CN115563848A - 一种基于深度学习的分布式光伏总辐射预测方法及*** - Google Patents

一种基于深度学习的分布式光伏总辐射预测方法及*** Download PDF

Info

Publication number
CN115563848A
CN115563848A CN202110741009.8A CN202110741009A CN115563848A CN 115563848 A CN115563848 A CN 115563848A CN 202110741009 A CN202110741009 A CN 202110741009A CN 115563848 A CN115563848 A CN 115563848A
Authority
CN
China
Prior art keywords
total radiation
data
prediction
distributed photovoltaic
historical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110741009.8A
Other languages
English (en)
Inventor
丁煌
董昱
吴福保
董存
马文文
雷震
吴骥
周海
周才期
郝雨辰
陈卫东
秦放
朱想
程序
崔方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
China Electric Power Research Institute Co Ltd CEPRI
State Grid Jiangsu Electric Power Co Ltd
Original Assignee
State Grid Corp of China SGCC
China Electric Power Research Institute Co Ltd CEPRI
State Grid Jiangsu Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, China Electric Power Research Institute Co Ltd CEPRI, State Grid Jiangsu Electric Power Co Ltd filed Critical State Grid Corp of China SGCC
Priority to CN202110741009.8A priority Critical patent/CN115563848A/zh
Publication of CN115563848A publication Critical patent/CN115563848A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/27Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Artificial Intelligence (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Mathematical Physics (AREA)
  • Computing Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Geometry (AREA)
  • Medical Informatics (AREA)
  • Computer Hardware Design (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明涉及一种基于深度学习的分布式光伏总辐射预测方法及***,包括:基于预先确定的分布式光伏总辐射的气象影响因子筛选出预测时段的数值天气预报数据;将筛选出的预测时段的数值天气预报数据代入预先建立的基于深度学习的总辐射预测模型中,得到预测时段分布式光伏总辐射的预测值;其中,分布式光伏总辐射的气象影响因子是利用预测区域内气象监测站历史总辐射数据之间的相关性确定的;所述总辐射预测模型对数值模式预报数据和总辐射监测数据利用神经网络模型进行迭代训练得到预测时段对应的分布式光伏总辐射预测数据。本发明提供的技术方案,充分考虑影响分布式光伏总辐射的主要气象影响因子,提高了分布式光伏总辐射预测数据的准确性。

Description

一种基于深度学习的分布式光伏总辐射预测方法及***
技术领域
本发明涉及新能源技术领域,具体涉及一种基于深度学习的分布式光伏总辐射预测方法及***。
背景技术
随着新能源的发展,分布式光伏发电在用电负荷的占比逐步增加。分布式光伏数量多、规模小、地理位置分散、运行环境复杂、通信基础设施落后、运行维护主体不明确。分布式光伏发电最主要的影响因素是总辐射,但分布式光伏总辐射数据监测因诸多复杂原因,存在信息采集面临数据采集率低、可靠性差、缺乏控制能力、自动化主站技术支撑能力不足等问题。
发明内容
针对现有技术的不足,本发明提供一种基于深度学习的分布式光伏总辐射预测方法,包括:
基于预先确定的分布式光伏总辐射的气象影响因子筛选出预测时段的数值天气预报数据;
将筛选出的预测时段的数值天气预报数据代入预先建立的基于深度学习的总辐射预测模型中,得到预测时段分布式光伏总辐射的预测值;
其中,所述分布式光伏总辐射的气象影响因子是利用预测区域内气象监测站历史总辐射数据之间的相关性确定的;
所述总辐射预测模型对数值模式预报数据和总辐射监测数据利用神经网络模型进行迭代训练得到预测时段对应的分布式光伏总辐射预测数据。
优选的,所述分布式光伏总辐射的气象影响因子的确定过程包括:
基于区域内所有分布式光伏点的位置信息确定最近的气象监测站;
获取所述气象站的历史总辐射时序数据,并获取与所述历史总辐射时序数据对应的多个气象要素的时序数据;
确定获取的与所述历史总辐射时序数据对应的多个气象要素的时序数据与历史总辐射时序数据的相关性系数,并基于所述相关性系数确定分布式光伏总辐射的气象影响因子。
进一步的,所述获取的与所述历史总辐射时序数据对应的多个气象要素的时序数据与历史总辐射时序数据的相关性系数的计算式如下所示:
Figure BDA0003142849670000021
式中,rx为第x个类型的气象要素与历史总辐射监测数据的相关系数,xi为第x个类型的气象要素的时序数据中第i个时刻的气象数据,x为第x个类型的气象要素的时序数据中各时刻的气象数据的平均值,yi为第i个时刻的历史总辐射监测数据,y为历史总辐射监测数据的平均值,n为时刻总数。
优选的,所述气象影响因子,包括:
总辐射、气温、相对湿度、海平面气压和风速。
优选的,所述总辐射预测模型的建立过程包括:
将筛选出的历史时段内影响分布式光伏总辐射的数值天气预报数据作为初始神经网络模型输入数据,历史时段的总辐射监测数据作为初始神经网络模型输出数据,并根据初始神经网络模型输入数据确定初始神经网络模型的基函数的中心和方差;
基于所述基函数的中心和方差,对所述初始神经网络模型的权系数进行迭代训练,得到深度学习总辐射预测模型。
进一步的,所述基于所述基函数的中心和方差,对所述初始神经网络模型的权系数进行迭代训练,得到深度学习总辐射预测模型,包括:
设置初始神经网络模型的权系数的初值;
基于所述基函数的中心、方差和权系数的初值,对所述初始神经网络模型的权系数进行迭代训练,并利用最小二乘法确定迭代收敛时初始神经网络的权系数;
利用初始神经网络的权系数确定历史时段内的总辐射监测数据与筛选出的历史时段内影响分布式光伏总辐射的数值天气预报数据的对应关系;
基于历史时段内的总辐射监测数据与筛选出历史时段内影响分布式光伏总辐射的数值天气预报数据的对应关系确定深度学习总辐射预测模型。
进一步的,所述基函数的中心是基于K均值聚类算法的自组织选取方法确定的。
进一步的,所述基函数的方差是基于基函数中心之间的最大距离确定的。
基于同一发明构思本发明提供了一种基于深度学习的分布式光伏总辐射预测***,所述***包括:
筛选模块,用于基于预先确定的分布式光伏总辐射的气象影响因子筛选出预测时段的数值天气预报数据;
预测模块,用于将筛选出的预测时段的数值天气预报数据代入预先建立的基于深度学习的总辐射预测模型中,得到预测时段分布式光伏总辐射的预测值;
其中,所述分布式光伏总辐射的气象影响因子是利用预测区域内气象监测站历史总辐射数据之间的相关性确定的;
所述总辐射预测模型对数值模式预报数据和总辐射监测数据利用神经网络模型进行迭代训练得到预测时段对应的分布式光伏总辐射预测数据。
优选的,所述分布式光伏总辐射的气象影响因子的确定过程包括:
基于区域内所有分布式光伏点的位置信息确定最近的气象监测站;
获取所述气象站的历史总辐射时序数据,并获取与所述历史总辐射时序数据对应的多个气象要素的时序数据;
确定获取的与所述历史总辐射时序数据对应的多个气象要素的时序数据与历史总辐射时序数据的相关性系数,并基于所述相关性系数确定分布式光伏总辐射的气象影响因子。
与最接近的现有技术相比,本发明具有的有益效果:
本发明提供的一种基于深度学习的分布式光伏总辐射预测方法及***,包括:基于预先确定的分布式光伏总辐射的气象影响因子筛选出预测时段的数值天气预报数据;将筛选出的预测时段的数值天气预报数据代入预先建立的基于深度学习的总辐射预测模型中,得到预测时段分布式光伏总辐射的预测值;其中,分布式光伏总辐射的气象影响因子是利用预测区域内气象监测站历史总辐射数据之间的相关性确定的;所述总辐射预测模型对数值模式预报数据和总辐射监测数据利用神经网络模型进行迭代训练得到预测时段对应的分布式光伏总辐射预测数据。本发明提供的技术方案,充分考虑影响分布式光伏总辐射的主要气象影响因子,提高了分布式光伏总辐射预测数据的准确性。
附图说明
图1是本发明提供的一种基于深度学习的分布式光伏总辐射预测方法的流程图;
图2是本发明提供的基于深度学习的总辐射预测模型示意图;
图3是本发明提供的一种基于深度学习的分布式光伏总辐射预测***的结构图。
具体实施方式
下面结合附图对本发明的具体实施方式作进一步的详细说明。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
实施例1
本发明提供了一种基于深度学习的分布式光伏总辐射预测方法,目的是基于预先确定的分布式光伏总辐射的气象影响因子,进行分布式光伏总辐射的预测,从而提高分布式光伏总辐射预测数据的准确性。
为实现上述目的,本发明提出的一种基于深度学习的分布式光伏总辐射预测方法,如图1所示,包括:
步骤1:基于预先确定的分布式光伏总辐射的气象影响因子筛选出预测时段的数值天气预报数据;
步骤2:将筛选出的预测时段的数值天气预报数据代入预先建立的基于深度学习的总辐射预测模型中,得到预测时段分布式光伏总辐射的预测值;
其中,所述分布式光伏总辐射的气象影响因子是利用预测区域内气象监测站历史总辐射数据之间的相关性确定的;
所述总辐射预测模型对数值模式预报数据和总辐射监测数据利用神经网络模型进行迭代训练得到预测时段对应的分布式光伏总辐射预测数据。
其中,步骤1中的分布式光伏总辐射的气象影响因子的确定过程如下:
收集预测区域内所有分布式光伏点的经纬度信息,根据这些经纬度寻找离此区域最近的气象监测站(含总辐射、温度、气压、风速等数据,如集中式光伏电站气象监测站)并收集1年的总辐射数据,再利用数值模式预报总辐射监测站对应1年的气象数据,每条数据时间间隔不大于10分钟;
分析1年的总辐射监测数据与数值模式预报总辐射监测站对应1年的气象数据数值天气预报数据中的总辐射、2m气温、相对湿度、海平面气压、10m风速等影响因子的相关性系数,相关性系数r按式下式计算:
Figure BDA0003142849670000051
式中,rx为第x个类型的气象要素与历史总辐射监测数据的相关系数,xi为第x个类型的气象要素的时序数据中第i个时刻的气象数据,x为第x个类型的气象要素的时序数据中各时刻的气象数据的平均值,yi为第i个时刻的历史总辐射监测数据,y为历史总辐射监测数据的平均值,n为时刻总数;
根据总辐射气象影响因子相关性分析(一般是根据相关性系数大小进行挑选,二者相关系数至少要大于0.1),选择总辐射、2m气温、相对湿度、海平面气压、10m风速作为总辐射的影响因子。
步骤2中基于深度学习的总辐射预测模型构建的过程具体如下:
将1年数值模式预报气象要素时序数据作为输入,包含总辐射Rf、2m气温Tf、相对湿度Hf、海平面气压Pf、10m风速Wf,1年监测总辐射数据Ro为输出,建立如图2所示基于深度学习的总辐射预测模型;
其中,所述模型的深度学习中包含N个神经元,第j个隐单元的激励函数选高斯函数,其输出为
Figure BDA0003142849670000052
j=1,2,...,N,X(t)为t时刻一组输入训练样本;G(t)为t时刻高斯函数的中心;σ为高斯函数方差;wj(t)j=1,2,...,N为t时刻隐含层与输出层的权值,并设置了阈值
Figure BDA0003142849670000053
相当于一个隐含层的输出恒为1,表示存在一个输出恒为1的隐含层神经元,从而建立了一个广义网络;本模型中对深度学习的训练过程中基函数的中心、方差以及权重是需要学习的三个重要参数,基函数的中心用基于K均值聚类算法的自组织选取方法确定;基函数方差用
Figure BDA0003142849670000054
确定,其中dmax为选取基函数中心之间的最大距离;隐含层与输出层间的权重用最小二乘法确定,深度学习的输出为
Figure BDA0003142849670000055
本深度学习采用有监督学习,神经网络权系数的学习可以转化为多元线性函数的极值求解问题。在网络学习过程中,若第k次迭代网络输出值是Out(k),目标值(实测值)为tp(k),定义目标函数
Figure BDA0003142849670000056
Figure BDA0003142849670000057
按照负梯度方向调整网络权系数,即
Figure BDA0003142849670000061
经多次迭代,当目标函数J(k)小于某一设定值被认为迭代收敛,停止迭代并确定了网络的权系数,从而完成模型的训练。
当需要对分布式光伏总辐射进行预测时,首先按照前述布式光伏总辐射的气象影响因子筛选过程确定的气象影响因子,利用步骤1的方法获取预测时段的总辐射、2m气温、相对湿度、海平面气压、10m风速时序数据;
数据获取后按照步骤2的方法将获取的数据输入基于深度学习的总辐射预测模型,预测出总辐射预测结果。
为了验证本发明提供的基于深度学习的分布式光伏总辐射预测方法准确度,以南京浦口屋顶光伏电站的数值天气预报数据对本发明的方法进行验证;
下表1为南京浦口屋顶光伏电站使用本发明方法进行总辐射预测的预测误差统计表:
表1南京浦口屋顶光伏电站误差统计
Figure BDA0003142849670000062
从表中可以看出本发明方法的预测效果准确度高,有益于光伏发电功率预测精度的提升;
其中,该平均绝对误差MAE指标反映预测结果的绝对值的误差,可以在一定程度上反映误差的情况。但误差较大的点在做统计平均时容易被淹没,不能反映误差特别大的极端情况,所述平均绝对误差MAE的计算式如下所示:
Figure BDA0003142849670000063
式中,Yl为第l个数据的预测值,Zl为第l个数据的真实值,L为数据个数。
实施例2
基于同一发明构思本发明提供一种基于深度学习的分布式光伏总辐射预测***,如图3所示,所述***包括:
筛选模块,用于基于预先确定的分布式光伏总辐射的气象影响因子筛选出预测时段的数值天气预报数据;
预测模块,用于将筛选出的预测时段的数值天气预报数据代入预先建立的基于深度学习的总辐射预测模型中,得到预测时段分布式光伏总辐射的预测值;
其中,分布式光伏总辐射的气象影响因子是利用预测区域内气象监测站历史总辐射数据之间的相关性确定的;
所述总辐射预测模型对数值模式预报数据和总辐射监测数据利用神经网络模型进行迭代训练得到预测时段对应的分布式光伏总辐射预测数据。
具体的,所述分布式光伏总辐射的气象影响因子的确定过程包括:
基于区域内所有分布式光伏点的位置信息确定最近的气象监测站;
获取所述气象站的历史总辐射时序数据,并获取与所述历史总辐射时序数据对应的多个气象要素的时序数据;
确定获取的与所述历史总辐射时序数据对应的多个气象要素的时序数据与历史总辐射时序数据的相关性系数,并基于所述相关性系数确定分布式光伏总辐射的气象影响因子。
其中,所述获取的与所述历史总辐射时序数据对应的多个气象要素的时序数据与历史总辐射时序数据的相关性系数的计算式如下所示:
Figure BDA0003142849670000071
式中,rx为第x个类型的气象要素与历史总辐射监测数据的相关系数,xi为第x个类型的气象要素的时序数据中第i个时刻的气象数据,
Figure BDA0003142849670000072
为第x个类型的气象要素的时序数据中各时刻的气象数据的平均值,yi为第i个时刻的历史总辐射监测数据,
Figure BDA0003142849670000073
为历史总辐射监测数据的平均值,n为时刻总数。
具体的,所述气象影响因子,包括:
总辐射、气温、相对湿度、海平面气压和风速。
具体的,所述总辐射预测模型的建立过程包括:
将筛选出的历史时段内影响分布式光伏总辐射的数值天气预报数据作为初始神经网络模型输入数据,历史时段的总辐射监测数据作为初始神经网络模型输出数据,并根据初始神经网络模型输入数据确定初始神经网络模型的基函数的中心和方差;
基于所述基函数的中心和方差,对所述初始神经网络模型的权系数进行迭代训练,得到深度学习总辐射预测模型。
其中,所述基于所述基函数的中心和方差,对所述初始神经网络模型的权系数进行迭代训练,得到深度学习总辐射预测模型,包括:
设置初始神经网络模型的权系数的初值;
基于所述基函数的中心、方差和权系数的初值,对所述初始神经网络模型的权系数进行迭代训练,并利用最小二乘法确定迭代收敛时初始神经网络的权系数;
利用初始神经网络的权系数确定历史时段内的总辐射监测数据与筛选出的历史时段内影响分布式光伏总辐射的数值天气预报数据的对应关系;
基于历史时段内的总辐射监测数据与筛选出历史时段内影响分布式光伏总辐射的数值天气预报数据的对应关系确定深度学习总辐射预测模型。
所述基函数的中心是基于K均值聚类算法的自组织选取方法确定的。
所述基函数的方差是基于基函数中心之间的最大距离确定的。
本领域内的技术人员应明白,本申请的实施例可提供为方法、***、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(***)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
最后应当说明的是:以上实施例仅用以说明本发明的技术方案而非对其限制,尽管参照上述实施例对本发明进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本发明的具体实施方式进行修改或者等同替换,而未脱离本发明精神和范围的任何修改或者等同替换,其均应涵盖在本发明的权利要求保护范围之内。

Claims (10)

1.一种基于深度学习的分布式光伏总辐射预测方法,其特征在于,所述方法包括:
基于预先确定的分布式光伏总辐射的气象影响因子筛选出预测时段的数值天气预报数据;
将筛选出的预测时段的数值天气预报数据代入预先建立的基于深度学习的总辐射预测模型中,得到预测时段分布式光伏总辐射的预测值;
其中,所述分布式光伏总辐射的气象影响因子是利用预测区域内气象监测站历史总辐射数据之间的相关性确定的;
所述总辐射预测模型对数值模式预报数据和总辐射监测数据利用神经网络模型进行迭代训练得到预测时段对应的分布式光伏总辐射预测数据。
2.如权利要求1所述的方法,其特征在于,所述分布式光伏总辐射的气象影响因子的确定过程包括:
基于区域内所有分布式光伏点的位置信息确定最近的气象监测站;
获取所述气象站的历史总辐射时序数据,并获取与所述历史总辐射时序数据对应的多个气象要素的时序数据;
确定获取的与所述历史总辐射时序数据对应的多个气象要素的时序数据与历史总辐射时序数据的相关性系数,并基于所述相关性系数确定分布式光伏总辐射的气象影响因子。
3.如权利要求2所述的方法,其特征在于,所述获取的与所述历史总辐射时序数据对应的多个气象要素的时序数据与历史总辐射时序数据的相关性系数的计算式如下所示:
Figure FDA0003142849660000011
式中,rx为第x个类型的气象要素与历史总辐射监测数据的相关系数,xi为第x个类型的气象要素的时序数据中第i个时刻的气象数据,
Figure FDA0003142849660000012
为第x个类型的气象要素的时序数据中各时刻的气象数据的平均值,yi为第i个时刻的历史总辐射监测数据,
Figure FDA0003142849660000013
为历史总辐射监测数据的平均值,n为时刻总数。
4.如权利要求1至2任一项所述的方法,其特征在于,所述气象影响因子,包括:
总辐射、气温、相对湿度、海平面气压和风速。
5.如权利要求1所述的方法,其特征在于,所述总辐射预测模型的建立过程包括:
将筛选出的历史时段内影响分布式光伏总辐射的数值天气预报数据作为初始神经网络模型输入数据,历史时段的总辐射监测数据作为初始神经网络模型输出数据,并根据初始神经网络模型输入数据确定初始神经网络模型的基函数的中心和方差;
基于所述基函数的中心和方差,对所述初始神经网络模型的权系数进行迭代训练,得到深度学习总辐射预测模型。
6.如权利要求5所述的方法,其特征在于,所述基于所述基函数的中心和方差,对所述初始神经网络模型的权系数进行迭代训练,得到深度学习总辐射预测模型,包括:
设置初始神经网络模型的权系数的初值;
基于所述基函数的中心、方差和权系数的初值,对所述初始神经网络模型的权系数进行迭代训练,并利用最小二乘法确定迭代收敛时初始神经网络的权系数;
利用初始神经网络的权系数确定历史时段内的总辐射监测数据与筛选出的历史时段内影响分布式光伏总辐射的数值天气预报数据的对应关系;
基于历史时段内的总辐射监测数据与筛选出历史时段内影响分布式光伏总辐射的数值天气预报数据的对应关系确定深度学习总辐射预测模型。
7.如权利要求5所述的方法,其特征在于,所述基函数的中心是基于K均值聚类算法的自组织选取方法确定的。
8.如权利要求5所述的方法,其特征在于,所述基函数的方差是基于基函数中心之间的最大距离确定的。
9.一种基于深度学习的分布式光伏总辐射预测***,其特征在于,所述***包括:
筛选模块,用于基于预先确定的分布式光伏总辐射的气象影响因子筛选出预测时段的数值天气预报数据;
预测模块,用于将筛选出的预测时段的数值天气预报数据代入预先建立的基于深度学习的总辐射预测模型中,得到预测时段分布式光伏总辐射的预测值;
其中,所述分布式光伏总辐射的气象影响因子是利用预测区域内气象监测站历史总辐射数据之间的相关性确定的;
所述总辐射预测模型对数值模式预报数据和总辐射监测数据利用神经网络模型进行迭代训练得到预测时段对应的分布式光伏总辐射预测数据。
10.如权利要求9所述的***,其特征在于,所述分布式光伏总辐射的气象影响因子的确定过程包括:
基于区域内所有分布式光伏点的位置信息确定最近的气象监测站;
获取所述气象站的历史总辐射时序数据,并获取与所述历史总辐射时序数据对应的多个气象要素的时序数据;
确定获取的与所述历史总辐射时序数据对应的多个气象要素的时序数据与历史总辐射时序数据的相关性系数,并基于所述相关性系数确定分布式光伏总辐射的气象影响因子。
CN202110741009.8A 2021-07-01 2021-07-01 一种基于深度学习的分布式光伏总辐射预测方法及*** Pending CN115563848A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110741009.8A CN115563848A (zh) 2021-07-01 2021-07-01 一种基于深度学习的分布式光伏总辐射预测方法及***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110741009.8A CN115563848A (zh) 2021-07-01 2021-07-01 一种基于深度学习的分布式光伏总辐射预测方法及***

Publications (1)

Publication Number Publication Date
CN115563848A true CN115563848A (zh) 2023-01-03

Family

ID=84737820

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110741009.8A Pending CN115563848A (zh) 2021-07-01 2021-07-01 一种基于深度学习的分布式光伏总辐射预测方法及***

Country Status (1)

Country Link
CN (1) CN115563848A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116760031A (zh) * 2023-08-17 2023-09-15 北京弘象科技有限公司 基于气象数据的高时间分辨率光伏功率预测方法和装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116760031A (zh) * 2023-08-17 2023-09-15 北京弘象科技有限公司 基于气象数据的高时间分辨率光伏功率预测方法和装置
CN116760031B (zh) * 2023-08-17 2023-10-27 北京弘象科技有限公司 基于气象数据的高时间分辨率光伏功率预测方法和装置

Similar Documents

Publication Publication Date Title
CN111833202B (zh) 考虑作物系数动态变化与降雨的农田蒸散量短期预测方法
CN109143408B (zh) 基于mlp的动态区域联合短时降水预报方法
de Guia et al. Using stacked long short term memory with principal component analysis for short term prediction of solar irradiance based on weather patterns
CN117117819A (zh) 一种光伏发电短期功率预测方法、***、设备和介质
CN114357670A (zh) 一种基于bls和自编码器的配电网用电数据异常预警方法
CN116595394A (zh) 风速修正模型的训练方法及风速预测方法、设备和介质
CN112307672A (zh) 基于布谷鸟算法优化的bp神经网络短期风功率预测方法
CN114912716A (zh) 基于双向长短时记忆网络的短期电力负荷预测方法及***
CN112288157A (zh) 一种基于模糊聚类与深度强化学习的风电场功率预测方法
CN117526274A (zh) 极端气候下新能源功率预测方法、电子设备和存储介质
CN114862023A (zh) 基于四维逐点气象预报的分布式光伏功率预测方法及***
CN114897204A (zh) 一种海上风电场短期风速预测方法和装置
CN115563848A (zh) 一种基于深度学习的分布式光伏总辐射预测方法及***
CN116523142A (zh) 一种考虑时空特性聚类的光伏集群区间预测方法
CN113723670B (zh) 变时间窗口的光伏发电功率短期预测方法
CN116484998A (zh) 基于气象相似日的分布式光伏电站功率预测方法及***
CN114676866A (zh) 基于误差修正的负荷日前预测修正方法、设备和存储介质
CN113780644A (zh) 一种基于在线学习的光伏出力预测方法
CN112215383A (zh) 一种分布式光伏发电功率预测方法和***
CN113887843B (zh) 一种风电场输出功率的群体预测方法和***
CN116960960B (zh) 一种面向风电机短期风电功率预测的方法
CN115907131B (zh) 一种北方地区电采暖负荷预测模型搭建方法和***
CN116822658B (zh) 一种风光资源的预警方法、装置、计算机设备及存储介质
CN113516320B (zh) 基于多目标遗传算法风速订正和预测风速优化方法及装置
CN110556820B (zh) 用于确定能量***操作场景的方法和设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination