自身出行原则选择上车站点并转移至“上车站点已选”状态。个体在上车站点将对出行起终点间的公交线路进行选择,选择完成后将到达“车内在途”状态;在“公交线路选择”状态个体已确定是乘坐该车辆直接到达终点还是在某些站点下车换乘至其他线路到达终点,若无需换乘,则个体从“车内在途”状态转移至“下车站点已选”状态,并前往终点,回到“出行终点”状态;若需要换乘,则将在“下车站点已选”状态进行上车站点选择,开始新一轮的动作选择决策和状态转移;出行个体在公交网络中的出行过程状态转移;
其中,状态空间S:
S={Destination/Origin,Departure-time,Boarding-stion,En-route,Alighting-station};
其中,Destination/Origin是个体历史某对虚拟OD点的经纬度坐标;Departure-time是个体选择的具体出发时间信息;Boarding-stion是个体选择的上车站点的经纬度、站点包含的共线线路信息;En-route是个体已选上车站点对应线路的车辆、运营车次等信息;Alighting-station是个体选择的下车站点的线路、车辆、运营车次、经纬度等信息。
动作空间A:
A={Select-departure-time,Select-boarding-station,Select-bus-route,Select-alighting-station,To-the-destination}每个动作空间都是一个待选数据集合,其中,Select-departure-time待选集合包含个体历史出行的所有出发时间信息;Select-boarding-station待选集合包含个体历史出行的所有上车站点信息;Select-bus-route待选集合包含个体历史出行的所有上车站点对应的共线公交线路信息;Select-alighting-station待选集合包含个体“公交线路选择”对应的所有历史下车站点信息;To-the-destination待选集合包含所有建立的虚拟OD点的经纬度坐标。
体出行决策模型中包含了直接回报R、未来回报F和状态转移概率P,每个状态的动作选择是根据未来回报F确定状态转移概率P,从而选择P最大的为当前所选择的动作并转移至下一状态,当转移至下一状态时,该次动作选择的直接回报R变为已知并对历史经验值集合进行更新;首先对状态和动作空间中对应的各个R、F和P进行定义,如下表所示:
Figure BDA0003941176310000171
其中,用出行时间成本表示直接回报值,但是个体在出行过程中的时间成本实际为惩罚值,这与回报值的定义相悖,因此用时间成本的负数表示每个动作对应的直接回报;
(1)RSDT:出发时刻选择的直接回报由个体的期望到达时刻和历史出行总时间这两个因素所决定;个体在进行出发时刻选择时会首先确定期望到达时刻,根据实际到达时刻与期望到达时刻的差值Δt确定本次出行是属于早到(负值)、准时(0)还是延误(正值),而个体的实际到达时刻是由出发时刻与实际总出行时间之和决定的;Δt的计算公式为:Δt=tdepart+ttrip-tdesire,其中,tdepart表示出发时刻,ttrip表示实际出行时间,tdesire表示期望到达时刻。
由于个体在实际出行过程中以准时作为自己的出行目标,因此为符合生活实际,在定义直接回报时令早到和延误均为正数,使得准时的回报最小;RSDT可表示为:
Figure BDA0003941176310000181
其中,Δtearly表示早到的时间差值,Δtlate表示延误的时间差值。
(2)RSBS:出行个体在出行终点处会确定本次出行的上车站点,则RSBS可定义为个体从出行终点至上车站点的出行时间tD/O,BS的负数:RSBS=-tD/O,BS
个体到达上车站点的方式有步行、自行车、汽车等,一般为步行;当个体在某下车站点需要换乘到另一站点候车时,RSBS定义为个体从下车站点换乘至另一上车站点出行时间tBS,BS'的负数:RSBS=-tBS,BS'
(3)RSBR:个体在上车站点进行公交路径选择,每条公交路径对应的直接回报体现在该条路径所需耗费的总时间,包括出行个体在当前站点的候车时间twait、公交车辆在该站点的停靠时间tstop和上车站点与最终到达站点之间的行程时间ttravel,当个体需要进行中途换乘时,RSBR还包含了个体的换乘出行时间tBS,BS'。twait具体是指个体到达站点时刻和车辆到达当前站点时刻之间的差值;tstop具体是指车辆到达某站点的时刻和离开此站点时刻之间的差值;ttravel具体是指个体处于车内在途状态总的时间;当个体直达出行终点站时,RSBR表示为:RSBR=-(twait+tstop+ttravel);
当个体需中途换乘到达终点站时,RSBR表示为:RSBR=-(twait+tstop+ttravel+tBS,BS');
(4)RTD:出行个体的下车站点和出行终点在前述动作选择中已确定,因此前往终点的直接回报即个体下车站点与出行终点之间的出行时间tTD,D/O的负数:RTD=-tTD,D/O
2.未来回报F
未来回报F是状态转移概率计算的依据;个体在动态公交信息环境中进行动作选择时的直接回报值是未知的,只有当个体在实际完成该动作后才能准确获知其直接回报值;因此,根据个体出行***均数进行计算。
(1)FSDT:出发时刻选择的未来回报根据个体历史出行中选择某出发时刻的实际到达时刻与期望到达时刻的差值平均值
Figure BDA0003941176310000191
确定;FSDT表示为:
Figure BDA0003941176310000192
其中,
Figure BDA0003941176310000193
表示历史出行中早到的时间差值平均数,
Figure BDA0003941176310000194
表示历史出行中延误的时间差值平均数。
(2)FSBS:FSBS即为个体从出行终点至上车站点的历史出行时间平均数
Figure BDA0003941176310000195
的负数;若个体是从下车站点换乘至另一上车站点,则FSBS为个体从下车站点换乘至另一上车站点的历史出行时间平均数
Figure BDA0003941176310000196
的负数;FSBS分别表示为:
Figure BDA0003941176310000197
Figure BDA0003941176310000201
(3)FSBR:个体在上车站点已选状态需进行公交线路选择;考虑到个体始终处于动态出行环境,会根据站点的车辆到达情况适时调整并重新选择能使自身出行时间成本最小的出行路径,因此,个体在站点候车时首先基于历史出行数据中每条路径的站点候车时间平均值
Figure BDA0003941176310000202
的负数、公交车辆在该站点的停靠时间平均值
Figure BDA0003941176310000203
的负数和上车站点与最终到达站点之间的行程时间平均值
Figure BDA0003941176310000204
的负数之和确定此次出行的优选路径;当个体需要进行中途换乘时,还需考虑个体的换乘出行时间平均值
Figure BDA0003941176310000205
的负数,则FSBR可表示为:
Figure BDA0003941176310000206
Figure BDA0003941176310000207
同时,根据出行时间成本最小的原则,个体还需考虑到候车过程中首次到达的车辆或许并非是预登乘线路车辆,此时需重新计算未来回报FSBR',FSBR'不同之处在于个体不考虑当前站点的
Figure BDA0003941176310000208
FSBR'表示为:
Figure BDA0003941176310000209
Figure BDA00039411763100002010
那么,个体在上车站点等候一段时间后,当第一辆到达的公交车为个体的预登乘线路车辆时,个体上车并完成公交线路动作选择;若该公交车非个体的预登乘线路车辆,则个体需根据当前到站车辆所在路径与其余路径的FSBR',比较状态转移概率大小,再选择是否上车完成当前动作选择。
需要说明的是,由于个体已在公交线路选择时考虑了整体出行过程,并在此处确定了各个动作的转移概率,因此下车站点选择和前往终点无需定义未来回报计算状态转移概率,可将“公交线路选择”至“前往终点”过程中涉及的动作决策看作一个整体考虑。
3.状态转移概率P
个体在进行每一次动作选择时,均需计算状态转移概率的大小用以确定最终执行的动作选择。本文状态转移概率P的计算采用逻辑回归表达式,P最大的即为当前动作决策的最优选择,个体优先考虑该动作;各个状态转移概率P分别表示为:
Figure BDA0003941176310000211
Figure BDA0003941176310000212
Figure BDA0003941176310000213
出行个体在多模式公交网络中共有5种状态,那么,状态转移概率矩阵M(5)定义为:
Figure BDA0003941176310000214
最后应说明的是:以上所述仅为本发明的优选实例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种公交个体出行决策模型,其特征在于,包括:
基于对公交个体出行数据的分析获得公交个体的的出行规律,作为模型初始的基础数据输入;
以多模式公交的内涵和功能层级的定义为基础,对初始的基础数据进行优化:根据换乘时间阈值将出行个体的出行链划分为多模式公交出行和单模式公交出行,再根据个体出发或到达站点在道路网中的空间位置属性进行密度聚类,建立相应的虚拟OD对,并识别个体出行链的信息;
根据个体出行链的信息构造不同出行的状态空间和动作空间集合,并根据公交网络的不完全信息环境不断更新动作集合;结合历史个体出行时间成本、出行习惯定义和标定状态动作对的直接回报、未来回报以及状态转移概率,以个体为单位建立包含出发时刻选择、上车站点选择和出行路径选择的个体出行决策模型。
2.根据权利要求1所述的一种公交个体出行决策模型,其特征在于:公交个体出行数据包括IC卡刷卡数据、公交车载GPS数据和公交线路站点位置信息,其中,结合公交线路站点位置信息,以时间作为主要连接字段并辅以公交车辆的GPS数据获得车辆到站时刻表,并通过内插法补齐稀疏GPS数据,将其与站点经纬度匹配获得车辆到站时刻,使用时间匹配方法获得乘客的IC卡刷卡时刻,完成IC卡持卡乘客的上车站点识别过程。
3.根据权利要求2所述的一种公交个体出行决策模型,其特征在于:GPS数据内插法处理:在所选取得GPS数据中,任意两相邻GPS记录的经纬度分别为(xb,w,j,yb,w,j)、(xb,w,j+1,yb,w,j+1),记录时刻分别为RTb,w,j、RTb,w,j+1,间隔时间为Λ,以1s为插值间隔在两GPS记录之间***Λ个数据,计算被***的第λ个GPS数据的经纬度:
Figure FDA0003941176300000021
Figure FDA0003941176300000022
其中,对应的记录时刻为RTb,w,j+λ。
4.根据权利要求3所述的一种公交个体出行决策模型,其特征在于:根据出行链理论将公交个体出行划分为闭合公交出行链和非闭合公交出行链,并结合上车站点识别结果和公交站点特征,推算不同类型公交出行链的下车站点。
5.根据权利要求4所述的一种公交个体出行决策模型,其特征在于:下车站点推算为:
步骤1、根据上车站点BSp,k,判断当前刷卡记录是否为当日最后一次,若k<K,则执行步骤2,否则执行步骤4;
步骤2、判断当前乘坐车次的上车站点BSp,k和下一乘坐车次的上车站点BSp,k+1是否隶属于同一线路,若是,则将下一乘坐车次的上车站点作为当前乘坐车次的下车站点,即ASp,k=BSp,k,否则执行步骤3;
步骤3、确定以BSp,k+1为圆心、最大步行距离D为半径的圆形区域内,当前乘坐车次途经的、从上游到下游的站点集合CASp,k={casm0≤m≥M};若该集合为空集,则该出行链属于非公交出行链;若集合中站点数M=1,则该集合的唯一站点为当前乘坐车次的下车站点ASp,k;若M>1,则分别计算以最上游站点cas1为起点、途经CASp,k中任一站点casm、以BSp,k+1为终点的出行时间tm,选择出行时间最短的站点cas*=argmin(tm)为当前乘坐车次的下车站点ASp,k,计算公式如下:
Figure FDA0003941176300000023
其中,vw为步行速度;dm为站点casm与BSp,k+1之间的距离;Lm-1,m为站点casm-1与casm之间的公交线路长度;vb为公交运营速度;
步骤4、判断末次乘坐车次的上车站点BSp,k和首次乘坐车次的上车站点BSp,1是否隶属于同一线路,若是则将首次乘坐车次的上车站点作为末次乘坐车次的下车站点,即ASp,k=BSp,1,否则执行步骤5;
步骤5、确定以首次乘坐车次的上车站点BSp,1为圆心、最大步行距离D为半径的圆形区域内,末次乘坐车次途经的、从上游到下游的站点集合,若该集合为空集,则该乘客出行链属于非闭合公交出行链,否则按照步骤3确定末次乘坐车次的下车站点。
6.根据权利要求4所述的一种公交个体出行决策模型,其特征在于:个体出行为还包括非公交出行链,下车站点推算为:
步骤1、确定当前乘坐车次的上车站点BSp,k下游站点集合DASp,k={dasn1≤n≤N};
步骤2、计算乘客在任意一站点dasn处下车的概率PAp,n,计算公式为:
PAp,n=fn,1·fn,2/∑(fη,1·fη,2);
其中、fn,1、fn,2分别表示站点周边开发强度、公交可达性特征参数;fn,1=BFn/∑BFη,fn,2=Rn/∑Rη,BFn为站点dasn在一定时段内的平均上客量,间接反映站点周边开发强度;Rn为途经站点dasn的公交线路条数。
步骤3、根据乘客在任意一站点dasn处下车的概率PAp,n,采用轮盘赌法推算当前乘坐车次的下车站点ASp,k
7.根据权利要求5或6所述的一种公交个体出行决策模型,其特征在于:根据换乘时间阈值将个体出行链划分,具体为:
步骤1:根据乘客上车站点识别结果判断其前后两次的上车站点BSp,k和BSp,k+1是否隶属于同一线路,若属于同一线路,则该乘客当天的出行属于单模式公交出行,若不属于同一线路,判断两条公交线路是否属于同一功能层级,若属于同一功能层级,则该乘客当天的出行仍属于单模式公交出行,若不属于同一功能层级,则属于多模式公交出行;
步骤2:根据下车站点ASp,k,确定站点ASp,k对应的公交车辆运营班次wb,获得该班次车辆的到站时刻表,将ASp,k的站点名称与到站时刻表中的站点相匹配,得到车辆在站点ASp,k的到站时刻ATb,w,j;将公交车辆当前班次行程时间的0.25作为乘客的下车时间Δtp,则该乘客的下车时刻ATb,w,j,l,计算公式如下:
ATb,w,j,l=ATb,w,j+Δtp
步骤3:计算某一下车时刻ATb,w,j,l与下一上车站点BSp,k+1对应的上车时刻TTp,k+1的时间间隔μp,l,μp,l=TTp,k+1-ATb,w,p,l
步骤4:当乘客换乘属于同站换乘,即乘客前后两次的上车站点属于同一线路时,根据多模式公交不同功能层级的线路发车间隔,确定乘客在站点的最大等待时间WTp,k,将该最大等待时间作为同站换乘的最大换乘时间阈值ηp,k,即ηp,k=WTp,k;当乘客换乘属于异站换乘,即乘客前后两次的上车站点不属于同一线路时,依据乘客可接受的最大步行距离D与乘客步行速度vw计算最大换乘时间阈值;
步骤5:将出行时间间隔μp,l与最大换乘时间阈值ηp,k进行比较,若μp,k≤ηp,k,则公交个体当天完成的是单次多模式或单模式公交出行,且μp,l即为换乘时间;反之,则公交个体当天完成的是多次多模式或单模式公交出行,μp,l为活动时间。
8.根据权利要求7所述的一种公交个体出行决策模型,其特征在于:虚拟OD对的建立具体为:
步骤1、识别公交个体的全部完整出行链并进行编号,提取每条出行链的起始上车站点,形成集合Dp,BS,集合中的每个对象包含了每条出行链的编号和对应上车站点的经纬度坐标;
步骤2、根据不同功能层级公交站点辐射的范围设定邻域参数ε,MinPts则根据具体的研究对象进行相应调整设定;根据邻域参数(ε,MinPts)对集合Dp,BS进行核心对象搜索,获得核心对象集合Ωp,BS
步骤3、从集合Ωp,BS中随机选取一个核心对象作为种子执行聚类簇生成算法,搜索出所有由其密度可达的站点,由此构成第一个簇
Figure FDA0003941176300000051
然后将
Figure FDA0003941176300000052
中包含的核心对象从Ωp,BS中筛除,再从更新后的集合中分别随机选取一个种子生成下一个簇,重复至集合为空;
步骤4、根据各个簇
Figure FDA0003941176300000053
中每个对象对应的出行链编号筛选出这些编号对应出行链的终止下车站点,对应形成各个集合
Figure FDA0003941176300000054
集合中的每个对象同样包含每条出行链的编号和对应下车站点的经纬度坐标;
步骤5、根据邻域参数(ε,MinPts)对集合
Figure FDA0003941176300000055
进行核心对象搜索,去除异常点,获得核心对象集合
Figure FDA0003941176300000056
步骤6、计算集合
Figure FDA0003941176300000057
Figure FDA0003941176300000058
的中心点;每组相对应的集合的中心点共同组成了乘客p的多组虚拟OD点对;计算公式为:
Figure FDA0003941176300000059
Figure FDA00039411763000000510
其中,
Figure FDA00039411763000000511
代表每个集合中心点的X坐标;
Figure FDA00039411763000000512
代表每组集合中心点的Y坐标;xb,w,n代表每个集合所包含对象的X坐标;yb,w,n代表每个集合所包含对象的Y坐标;n代表每个集合中的某个对象;N代表每个集合中所包含的所有对象。
9.根据权利要求1所述的一种公交个体出行决策模型,其特征在于:所述状态空间S:
S={Destination/Origin,Departure-time,Boarding-stion,En-route,Alighting-station};
其中,Destination/Origin是个体历史某对虚拟OD点的经纬度坐标;Departure-time是个体选择的具体出发时间信息;Boarding-stion是个体选择的上车站点的经纬度、站点包含的共线线路信息;En-route是个体已选上车站点对应线路的车辆、运营车次等信息;Alighting-station是个体选择的下车站点的线路、车辆、运营车次、经纬度等信息。
动作空间A:
A={Select-departure-time,Select-boarding-station,Select-bus-route,Select-alighting-station,To-the-destination}每个动作空间都是一个待选数据集合,其中,Select-departure-time待选集合包含个体历史出行的所有出发时间信息;Select-boarding-station待选集合包含个体历史出行的所有上车站点信息;Select-bus-route待选集合包含个体历史出行的所有上车站点对应的共线公交线路信息;Select-alighting-station待选集合包含个体“公交线路选择”对应的所有历史下车站点信息;To-the-destination待选集合包含所有建立的虚拟OD点的经纬度坐标。
10.根据权利要求9所述的一种公交个体出行决策模型,其特征在于:在个体出行决策模型得每个状态的动作选择是根据未来回报确定状态转移概率,从而选择状态转移概率最大的为当前所选择的动作并转移至下一状态,当转移至下一状态时,该次动作选择的直接回报变为已知并对历史经验值集合进行更新。
CN202211424041.4A 2022-11-14 2022-11-14 一种公交个体出行决策模型 Pending CN115713206A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211424041.4A CN115713206A (zh) 2022-11-14 2022-11-14 一种公交个体出行决策模型

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211424041.4A CN115713206A (zh) 2022-11-14 2022-11-14 一种公交个体出行决策模型

Publications (1)

Publication Number Publication Date
CN115713206A true CN115713206A (zh) 2023-02-24

Family

ID=85233193

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211424041.4A Pending CN115713206A (zh) 2022-11-14 2022-11-14 一种公交个体出行决策模型

Country Status (1)

Country Link
CN (1) CN115713206A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116709215A (zh) * 2023-06-09 2023-09-05 武汉江汉城市科技发展有限公司 公共交通的消息提醒的方法、设备及存储介质

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116709215A (zh) * 2023-06-09 2023-09-05 武汉江汉城市科技发展有限公司 公共交通的消息提醒的方法、设备及存储介质

Similar Documents

Publication Publication Date Title
CN110428117B (zh) 城市轨道交通多场景下客流精准诱导方法及***
CN112700072B (zh) 交通状况预测方法、电子设备和存储介质
CN102867408B (zh) 一种公交出行路线的选择方法
CN110390349A (zh) 基于XGBoost模型的公交车客流量预测建模方法
CN110836675B (zh) 一种基于决策树的自动驾驶搜索决策方法
CN105702035B (zh) 一种利用历史公交数据评估乘车难易程度的方法
Xie et al. A hybrid method combining Markov prediction and fuzzy classification for driving condition recognition
CN111753910A (zh) 基于lstm的滴滴订单需求预测方法及装置
CN109489679B (zh) 一种导航路径中的到达时间计算方法
CN107978148A (zh) 一种基于多源交通数据动态可靠性的交通状态预测方法
CN116663811A (zh) 一种城际客运的往返动态拼车的调度匹配方法和装置
CN115713206A (zh) 一种公交个体出行决策模型
Reich et al. Survey of ETA prediction methods in public transport networks
CN111899511A (zh) 一种共线线路avl数据的公交车到站时间预测方法
CN114066503A (zh) 一种基于构建虚拟服务片区进行出租车需求预测的方法
Deng et al. Heterogenous Trip Distance‐Based Route Choice Behavior Analysis Using Real‐World Large‐Scale Taxi Trajectory Data
CN113379159B (zh) 基于灰色模型和马尔可夫决策过程的出租车司机寻客路线推荐方法
Chen et al. Online eco-routing for electric vehicles using combinatorial multi-armed bandit with estimated covariance
Liu et al. Optimization approach to improve the ridesharing success rate in the bus ridesharing service
CN113408833A (zh) 一种公共交通重点区域识别方法、装置及电子设备
CN111723871B (zh) 一种公交车实时车厢满载率的估算方法
CN117804490A (zh) 一种车辆运行路线的综合规划方法及装置
CN116662815B (zh) 时间预测模型的训练方法以及相关设备
Yu et al. Optimization of urban bus operation frequency under common route condition with rail transit
Hariz et al. Mobility traffic model based on combination of multiple transportation forms in the smart city

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination