CN115706870A - 视频处理方法、装置、电子设备和存储介质 - Google Patents

视频处理方法、装置、电子设备和存储介质 Download PDF

Info

Publication number
CN115706870A
CN115706870A CN202110926921.0A CN202110926921A CN115706870A CN 115706870 A CN115706870 A CN 115706870A CN 202110926921 A CN202110926921 A CN 202110926921A CN 115706870 A CN115706870 A CN 115706870A
Authority
CN
China
Prior art keywords
video
camera
zoom
exposure frame
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110926921.0A
Other languages
English (en)
Other versions
CN115706870B (zh
Inventor
崔瀚涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honor Device Co Ltd
Original Assignee
Honor Device Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honor Device Co Ltd filed Critical Honor Device Co Ltd
Priority to CN202110926921.0A priority Critical patent/CN115706870B/zh
Priority to US18/548,465 priority patent/US20240137650A1/en
Priority to PCT/CN2022/094782 priority patent/WO2023016044A1/zh
Priority to EP22855030.7A priority patent/EP4287604A1/en
Publication of CN115706870A publication Critical patent/CN115706870A/zh
Application granted granted Critical
Publication of CN115706870B publication Critical patent/CN115706870B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/69Control of means for changing angle of the field of view, e.g. optical zoom objectives or electronic zooming
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformations in the plane of the image
    • G06T3/40Scaling of whole images or parts thereof, e.g. expanding or contracting
    • G06T3/4053Scaling of whole images or parts thereof, e.g. expanding or contracting based on super-resolution, i.e. the output image resolution being higher than the sensor resolution
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/50Image enhancement or restoration using two or more images, e.g. averaging or subtraction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/63Control of cameras or camera modules by using electronic viewfinders
    • H04N23/631Graphical user interfaces [GUI] specially adapted for controlling image capture or setting capture parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/63Control of cameras or camera modules by using electronic viewfinders
    • H04N23/631Graphical user interfaces [GUI] specially adapted for controlling image capture or setting capture parameters
    • H04N23/632Graphical user interfaces [GUI] specially adapted for controlling image capture or setting capture parameters for displaying or modifying preview images prior to image capturing, e.g. variety of image resolutions or capturing parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/73Circuitry for compensating brightness variation in the scene by influencing the exposure time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/76Circuitry for compensating brightness variation in the scene by influencing the image signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10141Special mode during image acquisition
    • G06T2207/10144Varying exposure
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20212Image combination
    • G06T2207/20221Image fusion; Image merging
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • H04N23/84Camera processing pipelines; Components thereof for processing colour signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/79Processing of colour television signals in connection with recording

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Studio Devices (AREA)

Abstract

本申请实施例提供一种视频处理方法、装置、电子设备和存储介质,涉及视频拍摄技术领域,可以改善由于缩放倍数较高而导致的分辨率低的问题。视频处理方法包括:在第一变焦模式或第二变焦模式下,获取通过摄像头拍摄的视频;在第一变焦模式下,对第一曝光帧视频图像进行超分算法处理,超分算法处理用于提高分辨率;在第一变焦模式下,对经过超分算法处理的第一曝光帧视频图像和未经超分算法处理的第二曝光帧视频图像进行融合,得到融合后的视频,第一曝光帧视频图像具有第一权重;在第二变焦模式下,对第一曝光帧视频图像和第二曝光帧视频图像进行融合,第一曝光帧视频图像具有第二权重,得到融合后的视频,第一权重大于第二权重。

Description

视频处理方法、装置、电子设备和存储介质
技术领域
本申请涉及视频拍摄技术领域,特别涉及一种视频处理方法、装置、电子设备和存储介质。
背景技术
随着技术的发展,用户对通过手机等终端所拍摄的视频效果的要求越来越高,然而,目前的手机中拍摄视频,由于拍摄的限制,在较高缩放倍数下的视频分辨率较低。
发明内容
一种视频处理方法、装置、电子设备和存储介质,可以改善由于缩放倍数较高而导致的分辨率低的问题。
第一方面,提供一种视频处理方法,包括:在第一变焦模式或第二变焦模式下,获取通过摄像头拍摄的视频,视频包括交替的第一曝光帧视频图像和第二曝光帧视频图像,第一曝光帧视频图像的曝光时间大于第二曝光帧视频图像的曝光时间;在第一变焦模式下,对第一曝光帧视频图像进行超分算法处理,超分算法处理用于提高分辨率;在第一变焦模式下,对经过超分算法处理的第一曝光帧视频图像和未经超分算法处理的第二曝光帧视频图像进行融合,得到融合后的视频,第一曝光帧视频图像具有第一权重;在第二变焦模式下,对第一曝光帧视频图像和第二曝光帧视频图像进行融合,第一曝光帧视频图像具有第二权重,得到融合后的视频,第一权重大于第二权重。
在一种可能的实施方式中,视频处理方法还包括:若当前使用的摄像头为第一摄像头,且拍摄缩放倍数属于第一缩放范围,且当前拍摄画面的亮度大于第一亮度阈值,则进入第一变焦模式;若当前使用的摄像头为第一摄像头,且拍摄缩放倍数属于第二缩放范围,第二缩放范围小于第一缩放范围,则进入第二变焦模式;若当前使用的摄像头为第一摄像头,且拍摄缩放倍数属于第一缩放范围,且当前拍摄画面的亮度不大于第一亮度阈值,则进入第二变焦模式。当使用第一摄像头在第一缩放范围内拍摄时,如果当前拍摄画面的亮度大于第一亮度阈值,认为属于非暗光场景,进入第一变焦模式进行视频录制,如果当前拍摄画面的亮度不大于第一亮度阈值时,认为属于暗光场景,进入第二变焦模式进行视频录制,当使用第一摄像头在较低的第二缩放范围内拍摄时,即便属于非暗光场景,仍进入第二变焦模式。也就是说,对于同样的第一摄像头来说,在非暗光的高倍率缩放时进入第一变焦模式,这样,可以通过第一变焦模式下所应用的超分算法改善由于缩放倍率较高而导致的分辨率低的问题。而对于暗光场景或低倍率缩放时,进入第二变焦模式,无需使用超分算法,也无需减低第一曝光帧视频图像的融合权重。
在一种可能的实施方式中,视频处理方法还包括:若当前使用的摄像头为第二摄像头,且拍摄缩放倍数属于第三缩放范围,且摄像头ISO属于第一ISO范围,第三缩放范围小于第二缩放范围,第二摄像头的焦距小于第一摄像头的焦距,则进入第一变焦模式;若当前使用的摄像头为第二摄像头,且拍摄缩放倍数属于第三缩放范围,且摄像头ISO属于第二ISO范围,且当前拍摄画面的亮度大于第二亮度阈值,第二ISO范围大于第一ISO范围,则进入第二变焦模式;若当前使用的摄像头为第二摄像头,且摄像头的缩放倍数属于第四缩放范围,第四缩放范围小于第三缩放范围,且当前拍摄画面的亮度大于第三亮度阈值,则进入第二变焦模式。
在一种可能的实施方式中,视频处理方法还包括:若当前使用的摄像头为第二摄像头,且拍摄缩放倍数属于第二缩放范围,且拍摄画面的亮度不大于第四亮度阈值,则进入第二变焦模式;若当前使用的摄像头为第二摄像头,且拍摄缩放倍数属于第二缩放范围,且拍摄距离小于距离阈值,则进入第二变焦模式;若当前使用的摄像头为第二摄像头,且拍摄缩放倍数属于第一缩放范围,且拍摄画面的亮度不大于第一亮度阈值,则进入第二变焦模式;若当前使用的摄像头为第二摄像头,且拍摄缩放倍数属于第一缩放范围,且拍摄距离小于距离阈值,则进入第一变焦模式。第二摄像头在第一缩放范围和第二缩放范围中的近距离拍摄场景下,如果缩放倍数较高,即属于第一缩放范围,则可以通过第一变焦模式下所应用的超分算法改善由于缩放倍数较高而导致的分辨率低的问题。
在一种可能的实施方式中,视频处理方法还包括:在第一变焦模式下,通过摄像头当前的感光度ISO所对应的对数LOG曲线对融合后的视频行处理,得到LOG视频;基于颜色查找表LUT对LOG视频进行处理,得到经过LUT处理后的视频。在视频录制过程中,利用电影行业的LUT技术,基于所确定的视频风格模板对应的LUT或者第一变焦模式所对应的LUT对LOG视频进行处理,使所录制的视频具有所确定的视频风格模板对应的风格效果,以满足较高的调色要求。
在一种可能的实施方式中,视频处理方法还包括:对第一曝光帧视频图像进行超分算法处理包括:获取第一曝光帧视频图像对应的统计信息;将统计信息以及第一曝光帧视频图像的RAW图像作为输入进行超分算法处理,得到处理后的第一曝光帧视频图像的RAW图像。
在一种可能的实施方式中,在第一视频处理流程中执行通过摄像头当前的感光度ISO所对应的对数LOG曲线对融合后的视频行处理,得到LOG视频的过程、以及基于颜色查找表LUT对LOG视频进行处理,得到经过LUT处理后的视频的过程;视频处理方法还包括第二视频处理流程,第二视频处理流程包括:通过摄像头当前的感光度ISO所对应的对数LOG曲线对融合后的视频行处理,得到LOG视频;基于查找表LUT对LOG视频进行处理,得到经过LUT处理后的视频;视频处理方法还包括:将第一视频处理流程中经过LUT处理后的视频进行保存;将第二视频处理流程中经过LUT处理后的视频进行预览。可以使预览视频和最终得到的视频具有相同的视觉效果,便于用户直接基于调色后的风格进行视频预览。
第二方面,提供一种视频处理装置,包括:处理器和存储器,存储器用于存储至少一条指令,指令由处理器加载并执行时以实现上述的视频处理方法。
第三方面,提供一种电子设备,包括:摄像头;上述的视频处理装置。
第四方面,提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机程序,当其在计算机上运行时,使得计算机执行上述的视频处理方法。
本申请实施例中视频处理方法、装置、电子设备和存储介质,通过摄像头拍摄的视频包括交替的第一曝光帧视频图像和第二曝光帧视频图像,其中第一曝光帧视频图像的曝光时间大于第二曝光帧视频图像的曝光时间,在第一变焦模式下,对经过超分算法处理的第一曝光帧视频图像和未经超分算法处理的第二曝光帧视频图像进行融合,在第二变焦模式下,对第一曝光帧视频图像和第二曝光帧视频图像进行融合,相对于第二变焦模式,在第一变焦模式下,第一曝光帧视频图像具有较大的融合权重,一方面,在第一变焦模式下,仅对其中较长曝光时间的图像进行超分算法处理,节省了图像处理时间,另一方面,相较于第二变焦模式,在第一变焦模式下提高较长曝光时间的图像的融合权重,以使融合后的图像更加明显地体现通过超分算法处理的效果,改善由于缩放倍数较高而导致的分辨率低的问题。
附图说明
图1为本申请实施例中一种电子设备的结构框图;
图2为本申请实施例中一种视频处理方法的流程图;
图3为本申请实施例中另一种视频处理方法的流程图;
图4为本申请实施例中一种LOG曲线的示意图;
图5为本申请实施例中一种电影模式下用户界面的示意图;
图6为本申请实施例中另一种视频处理方法的部分流程图;
图7为本申请实施例中一种立方体插值空间中立方体和四面体关系的示意图;
图8为UV平面示意图;
图9为本申请实施例中一种电子设备的另一种结构框图;
图10为本申请实施例中一种电子设备的软件结构框图;
图11为本申请实施例中一种专业模式下用户界面的示意图。
具体实施方式
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。
在介绍本申请实施例之前,首先对本申请实施例所涉及的电子设备进行介绍,如图1所示,电子设备100可以包括处理器110,摄像头193,显示屏194等。可以理解的是,本发明实施例示意的结构并不构成对电子设备100的具体限定。在本申请另一些实施例中,电子设备100可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
处理器110可以包括一个或多个处理单元,例如:处理器110可以包括图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,视频编解码器,数字信号处理器(digital signal processor,DSP)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。控制器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。处理器110中还可以设置存储器,用于存储指令和数据。
电子设备100通过GPU,显示屏194,以及应用处理器等实现显示功能。GPU为图像处理的微处理器,连接显示屏194和应用处理器。GPU用于执行数学和几何计算,用于图形渲染。处理器110可包括一个或多个GPU,其执行程序指令以生成或改变显示信息。
电子设备100可以通过ISP,摄像头193,视频编解码器,GPU,显示屏194以及应用处理器等实现拍摄功能。
ISP用于处理摄像头193反馈的数据。例如,拍照时,打开快门,光线通过镜头被传递到摄像头感光元件上,光信号转换为电信号,摄像头感光元件将所述电信号传递给ISP处理,转化为肉眼可见的图像。ISP还可以对图像的噪点,亮度,肤色进行算法优化。ISP还可以对拍摄场景的曝光,色温等参数优化。在一些实施例中,ISP可以设置在摄像头193中。
摄像头193用于捕获静态图像或视频。物体通过镜头生成光学图像投射到感光元件。感光元件可以是电荷耦合器件(charge coupled device,CCD)或互补金属氧化物半导体(complementary metal-oxide-semiconductor,CMOS)光电晶体管。感光元件把光信号转换成电信号,之后将电信号传递给ISP转换成数字图像信号。ISP将数字图像信号输出到DSP加工处理。DSP将数字图像信号转换成标准的RGB,YUV等格式的图像信号。在一些实施例中,电子设备100可以包括1个或N个摄像头193,N为大于1的正整数。
数字信号处理器用于处理数字信号,除了可以处理数字图像信号,还可以处理其他数字信号。例如,当电子设备100在频点选择时,数字信号处理器用于对频点能量进行傅里叶变换等。
视频编解码器用于对数字视频压缩或解压缩。电子设备100可以支持一种或多种视频编解码器。这样,电子设备100可以播放或录制多种编码格式的视频,例如:动态图像专家组(moving picture experts group,MPEG)1,MPEG2,MPEG3,MPEG4等。
如图2所示,本申请实施例提供一种视频处理方法,该视频处理方法的执行主体可以为处理器110,具体可以为ISP或者ISP与其他处理器的组合,该视频处理方法包括:
在第一变焦模式或第二变焦模式下,进入步骤101、获取通过摄像头拍摄的视频,视频包括交替的第一曝光帧视频图像和第二曝光帧视频图像,第一曝光帧视频图像的曝光时间大于第二曝光帧视频图像的曝光时间;
其中,第一变焦模式和第二变焦模式可以基于用户的选择进行切换,也可以在用户选择基础上基于对通过摄像头拍摄的视频的当前画面自动判断并切换,在摄像头捕获视频的过程中,会交替使用不同的曝光时间进行拍摄,以便于后续基于不同曝光时间的视频图像进行融合。
在第一变焦模式下,进入步骤102、对第一曝光帧视频图像进行超分算法处理,超分算法处理用于提高分辨率;
其中,第一变焦模式是一种适用于较大缩放倍数的模式,在摄像头的缩放倍数较高时,较高的缩放倍数可能会导致拍摄画面的分辨率较低,因此在该模式中通过超分算法对视频图像进行处理。超分算法是一项底层图像处理算法,可以将低分辨率的图像映射至高分辨率,以期达到增强图像细节的作用。超分算法例如可以是基于深度学习的方法算法,先利用大量的高分辨率图像积累并进行学习,再对低分辨率的图像进行学习高分辨率图像的学习模型引入来进行恢复,最后得到图像的高频细节,获得更好的图像恢复效果。提高图像的识别能力和识别精度。在电子设备中,摄像头通过较高的频率捕获第一曝光帧视频图像和第二曝光帧视频图像,因此,对于第一曝光帧视频图像和第二曝光帧视频图像均应用超分算法的话可能无法满足较高的帧率要求,由于其他第一曝光帧视频图像的曝光时间较长,进光量较大,因此,在本申请实施例中,选择其中的第一曝光帧视频图像进行超分算法处理,第二曝光帧视频图像不做超分算法处理,这样,可以在有效的时间内实现超分算法的应用;
在第一变焦模式下,进入步骤103、对经过超分算法处理的第一曝光帧视频图像和未经超分算法处理的第二曝光帧视频图像进行融合,得到融合后的视频,第一曝光帧视频图像具有第一权重;
其中,在视频图像的融合过程中,每相邻的第一曝光帧视频图像和第二曝光帧视频图像融合为新的一帧视频图像,融合后的视频图像中包含第一曝光帧视频图像和第二曝光帧视频图像中的信息,两帧图像的融合权重可以进行调节,第一曝光帧视频图像具有第一权重,也就是说,第一曝光帧视频图像在两帧中所占据的融合权重,第一权重越大,则融合后的视频图像所包含的第一曝光帧视频图像的信息越多,相应的,第二曝光帧视频图像所占据的权重越小,即融合后的视频图像所包含的第二帧视频图像的信息越少。
在第二变焦模式下,进入步骤104、对第一曝光帧视频图像和第二曝光帧视频图像进行融合,第一曝光帧视频图像具有第二权重,得到融合后的视频,第一权重大于第二权重。
具体地,假设第一权重为70%、第二权重为50%,即在第二变焦模式下,对第一曝光帧视频图像和第二曝光帧视频图像进行融合的过程中,按照各50%的权重进行融合,融合后的视频图像包含50%的第一曝光帧视频图像中的信息和50%的第二曝光帧视频图像中的信息;在第一变焦模式下,对第一曝光帧视频图像和第二曝光帧视频图像进行融合的过程中,按照第一曝光帧视频图像70%的权重、第二曝光帧视频图像30%的权重进行融合,融合后的视频图像包含70%的第一曝光帧视频图像中的信息和30%的第二曝光帧视频图像中的信息。也即是说,相对于第二变焦模式,在第一变焦模式下,第一曝光帧视频图像具有较大的融合权重,这样,在未对第二曝光帧视频图像进行超分算法处理的前提下,可以使融合后的视频图像更加明显地体现通过超分算法处理的效果。对于融合后的视频,可以继续执行相关的视频处理过程,以完成视频录制。
本申请实施例中视频处理方法,通过摄像头拍摄的视频包括交替的第一曝光帧视频图像和第二曝光帧视频图像,其中第一曝光帧视频图像的曝光时间大于第二曝光帧视频图像的曝光时间,在第一变焦模式下,对经过超分算法处理的第一曝光帧视频图像和未经超分算法处理的第二曝光帧视频图像进行融合,在第二变焦模式下,对第一曝光帧视频图像和第二曝光帧视频图像进行融合,相对于第二变焦模式,在第一变焦模式下,第一曝光帧视频图像具有较大的融合权重,一方面,在第一变焦模式下,仅对其中较长曝光时间的图像进行超分算法处理,节省了图像处理时间,另一方面,相较于第二变焦模式,在第一变焦模式下提高较长曝光时间的图像的融合权重,以使融合后的图像更加明显地体现通过超分算法处理的效果,改善由于缩放倍数较高而导致的分辨率低的问题。
在一种可能的实施方式中,视频处理方法还包括:若当前使用的摄像头为第一摄像头,且拍摄缩放倍数属于第一缩放范围,且当前拍摄画面的亮度大于第一亮度阈值,则进入第一变焦模式;若当前使用的摄像头为第一摄像头,且拍摄缩放倍数属于第二缩放范围,第二缩放范围小于第一缩放范围,则进入第二变焦模式;若当前使用的摄像头为第一摄像头,且拍摄缩放倍数属于第一缩放范围,且当前拍摄画面的亮度不大于第一亮度阈值,则进入第二变焦模式。
具体地,拍摄缩放倍数与等效焦距相关,本申请实施例中,假设第一缩放范围为(7x,15x],x表示倍数,即第一缩放范围为7倍至15倍,包含10倍的极值点和15倍的极值点,第一缩放范围所对应的等效焦距范围为大于190mm;第二缩放范围为[3.5x,7x),即第二缩放范围为3.5倍至7倍,包含3.5倍的极值点,不包含7倍的极值点,第二缩放范围所对应的等效焦距范围为[95mm,190mm)。以下均以该具体数值为例进行说明。电子设备,例如手机中可以有多个摄像头,其中第一摄像头例如可以其中的长焦摄像头。如表1所示,表1示意了本申请实施例中一种不同参数下所对应的变焦模式。
表1
Figure BDA0003209593590000061
根据表1可以看出,当使用第一摄像头在第一缩放范围内拍摄时,如果当前拍摄画面的亮度大于第一亮度阈值,认为属于非暗光场景,进入第一变焦模式进行视频录制,如果当前拍摄画面的亮度不大于第一亮度阈值时,认为属于暗光场景,进入第二变焦模式进行视频录制,当使用第一摄像头在较低的第二缩放范围内拍摄时,即便属于非暗光场景,仍进入第二变焦模式。也就是说,对于同样的第一摄像头来说,在非暗光的高倍率缩放时进入第一变焦模式,这样,可以通过第一变焦模式下所应用的超分算法改善由于缩放倍率较高而导致的分辨率低的问题。而对于暗光场景或低倍率缩放时,进入第二变焦模式,无需使用超分算法,也无需减低第一曝光帧视频图像的融合权重。
在一种可能的实施方式中,视频处理方法还包括:若当前使用的摄像头为第二摄像头,且拍摄缩放倍数属于第三缩放范围,且摄像头ISO属于第一ISO范围,第三缩放范围小于第二缩放范围,第二摄像头的焦距小于第一摄像头的焦距,则进入第一变焦模式;若当前使用的摄像头为第二摄像头,且拍摄缩放倍数属于第三缩放范围,且摄像头ISO属于第二ISO范围,且当前拍摄画面的亮度大于第二亮度阈值,第二ISO范围大于第一ISO范围,则进入第二变焦模式;若当前使用的摄像头为第二摄像头,且摄像头的缩放倍数属于第四缩放范围,第四缩放范围小于第三缩放范围,且当前拍摄画面的亮度大于第三亮度阈值,则进入第二变焦模式。
具体地,假设第三缩放范围为(1.8x,3.5x),即第三缩放范围为1.8倍至3.5倍,不包含极值点,第三缩放范围所对应的等效焦距范围为(48mm,95mm),第四缩放范围为[1x,1.8x],即第四缩放范围为1倍至1.8倍,包含极值点,第四缩放范围所对应的等效焦距范围为(27mm,48mm)。假设第二摄像头为手机中的主摄像头,主摄像头的焦距小于长焦摄像头。假设第一ISO范围为小于或等于1600,第二ISO范围为大于1600。根据表1所示,在第三缩放范围和第四缩放范围,对于焦距较小的第二摄像头来说,如果属于相同的第一ISO范围,则应用于较小缩放范围时进入第二变焦模式,应用较大缩放范围时进入第一变焦模式,即通过第一变焦模式下所应用的超分算法改善由于缩放倍率较高而导致的分辨率较低的问题。另外,当第二摄像头应用第二ISO范围时,在第三缩放范围,如果当前拍摄画面的亮度大于第二亮度阈值,则认为属于非弱光场景,反之如果当前拍摄画面的亮度不大于第二亮度阈值,则认为属于弱光场景,在第四缩放范围,如果当前拍摄画面的亮度大于第三亮度阈值,则认为属于非弱光场景,反之如果当前拍摄画面的亮度不大于第三亮度阈值,则认为属于弱光场景,第二亮度阈值可以等于或不等于第三亮度阈值,在第二ISO范围的非弱光场景下,进入第二变焦模式,而在第二ISO范围的弱光场景下,可以另外进入第三变焦模式,本申请实施例对于第三变焦模式的具体实现方式不做限定,在第三变焦模式下,例如可以针对弱光场景进一步进行图像处理的优化。另外需要说明的是,本申请实施例对于第二变焦模式的具体图像处理过程不做限定,在第二变焦模式中,可以进一步划分为不同的子模式来应用不同的算法处理,例如,在某些场景下,需要单独使用光学防抖(Optical ImageStabilization,OIS)算法对图像进行处理,在另外一些场景下,需要单独使用电子防抖(Electric Image Stabilization,EIS)算法对图像进行处理,在其他一些场景下,会使用OIS和EIS对图像进行处理。另外,根据表1可以看出,第二摄像头还可以工作于第五缩放范围,第五缩放范围为[0.9x,1x),对应的等效焦距范围为[23mm,27mm),此时,在全场景下可以进入上述第二变焦模式。本申请实施例中的电子设备还包括第三摄像头,第三摄像头可以为超广角摄像头,第三摄像头的焦距小于第二摄像头的焦距,第三摄像头可以工作与第六缩放范围,第六缩放范围为[0.4x,0.9x),对应的等效焦距范围为[11mm,23mm)。
在一种可能的实施方式中,视频处理方法还包括:若当前使用的摄像头为第二摄像头,且拍摄缩放倍数属于第二缩放范围,且拍摄画面的亮度不大于第四亮度阈值,则进入第二变焦模式;若当前使用的摄像头为第二摄像头,且拍摄缩放倍数属于第二缩放范围,且拍摄距离小于距离阈值,则进入第二变焦模式;若当前使用的摄像头为第二摄像头,且拍摄缩放倍数属于第一缩放范围,且拍摄画面的亮度不大于第一亮度阈值,则进入第二变焦模式;若当前使用的摄像头为第二摄像头,且拍摄缩放倍数属于第一缩放范围,且拍摄距离小于距离阈值,则进入第一变焦模式。
具体地,当第二摄像头应用第二缩放范围时,可以应用于暗光场景,即当前拍摄画面的亮度不大于第四亮度阈值,第四亮度阈值可以与其他的亮度阈值相同,也可以与其他的亮度阈值不同,此时可以进入第二变焦模式,还可以应用于近距离拍摄场景,即拍摄距离小于预设距离,例如拍摄距离<1200cm,可以认为属于近距离拍摄场景,此时可以进入第二变焦模式。当第二摄像头应用第一缩放范围时,可以应用于暗光场景,即当前拍摄画面的亮度不大于第一亮度阈值,此时可以进入第二变焦模式。当第二摄像头应用第一缩放范围时,可以应用于近距离拍摄场景,例如拍摄距离<1200cm,此时可以进入第一变焦场景。也就是说,第二摄像头在第一缩放范围和第二缩放范围中的近距离拍摄场景下,如果缩放倍数较高,即属于第一缩放范围,则可以通过第一变焦模式下所应用的超分算法改善由于缩放倍数较高而导致的分辨率低的问题。
在一种可能的实施方式中,如图3所示,视频处理方法,还包括:
在第一变焦模式下,进入步骤105、通过摄像头当前的感光度ISO所对应的对数LOG曲线对融合后的视频行处理,得到LOG视频;
其中,LOG曲线是基于场景的曲线,不同ISO下LOG曲线略有不同。随着ISO的增加,LOG曲线最大值也在增加。当ISO提高到一定程度,高光处有肩部形状,保持高光不过曝。如图4所示,图4示意了一种LOG曲线,其中横坐标为线性信号,以16比特bit编码值Code Value表示,纵坐标为经过LOG曲线处理后的LOG信号,以10bit编码值表示。通过LOG曲线处理,可以利用摄像头的信号输入,将暗部区间的信息编码到中间调(如图4中曲线陡峭的部分),形成10bit的信号输出,符合人眼对光线LOG感应规则,最大化的保留了暗部信息,LOG视频可以利用有限的bit深度最大化的保留阴影和高光的细节。图4中的ASA即为感光度,不同的ASA即对应不同的ISO,两者属于不同制式。
步骤106、基于颜色查找表(Look Up Table,LUT)对LOG视频进行处理,得到经过LUT处理后的视频。
具体地,其中,LUT的本质为数学转换模型,利用LUT可以将一组RGB值输出为另一组RGB值,从而改变画面的曝光与色彩。在第一变焦模式下,可以例如有两种基于LUT的处理方式,一种是仅仅利用LUT来针对该场景下的特点对视频进行处理,在该方式下,可以自动应用第一变焦模式下对应的LUT;另一种是利用LUT来应用不同的视频风格,以下均以第二种方法为例进行说明。可以预先生成对应不同视频风格的LUT,在电子设备录制视频之前,首先确定出一个视频风格模板,例如可以基于用户的选择来确定视频风格模板,或者基于人工智能(Artificial Intelligence,AI),根据当前摄像头获取的图像所对应的场景自动确定视频风格模板。例如,假设电子设备为手机,在一种可能的实施方式中,如图5所示,用户操作手机进入第一变焦模式下的拍摄界面,拍摄界面包括电影模式选项,当用户进一步选择电影模式选项进入电影模式,在对应的电影模式界面中,包括多个视频风格模板选项,例如包括《A》电影风格模板、《B》电影风格模板和《C》电影风格模板,图5所示的用户界面中仅显示了一个《A》电影风格模板,可以理解地,用户界面中可以并排显示多个不同的电影风格模板,不同的电影风格模板所对应的LUT可以是预先基于对应电影配色风格所生成的,LUT的颜色转换具有对应电影所具有的风格特点,例如《A》电影的配色风格为互补色,互补色是指两种对应的颜色形成对比效果,以暖色系与冷色系的两种颜色来强调对比度以提升鲜艳、突出的效果,通常两种对比的色彩象征冲突行为,透过外在的互补色彩的呈现来表达角色内心正处于矛盾或是身心交瘁的状态,《A》电影风格模板所对应的LUT即用于将颜色映射转换之后,更明显地呈现互补色,以模拟《A》电影的配色风格。在一种可能的实施方式中,如图5所示,用户操作手机进入电影模式,手机会通过获取当前摄像头所拍摄的画面,并基于AI算法确定画面所对应的场景并确定与该场景对应的推荐的视频风格模板,例如若识别到当前所拍摄的画面主体为年轻女性人物,根据算法确定对应的推荐的视频风格模板为《C》电影风格模板,《C》电影为以年轻女性人物为主题的电影,其对应的LUT可以模拟《C》电影的配色风格;例如若识别到当前所拍摄的画面为城市街道,根据算法确定对应的视频风格模板为《B》电影风格模板,《B》电影为以城市街道为主要场景的电影,其对应的LUT可以模拟《B》电影的配色风格。这样,可以自动为用户推荐符合当前场景的视频风格模板。可以预先从电影风格中提取,产生适合移动电子设备的LUT。
不同的LUT应用在电子设备上,可以对电子设备中相关的模块进行适配,以适应不同风格的LUT,例如,如果预先所确定的视频风格模板为灰色调视频风格模板,灰色调画面的特点为使画面中纹理感较强、饱和度较低、除了人物皮肤的颜色,没有更多的颜色干扰、暗部较冷,基于这些特点,电子设备在录制视频的过程中,可以对相关的模块参数进行调整,保持画面中的纹理,不做很强的去噪和锐化,适当降低画面的饱和度,保持画面中的皮肤颜色真实还原,使画面的暗部向冷色调整。
本申请实施例中的视频处理方法,在视频录制过程中,利用电影行业的LUT技术,基于所确定的视频风格模板对应的LUT或者第一变焦模式所对应的LUT对LOG视频进行处理,使所录制的视频具有所确定的视频风格模板对应的风格效果,以满足较高的调色要求。
在一种可能的实施方式中,如图6所示,上述步骤102、对第一曝光帧视频图像进行超分算法处理包括:获取第一曝光帧视频图像对应的统计信息;将统计信息以及第一曝光帧视频图像的RAW图像作为输入进行超分算法处理,得到处理后的第一曝光帧视频图像的RAW图像。
具体地,RAW图像就是摄像头中的传感器将捕获到的光源信号转化为数字信号的原始数据,例如,电子设备中包括摄像头193、超分算法模块31和统计信息获取模块32,其中,统计信息获取模块32可以为ISP中的模块,在步骤101中通过摄像头193获取到第一曝光帧视频图像和第二曝光帧视频图像,并将该第一曝光帧视频图像传输至统计信息获取模块32和超分算法模块31,其中,统计信息获取模块32根据第一曝光帧视频图像获取到图像所对应的stats统计信息,并将该统计信息传输至超分算法模块31,传输至超分算法模块31的第一曝光帧视频图像可以为RAW图像,超分算法模块31以RAW图像作为输入,同时基于所获取到的对应的统计信息对该第一帧视频图像进行处理,得到处理后的RAW图像并输出至后续过程。需要说明的是,在本实施例中,超分算法模块31执行超分算法处理的过程是在整个图像处理过程中的RAW域进行的,在其他可能的实施方式中,超分算法处理的过程也可以例如在YUV域进行。
以下对RAW和YUV的相关内容进行说明:
拜耳域:数码相机上的每个镜头都带有一个光传感器,用以测量光线的明亮程度,但若要获得一幅全彩图像,一般需要有三个光传感器分别获得红、绿、蓝三基色信息,而为了降低数码相机的成本与体积,生产厂商通常会采用CCD或CMOS图像传感器,通常的,CMOS图像传感器输出的原始图像为拜尔域RGB格式,单个像素点只包含一种颜色值,要得到图像的灰度值,需要先插补完整各像素点的颜色信息,再计算各像素点的灰度值。也就是说拜耳域是指数码相机内部的一种原始图片格式。
Raw域或称Raw格式,是指未经加工图像。进一步地,所述Raw图像可以理解为,就是相机的感光元件比如互补金属氧化物半导体(Complementary MetalOxideSemiconductor,CMOS)或者电荷耦合器件(Charge-coupled Device,CCD)将捕捉到的光源信号转化为数字信号的原始数据。RAW文件是一种记录了数码相机传感器的原始信息,同时记录了由相机拍摄所产生的一些元数据(Metadata,如感光度ISO(InternationalOrganization for Standardization,国际标准化组织)的设置、快门速度、光圈值、白平衡等)的文件。Raw域是未经ISP非线性处理、也未经压缩的格式。Raw格式的全称是RAW Image Format。
YUV是一种颜色编码方法,常使用在各个视频处理组件中。YUV在对照片或视频编码时,考虑到人类的感知能力,允许降低色度的带宽。YUV是编译true-color颜色空间(color space)的种类,Y'UV、YUV、YCbCr、YPbPr等专有名词都可以称为YUV,彼此有重叠。其中“Y”表示明亮度(Luminance或Luma),也就是灰阶值,“U”和“V”表示色度(Chrominance或Chroma),作用是描述影像色彩及饱和度,用于指定像素的颜色。一般YUV分成两种格式,一种是:紧缩格式(packedformats),将Y、U、V值存储成Macro Pixels数组,和RGB的存放方式类似。另一种是:平面格式(planarformats),将Y、U、V的三个分量分别存放在不同的矩阵中。平面格式(planarformats)是指每Y分量,U分量和V分量都是以独立的平面组织的,也就是说所有的U分量都在Y分量后面,而V分量在所有的U分量后面。
在一种可能的实施方式中,上述步骤106、基于颜色查找表(Look Up Table,LUT)对LOG视频进行处理,得到经过LUT处理后的视频的过程包括:
基于LUT建立立方体插值空间,LUT为三维3D-LUT;
其中,3D-LUT的实现是在RGB域进行的,3D-LUT为电影工业中常用的调色映射关系,可以将任意输入的RGB像素值转换为对应的其他RGB像素值,例如输入12bit的RGB视频图像,经过LUT处理映射之后输出12bit的RGB视频图像。将整个RGB色彩空间均匀地分为例如33×33×33的立方体,对应LUT,每个立方体的边长step_size例如为2(12-5)=27
确定LOG视频中每个像素点在立方体插值空间中所属的立方体,立方体中被划分为6个四面体;
其中,LOG视频作为LUT处理过程中的输入,对LOG视频画面中每个像素点得到通过LUT处理映射后的像素点,既可以实现通过LUT对LOG视频进行处理的过程,需要确定每个作为输入的LOG视频中每个像素点在上述立方体插值空间中所属的立方体,立方体被划分为6个四面体。
确定LOG视频中每个像素点所属的四面体;
对于对应立方体顶点的像素点,将像素值转换为经过LUT处理后的像素值,对于不对应立方体顶点的像素点,根据每个像素点所属的四面体进行插值,将像素值转换为经过LUT处理后的像素值。
具体地,对于输入的像素点来说,如果像素点位于立方体的顶点,根据顶点的索引以及3D-LUT,可以直接获取映射后的RGB像素值,即可以直接通过LUT将其像素值映射转换为对应的像素值,而如果像素点位于立方体的顶点之间,则根据像素点所属的四面体进行插值。
在一种可能的实施方式中,如图7所示,立方体中具有第0至第7顶点,在图7中分别以数字0~7表示,第0顶点至第1顶点的方向为蓝色B通道的坐标轴方向,第0顶点至第4顶点的方向为红色R通道的坐标轴方向,第0顶点至第2顶点的方向为绿色G通道的坐标轴方向,第0顶点、第1顶点、第2顶点和第3顶点位于同一平面,第1顶点、第3顶点、第5顶点和第7顶点位于同一平面,第4顶点、第5顶点、第6顶点和第7顶点位于同一平面,第0顶点、第2顶点、第4顶点和第6顶点位于同一平面;第0顶点、第1顶点、第5顶点和第7顶点形成第一个四面体,第0顶点、第1顶点、第3顶点和第7顶点形成第二个四面体,第0顶点、第2顶点、第3顶点和第7顶点形成第三个四面体,第0顶点、第4顶点、第5顶点和第7顶点形成第四个四面体,第0顶点、第4顶点、第6顶点和第7顶点形成第五个四面体,第0顶点、第2顶点、第6顶点和第7顶点形成第六个四面体;其中,第i顶点的坐标为(Ri,Gi,Bi),i的取值为0、1、2、3、…、7,第i顶点经过LUT处理后的像素值为VE(Ri,Gi,Bi),其中E取R、G和B;
上述对于不对应立方体顶点的像素点,根据每个像素点所属的四面体进行插值,将像素值转换为经过LUT处理后的像素值的过程包括:
根据当前像素点(R,G,B)生成经过LUT处理后的E通道像素值VE(R,G,B),E取R、G和B,当前像素点是指输入的LOG视频中的当前待进行插值计算的像素点;
VE(R,G,B)=VE(R0,G0,B0)+(delta_valueR_E×deltaR+delta_valueG_E×deltaG+delta_valueB_E×deltaB+(step_size>>1))/(step_size);
VE(R0,G0,B0)为第0顶点(R0,G0,B0)经过LUT处理后的E通道像素值,E取R、G和B;
delta_valueR_E为当前像素点所属四面体对应R通道的坐标轴方向上的两个顶点经过LUT处理后的E通道像素值之差,delta_valueG_E为当前像素点所属四面体对应G通道的坐标轴方向上的两个顶点经过LUT处理后的E通道像素值之差,delta_valueB_E为当前像素点所属四面体对应B通道的坐标轴方向上的两个顶点经过LUT处理后的E通道像素值之差;
deltaR为当前像素点(R,G,B)中的R值与第0顶点(R0,G0,B0)中的R0值之差,deltaG为当前像素点(R,G,B)中的G值与第0顶点(R0,G0,B0)中的G0值之差,deltaB为当前像素点(R,G,B)中的B值与第0顶点(R0,G0,B0)中的B0值之差;
step_size为立方体的边长。
其中,>>表示右移运算,(step_size>>1)即step_size右移一位。
具体地,例如,对于输入的当前像素点(R,G,B),计算deltaR、deltaG和deltaB,deltaR、deltaG和deltaB表示当前像素点(R,G,B)与第0顶点的距离,deltaR=R-R0,deltaG=G-G0,deltaB=B-B0,可以根据deltaR、deltaG以及deltaB之间的关系判断当前像素点属于哪个四面体。如果deltaB≥deltaR且deltaR≥deltaG,则确定当前像素点属于第一个四面体;如果deltaB≥deltaG且deltaG≥deltaR,则确定当前像素点属于第二个四面体;如果deltaG≥deltaB且deltaB≥deltaR,则确定当前像素点属于第三个四面体;如果deltaR≥deltaB且deltaB≥deltaG,则确定当前像素点属于第四个四面体;如果deltaR≥deltaG且deltaG≥deltaB,则确定当前像素点属于第五个四面体;如果deltaR、deltaG以及deltaB之间的关系不属于上述第一~第五个四面体的条件,则确定当前像素点属于第六个四面体。假设当前像素点(R,G,B)属于第一个四面体,该像素点经过LUT处理后的R通道像素值VR(R,G,B)的计算过程中,delta_valueR_E为当前像素点所属四面体对应R通道的坐标轴方向上的两个顶点经过LUT处理后的E通道像素值之差,即delta_valueR_R=VR(R5,G5,B5)-VR(R1,G1,B1),delta_valueG_R=VR(R7,G7,B7)-VR(R5,G5,B5),delta_valueB_R=VR(R1,G1,B1)-VR(R0,G0,B0),VR(R,G,B)=VR(R0,G0,B0)+(delta_valueR_R×deltaR+delta_valueG_R×deltaG+delta_valueB_R×deltaB+(step_size>>1))/(step_size);该像素点经过LUT处理后的G通道像素值VG(R,G,B)的计算过程中,delta_valueG_E为当前像素点所属四面体对应G通道的坐标轴方向上的两个顶点经过LUT处理后的E通道像素值之差,即delta_valueR_G=VR(R5,G5,B5)-VR(R1,G1,B1),delta_valueG_G=VG(R7,G7,B7)-VG(R5,G5,B5),delta_valueB_G=VG(R1,G1,B1)-VG(R0,G0,B0),VG(R,G,B)=VG(R0,G0,B0)+(delta_valueR_G×deltaR+delta_valueG_G×deltaG+delta_valueB_G×deltaB+(step_size>>1))/(step_size);该像素点经过LUT处理后的B通道像素值VG(R,G,B)的计算过程中,delta_valueB_E为当前像素点所属四面体对应B通道的坐标轴方向上的两个顶点经过LUT处理后的E通道像素值之差,即delta_valueR_B=VB(R5,G5,B5)-VB(R1,G1,B1),delta_valueG_B=VB(R7,G7,B7)-VB(R5,G5,B5),delta_valueB_B=VB(R1,G1,B1)-VB(R0,G0,B0),VB(R,G,B)=VB(R0,G0,B0)+(delta_valueR_B×deltaR+delta_valueG_B×deltaG+delta_valueB_B×deltaB+(step_size>>1))/(step_size)。对于当前像素点(R,G,B)属于其他四面体的情况,计算过程类似,区别在于delta_valueR_E的计算,例如对于第二个四面体,delta_valueR_R=VR(R7,G7,B7)-VR(R3,G3,B3),delta_valueG_R=VR(R3,G3,B3)-VR(R1,G1,B1),delta_valueB_R=VR(R1,G1,B1)-VR(R0,G0,B0),基于其他四面体的具体计算过程在此不再赘述。
在一种可能的实施方式中,在上述步骤106、基于颜色查找表(Look Up Table,LUT)对LOG视频进行处理,得到经过LUT处理后的视频的过程之前,还包括:将LOG视频由RGB色彩空间的LOG视频转换为YUV色彩空间的LOG视频;对YUV色彩空间的LOG视频进行YUV去噪处理,得到去噪后的LOG视频,在步骤106中应用LUT的LOG视频即为经过YUV去噪后的LOG视频。由于步骤105中得到的LOG视频,能够体现暗部细节,但是同时会将暗部噪声放大,即会引入噪声,因此可以将LOG视频转换为YUV色彩空间之后,进行YUV去噪处理,通过算法降噪,以改善视频图像质量。
在一种可能的实施方式中,在上述步骤106、基于颜色查找表(Look Up Table,LUT)对LOG视频进行处理,得到经过LUT处理后的视频的过程之前,还包括:将去噪后的LOG视频由YUV色彩空间的LOG视频转换为RGB色彩空间的LOG视频;在上述步骤106、基于颜色查找表(Look Up Table,LUT)对LOG视频进行处理,得到经过LUT处理后的视频的过程之后,还包括:将RGB色彩空间的经过LUT处理后的视频转换为YUV色彩空间的视频。由于步骤106中基于LUT对LOG视频进行处理的过程是基于RGB色彩空间实现的,因此,因此,在步骤105之前先将YUV色彩空间的视频转换为RGB色彩空间的视频,在步骤106之后,再将RGB色彩空间的视频重新转换为YUV色彩空间的视频。
YUV(亦称YCbCr)是欧洲电视***采用的一种颜色编码方法。在现代彩色电视***中,通常采用三管彩色摄像机或彩色CCD摄影机进行取像,然后把取得的彩色图像信号经分色、分别放大校正后得到RGB信号,再经过矩阵变换电路得到亮度信号Y和两个色差信号B-Y(即U)、R-Y(即V),最后发送端将三个信号分别进行编码后用同一信道发送出去。这种色彩表示方法就是YUV颜色空间。YCbCr是YUV模型的具体实现,其实是YUV经过缩放和偏移的翻版。其中Y与YUV中的Y含义一致,Cb和Cr同样都指色彩,只是在表示方法上不同而已。在YUV家族中,YCbCr是在计算机***中应用最多的成员,其应用领域很广泛,JPEG、MPEG均采用此格式。一般人们所讲的YUV大多是指YCbCr。UV平面如图8所示。
RGB和YUV颜色空间的相互转换可以通过3x3的矩阵实现:
Figure BDA0003209593590000131
YUV主要有4种采样格式:YCbCr 4:2:0、YCbCr 4:2:2、YCbCr 4:1:1和YCbCr 4:4:4。
在一种可能的实施方式中,如图9所示,电子设备具体可以包括摄像头193、超分算法模块31、统计信息获取模块32、反马赛克Demosaic模块21、变形模块22、融合模块23、噪声处理模块24、色彩校正矩阵(Color Correction Matrix,CCM)模块25、全局色调映射(Global Tone Mapping,GTM)模块26、缩放Scaler模块27、YUV去噪模块28、LUT处理模块29,例如,在视频录制的过程中,摄像头193拍摄得到第一曝光帧视频图像和第二曝光帧视频图像,第一曝光帧视频图像所对应的曝光时间大于第二曝光帧视频图像所对应的曝光时间,在第一变焦模式下,统计信息获取模块32获取第一曝光帧视频图像对应的统计信息,超分算法模块31将统计信息以及第一曝光帧视频图像的RAW图像作为输入进行超分算法处理,得到经过超分算法处理后的第一曝光帧视频图像的RAW图像,经过超分算法处理后的第一曝光帧视频图像和未经超分算法处理的第二曝光帧视频图像分别通过反马赛克模块21的处理,使图像从RAW域转换为RGB域,之后两路视频图像分别通过变形warp模块22的处理,通过对视频图像的变形实现对齐、防抖的效果,之后两路视频图像通过融合模块23处理,将两种视频图像融合为同一个,融合之后的数据再分流为两路,视频处理方法包括第一视频处理流程S1和第二视频处理流程S2,通过融合模块23处理之后的其中一路进入第一视频处理流程S1,另外一路进入第二视频处理流程S2。
在第一视频处理流程S1中执行将通过摄像头拍摄的视频转换为广色域的色彩空间的视频的过程、通过对数LOG曲线对视频进行处理,得到LOG视频的过程、以及基于LUT对LOG视频进行处理的过程。
例如,第一视频处理流程S1包括,将来自于融合模块23的通过摄像头193拍摄的视频通过噪声处理模块24进行去噪处理,然后通过CCM模块25处理,将视频转换为RGB广色域的色彩空间,然后通过GTM模块26执行通过摄像头当前的感光度ISO所对应的对数LOG曲线对融合后的视频行处理,得到LOG视频的过程,然后通过缩放模块27对视频进行缩放处理,然后通过YUV去噪模块28对视频进行YUV去噪,然后通过LUT处理模块29执行基于颜色查找表LUT对LOG视频进行处理,得到经过LUT处理后的视频。在第一视频处理流程S1之后,将第一视频处理流程S1中经过LUT处理后的视频进行保存,保存为录像。
第二视频处理流程S2包括:将来自于融合模块23的通过摄像头193拍摄的视频通过噪声处理模块24进行去噪处理,然后通过CCM模块25处理,将视频转换为RGB广色域的色彩空间,然后通过GTM模块26执行通过摄像头当前的感光度ISO所对应的对数LOG曲线对所述融合后的视频行处理,得到LOG视频的过程,然后通过缩放模块27对视频进行缩放处理,然后通过YUV去噪模块28对视频进行YUV去噪,然后通过LUT处理模块29执行基于查找表LUT对LOG视频进行处理,得到经过LUT处理后的视频的过程。在第二视频处理流程S2之后,将第二视频处理流程S2中经过LUT处理后的视频进行预览。
以上仅说明了在第一变焦模式下的具体视频录制过程,可以在录制过程中或者两次录制之前切换至进入第二变焦模式,在第二变焦模式下,不进行超分算法处理,第一曝光帧视频图像和第二曝光帧视频图像分别通过反马赛克模块21的处理,使图像从RAW域转换为RGB域,之后两路视频图像分别通过变形warp模块22的处理,通过对视频图像的变形实现对齐、防抖的效果,之后两路视频图像通过融合模块23处理,将两种视频图像融合为同一个,在第二变焦模式下,第一曝光帧视频图像的融合权重小于第一变焦模式下第一曝光帧视频图像的融合权重,在第二变焦模式下融合之后的视频图像处理过程可以与第一变焦模式相同,也可以与第一变焦模式不同,本申请实施例对此不做限定。
以下结合软件架构对本申请实施例进行说明,本申请实施例以分层架构的Android***为例,示例性说明电子设备100的软件结构。图10是本申请实施例的电子设备100的软件结构框图。
分层架构将软件分成若干个层,每一层都有清晰的角色和分工。层与层之间通过软件接口通信。在一些实施例中,将Android***分为五层,从上至下分别为应用程序Application层、应用程序框架framework层、***库library、硬件抽象层(HardwareAbstraction Layer,HAL)以及内核层。
应用程序层可以包括相机等应用程序。
应用程序框架层可以包括相机应用程序编程接口(Application ProgrammingInterface,API)、媒体录制MediaRecorder和表面视图Surfaceview等。媒体录制用来录制视频或图片数据,并使这些数据可以被应用程序访问。表面视图用来显示预览画面。
***库可以包括多个功能模块。例如:相机服务CameraSevice等。
硬件抽象层用于提供接口支持,例如包括相机流程CameraPipeline以供相机服务调用Call。
内核层是硬件和软件之间的层。内核层包含显示驱动,摄像头驱动等。
结合捕获视频的一种具体场景,应用程序层下发捕获请求CaptureRequest,请求对应一个录像的流和一个预览流。HAL按照上述的数据流dataflow,回调两路流。其中,预览流送显示,录像的流送mediacodec。
本申请实施例提供的录像视频处理方法可以表现为两种拍摄模式下的多个功能,其中这两种拍摄模式可以是指:电影模式、专业模式。
电影模式是一种与电影主题相关的拍摄模式,在该模式下,电子设备100显示的图像能够从感官上给用户一种观看电影的效果,电子设备100还提供多个与电影主题相关的视频风格模板,用户可以利用这些视频风格模板获得色调调整后的图像或视频,这些图像或视频的色调与电影的色调类似或相同。在本申请以下实施例中,电影模式至少可提供用户触发LUT功能、HDR10功能的接口。具体关于LUT功能、HDR10功能的描述可以参见以下实施例。
例如,假设电子设备100为手机,在一种可能的实施方式中,如图5所示,电子设备可以响应用户的操作进入电影模式。例如,电子设备100可以检测到用户作用于相机应用程序的触控操作,响应于该操作,电子设备100显示相机应用程序的默认拍照界面。默认拍照界面可包括:预览框、拍摄模式列表、图库快捷键、快门控件等。其中:
预览框可用于显示摄像头193实时采集的图像。电子设备100可以实时刷新其中的显示内容,以便于用户预览摄像头193当前采集的图像。
拍摄模式列表中可以显示有一个或多个拍摄模式选项。这一个或多个拍摄模式选项可以包括:人像模式选项、录像模式选项、拍照模式选项、电影模式选项、专业选项。这一个或多个拍摄模式选项在界面上可以表现为文字信息,例如“人像”、“录像”、“拍照”、“电影”、“专业”。不限于此,这一个或多个拍摄模式选项在界面上还可以表现为图标或者其他形式的交互元素(interactive element,IE)。
图库快捷键可用于开启图库应用程序。图库应用程序是智能手机、平板电脑等电子设备上的一款图片管理的应用程序,又可以称为“相册”,本实施例对该应用程序的名称不做限制。图库应用程序可以支持用户对存储于电子设备100上的图片进行各种操作,例如浏览、编辑、删除、选择等操作。
快门控件可用于监听触发拍照的用户操作。电子设备100可以检测到作用于快门控件的用户操作,响应于该操作,电子设备100可以将预览框中的图像保存为图库应用程序中的图片。另外,电子设备100还可以在图库快捷键中显示所保存的图像的缩略图。也即是说,用户可以点击快门控件来触发拍照。其中,快门控件可以是按钮或者其他形式的控件。
电子设备100可以检测到用户作用于电影模式选项的触控操作,响应于该操作,电子设备显示如图5所示的用户界面。
在一些实施例中,电子设备100可以在启动相机应用程序后默认开启电影模式。不限于此,电子设备100还可以通过其他方式开启电影模式,例如电子设备100还可以根据用户的语音指令开启电影模式,本申请实施例对此不作限制。
电子设备100可以检测到用户作用于电影模式选项的触控操作,响应于该操作,电子设备显示如图5所示的用户界面。
如图5示出的用户界面中包括功能选项,功能选项包括HDR10选项、闪光灯选项、LUT选项、设置选项。这多个功能选项都可以检测到用户的触控操作,并响应于该操作,开启或关闭对应的拍摄功能,例如,HDR10功能、闪光灯功能、LUT功能、设置功能。
电子设备可以开启LUT功能,该LUT功能可以改变预览图像的显示效果。实质上,LUT功能引入了颜色查找表,颜色查找表相当于一个颜色转换模型,该颜色转换模型能够根据输入的色彩值,输出调整后的色彩值。摄像头采集的图像的色彩值相当于输入值,不同的色彩值经过颜色转换模型后,都可以对应得到一个输出值。最终,显示在预览框中的图像即为经过颜色转换模型调整后的图像。电子设备100利用该LUT功能,显示经过颜色转换模型调整后的色彩值组成的图像,达到调整图像色调的效果。开启LUT功能之后,电子设备100可以提供多个视频风格模板,一个视频风格模板对应一个颜色转换模型,不同的视频风格模板可以给预览图像带来不同的显示效果。并且,这些视频风格模板可以与电影主题相关联,视频风格模板给预览图像带来的色调调整效果可以和电影中的色调接近或相同,为用户营造拍摄电影的氛围感。
另外,在电子设备100开启LUT功能之后,电子设备100可以根据当前预览视频画面,在多个视频风格模板中确定一个视频风格模板,所确定的视频风格模板可以显示在界面中,以便于用户了解当前所确定的视频风格模板,例如多个视频风格模板包括《A》电影风格模板、《B》电影风格模板和《C》电影风格模板,不同的电影风格模板所对应的LUT可以是预先基于对应电影配色风格所生成的,LUT的颜色转换具有对应电影所具有的风格特点。可以预先从电影风格中提取,产生适合移动电子设备的LUT。LUT功能的开启会改变预览视频画面的色调。如图5中示意的,电子设备100确定《A》电影风格模板并进行显示。
在一些实施例中,电子设备100可以根据用户的滑动操作来选择视频风格模板。具体地,当电子设备100检测到用户开启LUT功能的用户操作,显示LUT预览窗口之后,电子设备100可以默认选择位于LUT预览窗口中的第一个视频风格模板,作为电子设备100选中的视频风格模板。之后,电子设备100可以检测到用户作用于LUT预览窗口的左右滑动操作,移动LUT预览窗口中各视频风格模板的位置,当电子设备100不再检测到用户的滑动操作时,电子设备100将LUT预览窗口中显示的第一个视频风格模板作为电子设备100选中的视频风格模板。
在一些实施例中,电子设备100除了可以使用视频风格模板改变预览图像的显示效果,还可以在添加视频风格模板之后,检测到开始录制视频的用户操作,响应于该操作,电子设备100开始录制视频,从而获得使用视频风格模板调整显示效果后的视频。另外,在录制视频的过程中,电子设备100还可以检测到拍摄照片的用户操作,响应于该操作,电子设备100将预览框中添加了视频风格模板的预览图像保存成图片,从而获得使用视频风格模板调整显示效果后的图像。
电子设备可以开启HDR10功能,HDR10模式中,HDR即为高动态范围图像(High-Dynamic Range,HDR),相比于普通的图像,HDR可以提供更多的动态范围和图像细节,能够更好地反映出真实环境中的视觉效果,HDR10中的10即为10比特,HDR10可以以10位高动态范围录制视频。
电子设备100可以检测到用户作用于专业模式选项的触控操作,进入专业模式。如图11所示,电子设备处于专业模式时,用户界面中可以包括的功能选项例如为:LOG选项、闪光灯选项、LUT选项、设置选项,另外,用户界面还包括参数调节选项,例如为:测光M选项、ISO选项、快门S选项、曝光补偿EV选项、对焦方式AF选项和白平衡WB选项。
在一些实施例中,电子设备100可以在启动相机应用程序后默认开启专业模式。不限于此,电子设备100还可以通过其他方式开启专业模式,例如电子设备100还可以根据用户的语音指令开启专业模式,本申请实施例对此不作限制。
电子设备100可以检测到用户作用于LOG选项的用户操作,响应于该操作,电子设备100开启LOG功能。其中,LOG功能能够将对数函数应用到曝光曲线上,最大限度地保留摄像头采集的图像中,高光和阴影部分的细节,使最终呈现出来的预览图像的饱和度较低。其中,使用LOG功能录制的视频称为LOG视频。
电子设备100通过专业模式除了可以录制添加了视频风格模板的视频,还可以在录制未添加视频风格模板的视频后,为该视频添加视频风格模板,或者,在开启LOG功能后,录制LOG视频,之后再为该LOG视频添加视频风格模板。这样,电子设备100不仅可以在录制视频的之前调整画面的显示效果,还可以在视频录制完成之后,调整录制的视频的显示效果,增加了图像调整的灵活性和自由度。
本申请实施例还提供一种视频处理装置,包括:视频获取模块,用于在第一变焦模式或第二变焦模式下,获取通过摄像头拍摄的视频,视频包括交替的第一曝光帧视频图像和第二曝光帧视频图像,第一曝光帧视频图像的曝光时间大于第二曝光帧视频图像的曝光时间;超分算法模块,用于在第一变焦模式下,对第一曝光帧视频图像进行超分算法处理,超分算法处理用于提高分辨率;融合模块,用于在第一变焦模式下,对经过超分算法处理的第一曝光帧视频图像和未经超分算法处理的第二曝光帧视频图像进行融合,得到融合后的视频,第一曝光帧视频图像具有第一权重;在第二变焦模式下,对第一曝光帧视频图像和第二曝光帧视频图像进行融合,第一曝光帧视频图像具有第二权重,得到融合后的视频,第一权重大于第二权重。
应理解以上视频处理装置的各个模块的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分模块以软件通过处理元件调用的形式实现,部分模块通过硬件的形式实现。例如,视频获取模块、超分算法模块和融合模块中的任意一者可以为单独设立的处理元件,也可以集成在视频处理装置中,例如集成在视频处理装置的某一个芯片中实现,此外,也可以以程序的形式存储于视频处理装置的存储器中,由视频处理装置的某一个处理元件调用并执行以上各个模块的功能。其它模块的实现与之类似。此外这些模块全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,视频获取模块、超分算法模块和融合模块这些模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application SpecificIntegrated Circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。再如,当以上某个模块通过处理元件调度程序的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,CPU)或其它可以调用程序的处理器。再如,这些模块可以集成在一起,以片上***(system-on-a-chip,SOC)的形式实现。
本申请实施例还提供一种视频处理装置,包括:处理器和存储器,存储器用于存储至少一条指令,指令由处理器加载并执行时以实现上述任意实施例中的视频处理方法。
该视频处理装置可以应用上述的视频处理方法,具体过程和原理在此不再赘述。
处理器的数量可以为一个或多个,处理器和存储器可以通过总线或者其他方式连接。存储器作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序、非暂态计算机可执行程序以及模块,如本申请实施例中的视频处理装置对应的程序指令/模块。处理器通过运行存储在存储器中的非暂态软件程序、指令以及模块,从而执行各种功能应用以及数据处理,即实现上述任意方法实施例中的方法。存储器可以包括存储程序区和存储数据区,其中,存储程序区可存储操作***、至少一个功能所需要的应用程序;以及必要数据等。此外,存储器可以包括高速随机存取存储器,还可以包括非暂态存储器,例如至少一个磁盘存储器件、闪存器件、或其他非暂态固态存储器件。
如图1所示,本申请实施例还提供一种电子设备,包括:摄像头193和上述的视频处理装置,视频处理装置包括处理器110。
视频处理装置的具体原理和工作过程与上述实施例相同,在此不再赘述。该电子设备可以是例如手机、电视、平板电脑、手表、手环等任何具有视频拍摄功能的产品或部件。
本申请实施例还提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机程序,当其在计算机上运行时,使得计算机执行上述任意实施例中的视频处理方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid StateDisk)等。
本申请实施例中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示单独存在A、同时存在A和B、单独存在B的情况。其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项”及其类似表达,是指的这些项中的任意组合,包括单项或复数项的任意组合。例如,a,b和c中的至少一项可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
以上仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

1.一种视频处理方法,其特征在于,包括:
在第一变焦模式或第二变焦模式下,获取通过摄像头拍摄的视频,所述视频包括交替的第一曝光帧视频图像和第二曝光帧视频图像,所述第一曝光帧视频图像的曝光时间大于所述第二曝光帧视频图像的曝光时间;
在所述第一变焦模式下,对所述第一曝光帧视频图像进行超分算法处理,所述超分算法处理用于提高分辨率;
在所述第一变焦模式下,对经过所述超分算法处理的第一曝光帧视频图像和未经所述超分算法处理的第二曝光帧视频图像进行融合,得到融合后的视频,所述第一曝光帧视频图像具有第一权重;
在所述第二变焦模式下,对所述第一曝光帧视频图像和所述第二曝光帧视频图像进行融合,所述第一曝光帧视频图像具有第二权重,得到融合后的视频,所述第一权重大于所述第二权重。
2.根据权利要求1所述的视频处理方法,其特征在于,还包括:
若当前使用的摄像头为第一摄像头,且拍摄缩放倍数属于第一缩放范围,且当前拍摄画面的亮度大于第一亮度阈值,则进入所述第一变焦模式;
若当前使用的摄像头为所述第一摄像头,且拍摄缩放倍数属于第二缩放范围,所述第二缩放范围小于所述第一缩放范围,则进入所述第二变焦模式;
若当前使用的摄像头为所述第一摄像头,且拍摄缩放倍数属于所述第一缩放范围,且当前拍摄画面的亮度不大于所述第一亮度阈值,则进入所述第二变焦模式。
3.根据权利要求2所述的视频处理方法,其特征在于,还包括:
若当前使用的摄像头为第二摄像头,且拍摄缩放倍数属于第三缩放范围,且摄像头ISO属于第一ISO范围,所述第三缩放范围小于所述第二缩放范围,所述第二摄像头的焦距小于所述第一摄像头的焦距,则进入所述第一变焦模式;
若当前使用的摄像头为所述第二摄像头,且拍摄缩放倍数属于第三缩放范围,且摄像头ISO属于第二ISO范围,且当前拍摄画面的亮度大于第二亮度阈值,所述第二ISO范围大于所述第一ISO范围,则进入所述第二变焦模式;
若当前使用的摄像头为所述第二摄像头,且摄像头的缩放倍数属于第四缩放范围,所述第四缩放范围小于所述第三缩放范围,且当前拍摄画面的亮度大于第三亮度阈值,则进入所述第二变焦模式。
4.根据权利要求3所述的视频处理方法,其特征在于,还包括:
若当前使用的摄像头为所述第二摄像头,且拍摄缩放倍数属于所述第二缩放范围,且拍摄画面的亮度不大于第四亮度阈值,则进入所述第二变焦模式;
若当前使用的摄像头为所述第二摄像头,且拍摄缩放倍数属于所述第二缩放范围,且拍摄距离小于距离阈值,则进入所述第二变焦模式;
若当前使用的摄像头为所述第二摄像头,且拍摄缩放倍数属于所述第一缩放范围,且拍摄画面的亮度不大于所述第一亮度阈值,则进入所述第二变焦模式;
若当前使用的摄像头为所述第二摄像头,且拍摄缩放倍数属于所述第一缩放范围,且拍摄距离小于距离阈值,则进入所述第一变焦模式。
5.根据权利要求1所述的视频处理方法,其特征在于,还包括:
在所述第一变焦模式下,通过所述摄像头当前的感光度ISO所对应的对数LOG曲线对所述融合后的视频行处理,得到LOG视频;
基于颜色查找表LUT对所述LOG视频进行处理,得到经过LUT处理后的视频。
6.根据权利要求1所述的视频处理方法,其特征在于,还包括:
所述对所述第一曝光帧视频图像进行超分算法处理包括:
获取所述第一曝光帧视频图像对应的统计信息;
将所述统计信息以及所述第一曝光帧视频图像的RAW图像作为输入进行超分算法处理,得到处理后的第一曝光帧视频图像的RAW图像。
7.根据权利要求5所述的视频处理方法,其特征在于,
在第一视频处理流程中执行所述通过所述摄像头当前的感光度ISO所对应的对数LOG曲线对所述融合后的视频行处理,得到LOG视频的过程、以及所述基于颜色查找表LUT对所述LOG视频进行处理,得到经过LUT处理后的视频的过程;
所述视频处理方法还包括第二视频处理流程,所述第二视频处理流程包括:
通过所述摄像头当前的感光度ISO所对应的对数LOG曲线对所述融合后的视频行处理,得到LOG视频;
基于查找表LUT对所述LOG视频进行处理,得到经过LUT处理后的视频;
所述视频处理方法还包括:
将所述第一视频处理流程中经过LUT处理后的视频进行保存;
将所述第二视频处理流程中经过LUT处理后的视频进行预览。
8.一种视频处理装置,其特征在于,包括:
处理器和存储器,所述存储器用于存储至少一条指令,所述指令由所述处理器加载并执行时以实现如权利要求1至7中任意一项所述的视频处理方法。
9.一种电子设备,其特征在于,包括:
摄像头;
如权利要求8所述的视频处理装置。
10.一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序,当其在计算机上运行时,使得计算机执行如权利要求1至7中任意一项所述的视频处理方法。
CN202110926921.0A 2021-08-11 2021-08-12 视频处理方法、装置、电子设备和存储介质 Active CN115706870B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202110926921.0A CN115706870B (zh) 2021-08-12 2021-08-12 视频处理方法、装置、电子设备和存储介质
US18/548,465 US20240137650A1 (en) 2021-08-11 2022-05-23 Video Processing Method and Apparatus, Electronic Device, and Storage Medium
PCT/CN2022/094782 WO2023016044A1 (zh) 2021-08-12 2022-05-24 视频处理方法、装置、电子设备和存储介质
EP22855030.7A EP4287604A1 (en) 2021-08-12 2022-05-24 Video processing method and apparatus, electronic device, and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110926921.0A CN115706870B (zh) 2021-08-12 2021-08-12 视频处理方法、装置、电子设备和存储介质

Publications (2)

Publication Number Publication Date
CN115706870A true CN115706870A (zh) 2023-02-17
CN115706870B CN115706870B (zh) 2023-12-26

Family

ID=85181024

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110926921.0A Active CN115706870B (zh) 2021-08-11 2021-08-12 视频处理方法、装置、电子设备和存储介质

Country Status (4)

Country Link
US (1) US20240137650A1 (zh)
EP (1) EP4287604A1 (zh)
CN (1) CN115706870B (zh)
WO (1) WO2023016044A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117560574A (zh) * 2024-01-10 2024-02-13 荣耀终端有限公司 一种拍摄方法、电子设备和可读存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100056279A (ko) * 2008-11-19 2010-05-27 삼성전자주식회사 디지털 영상 처리장치 및 그 제어방법
CN105323425A (zh) * 2014-05-30 2016-02-10 苹果公司 融合图像***中的场景运动校正
CN106791377A (zh) * 2016-11-29 2017-05-31 广东欧珀移动通信有限公司 控制方法、控制装置及电子装置
CN109005342A (zh) * 2018-08-06 2018-12-14 Oppo广东移动通信有限公司 全景拍摄方法、装置和成像设备
CN110121882A (zh) * 2017-10-13 2019-08-13 华为技术有限公司 一种图像处理方法及装置
CN110445988A (zh) * 2019-08-05 2019-11-12 Oppo广东移动通信有限公司 图像处理方法、装置、存储介质及电子设备
CN111418201A (zh) * 2018-03-27 2020-07-14 华为技术有限公司 一种拍摄方法及设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106408518B (zh) * 2015-07-30 2019-09-06 展讯通信(上海)有限公司 图像融合方法、装置及终端设备
CN106251365A (zh) * 2016-07-22 2016-12-21 北京邮电大学 多曝光视频融合方法及装置
US10432869B2 (en) * 2016-09-07 2019-10-01 Multimedia Image Solution Limited Method of utilizing wide-angle image capturing element and long-focus image capturing element for achieving clear and precise optical zooming mechanism
CN110087003B (zh) * 2019-04-30 2021-03-23 Tcl华星光电技术有限公司 多曝光图像融合方法
CN110619593B (zh) * 2019-07-30 2023-07-04 西安电子科技大学 一种基于动态场景的双曝光视频成像***
CN111510698A (zh) * 2020-04-23 2020-08-07 惠州Tcl移动通信有限公司 图像处理方法、装置、存储介质及移动终端
CN111917950B (zh) * 2020-06-30 2022-07-22 北京迈格威科技有限公司 图像处理方法、装置、电子设备及存储介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100056279A (ko) * 2008-11-19 2010-05-27 삼성전자주식회사 디지털 영상 처리장치 및 그 제어방법
CN105323425A (zh) * 2014-05-30 2016-02-10 苹果公司 融合图像***中的场景运动校正
CN106791377A (zh) * 2016-11-29 2017-05-31 广东欧珀移动通信有限公司 控制方法、控制装置及电子装置
CN110121882A (zh) * 2017-10-13 2019-08-13 华为技术有限公司 一种图像处理方法及装置
CN111418201A (zh) * 2018-03-27 2020-07-14 华为技术有限公司 一种拍摄方法及设备
CN109005342A (zh) * 2018-08-06 2018-12-14 Oppo广东移动通信有限公司 全景拍摄方法、装置和成像设备
CN110445988A (zh) * 2019-08-05 2019-11-12 Oppo广东移动通信有限公司 图像处理方法、装置、存储介质及电子设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117560574A (zh) * 2024-01-10 2024-02-13 荣耀终端有限公司 一种拍摄方法、电子设备和可读存储介质

Also Published As

Publication number Publication date
WO2023016044A1 (zh) 2023-02-16
EP4287604A1 (en) 2023-12-06
US20240137650A1 (en) 2024-04-25
CN115706870B (zh) 2023-12-26

Similar Documents

Publication Publication Date Title
CN113810641B (zh) 视频处理方法、装置、电子设备和存储介质
CN115242992B (zh) 视频处理方法、装置、电子设备和存储介质
CN113810642B (zh) 视频处理方法、装置、电子设备和存储介质
US11317070B2 (en) Saturation management for luminance gains in image processing
US10600170B2 (en) Method and device for producing a digital image
CN113824914B (zh) 视频处理方法、装置、电子设备和存储介质
CN114449199B (zh) 视频处理方法、装置、电子设备和存储介质
WO2023016044A1 (zh) 视频处理方法、装置、电子设备和存储介质
WO2023016040A1 (zh) 视频处理方法、装置、电子设备和存储介质
CN115706766B (zh) 视频处理方法、装置、电子设备和存储介质
CN115706764B (zh) 视频处理方法、装置、电子设备和存储介质
CN115706863B (zh) 视频处理方法、装置、电子设备和存储介质
CN115706767B (zh) 视频处理方法、装置、电子设备和存储介质
CN115706853A (zh) 视频处理方法、装置、电子设备和存储介质
JP2018133658A (ja) 画像処理装置、制御方法およびプログラム

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant