CN115573036B - 一种高κ层状***氧铋介电材料及其制备方法与应用 - Google Patents

一种高κ层状***氧铋介电材料及其制备方法与应用 Download PDF

Info

Publication number
CN115573036B
CN115573036B CN202110763379.1A CN202110763379A CN115573036B CN 115573036 B CN115573036 B CN 115573036B CN 202110763379 A CN202110763379 A CN 202110763379A CN 115573036 B CN115573036 B CN 115573036B
Authority
CN
China
Prior art keywords
seo
layered
powder
dielectric material
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110763379.1A
Other languages
English (en)
Other versions
CN115573036A (zh
Inventor
彭海琳
涂腾
张聪聪
朱永朝
王璟岳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peking University
Original Assignee
Peking University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University filed Critical Peking University
Priority to CN202110763379.1A priority Critical patent/CN115573036B/zh
Publication of CN115573036A publication Critical patent/CN115573036A/zh
Application granted granted Critical
Publication of CN115573036B publication Critical patent/CN115573036B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/46Sulfur-, selenium- or tellurium-containing compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B28/00Production of homogeneous polycrystalline material with defined structure
    • C30B28/02Production of homogeneous polycrystalline material with defined structure directly from the solid state
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/64Flat crystals, e.g. plates, strips or discs
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/02Heat treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate

Abstract

本发明公开了一种高κ层状Bi2SeO5介电材料及其制备方法。该层状Bi2SeO5介电材料的制备方法,包括如下步骤:以Bi2O3粉末和SeO2粉末为原料,在抽真空的石英管中进行高温固相反应,反应完毕后即得到所述层状Bi2SeO5高纯粉体。将反应得到的Bi2SeO5粉体取出,研磨,二次封入石英管进行化学气相输运,反应完毕后即得到所述层状Bi2SeO5单晶块材。该方法简单易行、所得Bi2SeO5介电材料单晶块材尺寸大且易于解理成大面积纳米片,具有广阔的应用前景。

Description

一种高κ层状***氧铋介电材料及其制备方法与应用
技术领域
本发明属于介电材料领域,具体涉及一种高κ(κ即相对介电常数)层状***氧铋介电材料及其制备方法与应用。
背景技术
二维层状材料层内为强的化学键合,层与层之间为弱的相互作用,具有显著的成键各向异性。二维材料表面无悬挂键,具有天然的厚度优势和柔性,在电子器件、光电器件、能源催化领域有着广泛的应用。***氧铋(Bi2SeO5)属于正交晶系( Z=8),为沿着a方向层层堆垛的二维层状结构。Tianran Li和Teng Tu等对经二维半导体Bi2O2Se原位氧化得到的多晶和无定形Bi2SeO5的电学输运研究表明,其具有较高的介电常数,介电常数均高于20,属于高κ介电材料。同时,相关的理论计算表明,Bi2SeO5具有较大的体带隙(~3.9eV),属于直接带隙。因此,Bi2SeO5是一种潜在的高κ绝缘介电材料,可能应用于高性能场效应晶体管、逻辑器件等领域。
在目前的栅介质材料中,HfO2、Al2O3等高κ介质属于体相栅介电材料,表面存在的悬挂键和二维半导体材料结合时会对材料的性能造成影响,降低材料的迁移率。使用表面无悬挂键的二维介电材料作为栅介质可以有效解决这一问题,但是现有的二维层状介电材料非常少,其中典型的有六方氮化硼(h-BN)、MoO3和V2O5等。h-BN是目前唯一被广泛使用的二维介电材料,但是它的相对介电常数较小(3~4),对半导体沟道的调控能力有限。高κ的MoO3(~3.0eV)和V2O5(~2.8eV)带隙偏小,与半导体材料进行匹配时较难满足栅介质与半导体沟道的ΔEC和ΔEv超过1eV的要求,可能导致较大的栅漏电流。
因此,高κ二维层状介电材料的可控合成是后摩尔时代器件微缩的关键和瓶颈问题。迄今为止,可被广泛作为栅介质和封装层应用于纳米器件的高κ二维层状材料尚未见报道,找寻一种具有普适性的高κ二维层状材料至关重要。
发明内容
本发明的目的是提供一种高κ层状***氧铋介电材料及其制备方法。
本发明所提供层状Bi2SeO5介电材料的制备方法,包括如下步骤:
1)以Bi2O3粉末和SeO2粉末为原料,进行高温固相反应,反应完毕后得到层状Bi2SeO5高纯粉体;
2)将所述Bi2SeO5高纯粉体研磨成Bi2SeO5粉末,加入输运剂I2晶体,混合均匀后通过化学气相输运方法生长Bi2SeO5块材单晶;生长完成后,退火除去表面残留I2,得到层状Bi2SeO5单晶块材。
上述方法步骤1)中,所述Bi2O3粉末与SeO2粉末的摩尔比为1:1。
上述方法步骤1)中,所述高温固相反应的反应温度为550-890℃,具体可为600℃、800℃或850℃;反应时间为6-36小时,具体可为6、12或24小时。
上述方法步骤1)中,所述高温固相反应具体在抽真空的密封石英管中进行;
更具体的,所述抽真空的密封石英管的底部位于带有温度梯度的管式炉的中心位置。
所述管式炉单侧带有温度梯度的温区长度为15cm,密封的石英管部分长度为13cm。
所述方法在步骤1)后步骤2)前还包括如下步骤:在所述高温固相反应步骤之后,将体系自然降温至室温。
上述方法步骤2)中,所述Bi2SeO5粉末与输运剂I2单晶的质量比为1:0.005~0.02,具体可为1:0.005、1:0.01或1:0.015。
上述方法步骤2)中,所述化学气相输运方法的反应温度为800~890℃,具体可为800℃、850℃、870℃或890℃;反应时间为1~60天,具体可为20、40、45或60天。
上述方法步骤2)中,对Bi2SeO5粉末的粒径无严格要求,一般在20μm以下即可。
上述方法步骤2)中,所述化学气相输运方法具体在抽真空的密封石英管中进行;
更具体的,所述抽真空的密封石英管的底部位于带有温度梯度的管式炉的中心位置。
所述管式炉单侧带有温度梯度的温区长度为15cm,密封的石英管部分长度为13cm。
所述方法步骤2)中还包括如下步骤:在所述化学气相输运方法步骤之后,将体系自然降温至室温。
图1是本发明生长Bi2SeO5块材单晶方法的示意图。
上述方法步骤2)中,所述退火步骤具体在配置低压体系的化学气相沉积***中进行;
所述退火步骤中,载气为氩气;所述氩气的流速为50~200标准毫升/分钟,具体可为50、100、150标准毫升/分钟;
体系压强不另行设置,由氩气流速决定最终平衡气压;
退火温度可为80-120℃,具体可为80℃、100℃或120℃。
退火时间可为30-120分钟,具体可为30、60或90分钟。
上述方法还包括:对所述层状Bi2SeO5单晶块材通过机械解理,获得Bi2SeO5二维纳米片的步骤。
所述机械解理步骤具体通过使用胶带机械解理Bi2SeO5单晶块材后贴在基底上进行;
所述机械解理步骤中,胶带为scotch胶带、蓝膜胶带等,具体可为scotch 600、scotch 610或蓝膜1007R;
胶带对粘-分开次数为1~15次,具体可为1、7或10次;
在基底上贴合时间为1~60分钟,具体可为1、10或30分钟;
贴合时加热温度为室温~100℃,具体可为室温、50℃或80℃;
所述基底为300nm SiO2/Si基底、熔融石英基底等。
另外,按照上述方法制备得到的层状Bi2SeO5介电材料及该层状Bi2SeO5介电材料作为封装层、栅介电层应用在场效应晶体管、逻辑器件、霍尔器件等,也属于本发明的保护范围。
所述层状Bi2SeO5介电材料室温下介电常数具体可为16,最大击穿场强具体可为30MV/cm。
本发明提供了一种化学气相输运合成高κ层状Bi2SeO5介电材料的制备方法。该方法简单易行、所得Bi2SeO5介电材料单晶块材尺寸大且易于解理成大面积纳米片,具有广阔应用前景。
附图说明
图1是本发明生长Bi2SeO5块材单晶方法的示意图;
图2为本发明介绍的层状Bi2SeO5的晶体结构图;
图3是本发明实施例1中所得层状Bi2SeO5单晶块材的宏观晶体照片;
图4是本发明实施例1中所得层状Bi2SeO5单晶块材的典型X射线衍射数据;
图5是本发明实施例1中所得层状Bi2SeO5单晶块材弯折后的扫描电子显微镜图片;
图6是本发明实施例2中所得二维Bi2SeO5纳米片的光学显微镜照片;
图7是本发明实施例2中所得二维Bi2SeO5纳米片的光学显微镜照片及对应的原子力显微镜图像;
图8是本发明实施例2中所得二维Bi2SeO5纳米片转移到透射载网后的扫描透射电镜-高角环形暗场(STEM-HAADF)低分辨、选区电子衍射及高分辨的图像;
图9是本发明实施例2中所得二维Bi2SeO5纳米片典型的极化电荷随电压的变化曲线;
图10是本发明实施例2中所得二维Bi2SeO5纳米片的电流密度随电压(和电场强度)的变化曲线;
图11是本发明实施例3中所得二维Bi2SeO5纳米片的光学显微镜照片及对应原子力显微镜图像。
具体实施方式
下面结合具体实施例对本发明作进一步阐述,但本发明并不限于以下实施例。所述方法如无特别说明均为常规方法。所述原材料如无特别说明均能从公开商业途径获得。
实施例1
称取6.9894克Bi2O3粉末和1.6644克SeO2粉末(摩尔比1:1),将其混合均匀后置于外径为15mm,长为25cm的底端封口的石英管底部。接着,采用自主搭建的封管***,抽真空,而后通入氩气,再洗气,如此反复2~3次,维持体系压强小于5Pa,使用高温氢氧焰在距离石英管底部13cm处封口。将石英管置于管式炉中加热,反应温度为850℃,反应时间为12h,反应完毕后自然降温至室温。将反应得到的Bi2SeO5粉体取出,研磨成粉末,取8.0g Bi2SeO5粉末与0.04g I2混合均匀后置于外径为一英寸,长为25cm的石英管底部,重复之前的封管步骤。将石英管置于管式炉中加热,反应温度为870℃,反应时间为45天,反应完毕后自然降温至室温。将Bi2SeO5单晶块材从石英管取出,于流速为50标准毫升/分钟的氩气中加热至100℃退火1h,即得到本发明提供的层状Bi2SeO5单晶块材。
图2为该实施例制备所得层状Bi2SeO5介电材料的晶体结构图;由图可知,Bi2SeO5是一种沿着a方向层层堆叠的二维层状材料;
图3是该实施例所得层状Bi2SeO5单晶块材的宏观晶体照片;由图可知,所得层状Bi2SeO5单晶块材的生长呈现了各向异性,形状为长方形,晶体大小大约为0.5-2.0厘米;
图4是该实施例所得层状Bi2SeO5单晶块材的典型X射线衍射数据;由图可知,所得该Bi2SeO5介电材料具有高结晶质量,展现的(100)晶面族证明其层间方向为a方向;
图5是该实施例所得层状Bi2SeO5单晶块材弯折后的扫描电子显微镜图片;由图可知,所得Bi2SeO5介电材料为层状,且具有一定的柔性。
实施例2
取一个实施例1中所得Bi2SeO5单晶块材贴在蓝膜胶带上,反复对贴-撕开,重复8次,于室温下贴在300nm SiO2/Si基底,20分钟后揭起胶带,即在基底上获得二维Bi2SeO5纳米片。
图6是本发明实施例2中所得二维Bi2SeO5纳米片的光学显微镜照片;由图可知,所得二维Bi2SeO5纳米片的最大畴区尺寸大于100微米;
图7是本发明实施例2中所得二维Bi2SeO5纳米片的光学显微镜照片及对应的原子力显微镜图像;由图可知,所得二维Bi2SeO5纳米片台阶高度为1.1nm和2.2nm,与Bi2SeO5单层台阶和双层台阶高度吻合;
图8是该实施例所得二维Bi2SeO5纳米片转移到透射载网后的扫描透射电镜-高角环形暗场(STEM-HAADF)低分辨、选区电子衍射及高分辨的图像;由图可知,所得Bi2SeO5二维晶体的结晶性非常良好,其中高分辨STEM-HAADF图像给出的和/>的间距分别与Bi2SeO5晶体单胞中b和c长度的理论值/>一致;
图9是该实施例所得二维Bi2SeO5纳米片典型的极化电荷随电压的变化曲线;插图中纳米片厚度为35.1nm,电极面积为158μm2,由公式(C为电容,A为电极板面积,ε0为真空介电常数,εr为相对介电常数,d为样品的厚度)算得,所得二维Bi2SeO5纳米片的室温介电常数可达15.5。
图10是该实施例所得二维Bi2SeO5纳米片的电流密度随电压(和电场强度)的变化曲线;由图可知,所得二维Bi2SeO5纳米片的击穿场强可达30MV/cm。
实施例3
取一个实施例1中所得Bi2SeO5单晶块材贴在蓝膜胶带上,反复对贴-撕开,重复11次,于室温下贴在300nm SiO2/Si基底,60分钟后揭起胶带,即在基底上获得二维Bi2SeO5纳米片。
图11是该实施例所得二维Bi2SeO5纳米片的光学显微镜照片及对应原子力显微镜图像;由图可知,所得二维Bi2SeO5纳米片最薄可至单层。

Claims (10)

1.一种层状Bi2SeO5介电材料的制备方法,包括如下步骤:
1)以Bi2O3粉末和SeO2粉末为原料,进行高温固相反应,反应完毕后得到层状Bi2SeO5粉体;
2)将所述Bi2SeO5粉体研磨成Bi2SeO5粉末,加入输运剂I2晶体,混合均匀后通过化学气相输运方法生长Bi2SeO5块材单晶;生长完成后,退火除去表面残留I2,得到层状Bi2SeO5介电材料;所述层状Bi2SeO5介电材料为层状Bi2SeO5单晶块材;
所述步骤1)中,所述Bi2O3粉末与SeO2粉末的摩尔比为1:1;
所述步骤1)中,所述高温固相反应的反应温度为550-890℃;反应时间为6-36小时;
所述步骤2)中,所述Bi2SeO5粉末与输运剂I2单晶的质量比为1:0.005~0.02;
所述步骤2)中,所述化学气相输运方法的反应温度为800~890℃;反应时间为1~60天;
所述步骤2)中,所述退火的温度为80-120℃,退火时间为30-120分钟。
2.根据权利要求1所述的制备方法,其特征在于:所述步骤1)中,所述高温固相反应在抽真空的密封石英管中进行;
所述方法在步骤1)后步骤2)前还包括如下步骤:在所述高温固相反应步骤之后,将体系自然降温至室温。
3.根据权利要求2所述的制备方法,其特征在于:所述步骤1)中,所述抽真空的密封石英管的底部位于带有温度梯度的管式炉的中心位置。
4.根据权利要求1所述的制备方法,其特征在于:所述步骤2)中,所述化学气相输运方法在抽真空的密封石英管中进行;
所述步骤2)中还包括如下步骤:在所述化学气相输运方法步骤之后,将体系自然降温至室温。
5.根据权利要求4所述的制备方法,其特征在于:所述步骤2)中,所述抽真空的密封石英管的底部位于带有温度梯度的管式炉的中心位置。
6.根据权利要求1所述的制备方法,其特征在于:所述步骤2)中,所述退火在配置低压体系的化学气相沉积***中进行;
所述退火中,载气为氩气;所述氩气的流速为50~200标准毫升/分钟。
7.根据权利要求1所述的制备方法,其特征在于:所述方法还包括:对所述层状Bi2SeO5单晶块材通过机械解理,获得层状Bi2SeO5介电材料的步骤,所述层状Bi2SeO5介电材料为二维Bi2SeO5纳米片。
8.根据权利要求7所述的制备方法,其特征在于:所述机械解理通过使用胶带机械解理Bi2SeO5单晶块材后贴在基底上进行;
所述机械解理步骤中,胶带为scotch胶带或蓝膜胶带;
胶带对粘-分开次数为1~15次;
在所述基底上贴合时间为1~60分钟;贴合时加热温度为室温~100℃。
9.权利要求1-8中任一项所述方法制备得到的层状Bi2SeO5介电材料。
10.权利要求9所述的层状Bi2SeO5介电材料作为封装层或栅介电层在制备下述器件中的应用:场效应晶体管、逻辑器件、霍尔器件。
CN202110763379.1A 2021-07-06 2021-07-06 一种高κ层状***氧铋介电材料及其制备方法与应用 Active CN115573036B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110763379.1A CN115573036B (zh) 2021-07-06 2021-07-06 一种高κ层状***氧铋介电材料及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110763379.1A CN115573036B (zh) 2021-07-06 2021-07-06 一种高κ层状***氧铋介电材料及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN115573036A CN115573036A (zh) 2023-01-06
CN115573036B true CN115573036B (zh) 2024-01-26

Family

ID=84579422

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110763379.1A Active CN115573036B (zh) 2021-07-06 2021-07-06 一种高κ层状***氧铋介电材料及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN115573036B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101552146B1 (ko) * 2014-08-28 2015-09-11 중앙대학교 산학협력단 새로운 스트론튬 비스무스 셀레나이트 수화물
CN105195180A (zh) * 2015-10-27 2015-12-30 福州大学 一种新型硒酸铋光催化剂及其制备方法与应用
CN109402739A (zh) * 2018-12-19 2019-03-01 清华-伯克利深圳学院筹备办公室 一种二维铋氧硒原子晶体材料、及其制备方法和用途
CN112158810A (zh) * 2020-10-14 2021-01-01 南京理工大学 一种化学气相传输制备二维InGeTe3纳米片及其异质结的方法
CN112359421A (zh) * 2021-01-12 2021-02-12 中国人民解放军国防科技大学 一种反向气流法制备层状铋氧硒半导体薄膜的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101552146B1 (ko) * 2014-08-28 2015-09-11 중앙대학교 산학협력단 새로운 스트론튬 비스무스 셀레나이트 수화물
CN105195180A (zh) * 2015-10-27 2015-12-30 福州大学 一种新型硒酸铋光催化剂及其制备方法与应用
CN109402739A (zh) * 2018-12-19 2019-03-01 清华-伯克利深圳学院筹备办公室 一种二维铋氧硒原子晶体材料、及其制备方法和用途
CN112158810A (zh) * 2020-10-14 2021-01-01 南京理工大学 一种化学气相传输制备二维InGeTe3纳米片及其异质结的方法
CN112359421A (zh) * 2021-01-12 2021-02-12 中国人民解放军国防科技大学 一种反向气流法制备层状铋氧硒半导体薄膜的方法

Also Published As

Publication number Publication date
CN115573036A (zh) 2023-01-06

Similar Documents

Publication Publication Date Title
US8795554B2 (en) Sputtering target for oxide semiconductor, comprising InGaO3(ZnO) crystal phase and process for producing the sputtering target
CN103526297B (zh) 一种制备拓扑绝缘体Bi2Se3薄膜的方法
CN106011783B (zh) 一种高迁移率层状硒氧化铋半导体薄膜及其制备方法
JP5096250B2 (ja) 酸化物焼結体の製造方法、酸化物焼結体、スパッタリングタ−ゲット、酸化物薄膜、薄膜トランジスタの製造方法及び半導体装置
TWI235430B (en) Semiconductor device
KR102271060B1 (ko) 층상형 AlN, 이의 제조 방법 및 이로부터 박리된 AlN 나노시트
US9082682B2 (en) Insulating sheet having heterogeneous laminated structure, method of manufacturing the same, and transistor including the insulating sheet
Yang et al. Free‐standing 2D hexagonal aluminum nitride dielectric crystals for high‐performance organic field‐effect transistors
EP1313134A1 (en) Semiconductor polysilicon component and method of manufacture thereof
CN108039403B (zh) 一种高质量晶圆级硒氧化铋半导体单晶薄膜的批量化制备方法
CN112359421B (zh) 一种反向气流法制备层状铋氧硒半导体薄膜的方法
Zhao et al. Epitaxial growth of two-dimensional SnSe 2/MoS 2 misfit heterostructures
CN113278948B (zh) 一种硫化锡/二硫化锡异质结材料及其制备方法
CN110342472A (zh) 一种新型三元化合物InGeTe3单晶的二维超薄材料及其制备方法
CN115573036B (zh) 一种高κ层状***氧铋介电材料及其制备方法与应用
CN114606568A (zh) 低维碲晶体的制备方法
CN102270737B (zh) 一种具有内禀铁磁性ZnO基稀磁半导体薄膜及其制备方法
CN102071405B (zh) 一种多晶硅薄膜制备方法
CN110344025B (zh) 一种二维Zn掺杂Ca2Si纳米薄膜及其化学气相沉积方法
CN110424054B (zh) 二维层状GeP单晶纳米薄膜的制备方法及应用
CN113035692B (zh) 一种超宽禁带二维半导体GaPS4的制备方法
CN114920213A (zh) 一种二硒化钨的制备方法
WO2021242509A1 (en) Two-dimensional silicon carbide materials and fabrication methods thereof
CN100357499C (zh) 一种制备室温铁磁性Zn1-xMnxO稀磁半导体纳米线的方法
Shan et al. The carrier transport properties of B-doped Si nanocrystal films with various doping concentrations

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant