CN115552817A - 用于上行链路传输的传输块的可缩放大小设定 - Google Patents

用于上行链路传输的传输块的可缩放大小设定 Download PDF

Info

Publication number
CN115552817A
CN115552817A CN202180032179.7A CN202180032179A CN115552817A CN 115552817 A CN115552817 A CN 115552817A CN 202180032179 A CN202180032179 A CN 202180032179A CN 115552817 A CN115552817 A CN 115552817A
Authority
CN
China
Prior art keywords
size
scaling factor
base station
signaling
factor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202180032179.7A
Other languages
English (en)
Inventor
G·斯里德哈兰
G·萨奇斯
H·D·李
K·K·穆克维利
陈万士
P·加尔
朱西鹏
王敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of CN115552817A publication Critical patent/CN115552817A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0006Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format
    • H04L1/0007Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format by modifying the frame length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • H04L1/0011Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding applied to payload information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0025Transmission of mode-switching indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0033Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the transmitter
    • H04L1/0035Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the transmitter evaluation of received explicit signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1822Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

UE可以被配置为:基于从基站接收的用于配置与TB大小相关联的缩放因子或时隙聚合因子中的至少一项的信令,来确定用于传输到基站的TB大小。UE还可以被配置为:在至少一个时隙中向基站发送在TB上的信息,TB具有所确定的大小。基站可以被配置为:向UE发送用于配置与要由所述UE用于传输的TB大小相关联的缩放因子或时隙聚合因子中的至少一项的信令。基站还可以被配置为:从UE接收在具有基于缩放因子或时隙聚合因子中的至少一项的大小的至少一个TB上的信息。

Description

用于上行链路传输的传输块的可缩放大小设定
相关申请的交叉引用
本申请要求享受以下申请的权益:于2020年5月11日递交的并且名称为“METHODAND APPARATUS FOR DETERMINING MODIFIED TB SIZE FOR SLOT AGGREGATION”的序列号为63/023,227的美国临时申请;以及于2021年5月10日递交的并且名称为“SCALABLESIZING OF TRANSPORT BLOCKS FOR UPLINK TRANSMISSIONS”的美国专利申请No.17/316,605,将上述申请的公开内容整体地通过引用的方式明确地并入本文中。
技术领域
概括而言,本公开内容涉及通信***,并且更具体地,本公开内容涉及用于从用户设备到基站的上行链路传输的传输块的大小设定。
背景技术
无线通信***被广泛地部署以提供诸如电话、视频、数据、消息传送和广播的各种电信服务。典型的无线通信***可以采用能够通过共享可用的***资源来支持与多个用户的通信的多址技术。这样的多址技术的示例包括码分多址(CDMA)***、时分多址(TDMA)***、频分多址(FDMA)***、正交频分多址(OFDMA)***、单载波频分多址(SC-FDMA)***和时分同步码分多址(TD-SCDMA)***。
已经在各种电信标准中采用这些多址技术,以提供使不同的无线设备能够在城市、国家、地区以及甚至全球级别进行通信的公共协议。示例电信标准是5G新无线电(NR)。5G NR是由第三代合作伙伴(3GPP)发布的连续移动宽带演进的一部分,以满足与时延、可靠性、安全性、可扩展性(例如,与物联网(IoT)一起)相关联的新要求以及其它要求。5G NR包括与以下各项相关联的服务:增强型移动宽带(eMBB)、大规模机器类型通信(mMTC)、以及超可靠低时延通信(URLLC)。5G NR的一些方面可以是基于4G长期演进(LTE)标准的。存在对5GNR技术的进一步改进的需求。这些改进还可以适用于其它多址技术以及采用这些技术的电信标准。
发明内容
下文给出了对一个或多个方面的简要概述,以便提供对这样的方面的基本理解。该概述不是全部预期方面的广泛综述,并且既不旨在标识全部方面的关键或重要元素,也不旨在描绘任何或全部方面的范围。其唯一目的是以简化形式给出一个或多个方面的一些概念,作为稍后给出的更详细描述的前序。
在有限覆盖场景中(诸如在小区边缘附近)的用户设备(UE)可能经历数据可靠性的一些损失、块错误率(BLER)的增加或以其它方式减少的链路预算。为了适应这些状况并且符合链路预算,在有限覆盖场景中的UE可以尝试减小来自较高层协议数据单元(PDU)的有效载荷比特被映射到其上的传输块(TB)的大小。较小的TB大小设定通常不足以容纳所有的有效载荷比特(当与要在传输中伴随有效载荷比特的报头比特和/或其它强制性控制信息聚合时)。针对该问题的一种方法是对PDU进行分割,使得将有效载荷比特的相应子集指派给TB集合中的每个TB,这些TB作为总体携带上行链路传输中的所有有效载荷比特。
以这种方式划分PDU通常实现对一个较高层PDU的所有有效载荷比特的同时传输。然而,这样的分割可能必然增加发送的控制信息量,例如,因为每个分段将包括与TB传输相关联地容纳的相应报头。此外,可以将在相应TB上发送的每个分段指派给混合自动重传请求(HARQ)过程,这固有地引起关于处理功率、空中信令等的增加的开销。
因此,当处于覆盖受限场景中时尝试满足较低的链路预算可能具有易于增加UE和网络(例如,基站和空中接口)两者上的负载的一些附加效应。这种开销增加可能对以其发送有效载荷比特的有效码率产生不利影响,并且可能抵消(或至少明显地减少)从较小TB大小带来的任何益处。因此,在覆盖受限场景中,存在改进从UE到网络的上行链路传输的需求。
本公开内容提供了用于提高由位于小区边缘附近或其它有限覆盖情形的UE进行的上行链路传输的可靠性和性能的各种技术和解决方案。具体而言,本公开内容的各方面描述了一种UE,其被配置有与满足较低链路预算相反的方法:UE可以扩大或增加用于上行链路传输的TB大小。这种方法可以克服伴随较小TB大小的一些或所有缺点。
例如,增加TB大小可以具有减少为了提供反馈而采纳的信令和HARQ过程的数量的期望效果,例如这是因为可以使用较少的TB来传送相同数量的比特。这种增加可以对在小区边缘附近或以其它方式在有限覆盖内的UE特别有益,这是因为增加的TB大小可以导致数据可靠性的成比例的增加和/或提高的频谱效率。此外,在不显著影响有效码率的情况下可获得较大TB大小的益处,也就是说,包括所有有效载荷比特的较大大小的TB可以具有与有效载荷被分割为的多个较小大小的TB相当的有效码率。
在本公开内容的第一方面中,提供了第一方法、第一计算机可读介质和第一装置。所述第一装置可以是UE或其组件,其可以被配置为:基于从基站接收的用于配置与TB大小相关联的缩放因子或时隙聚合因子中的至少一项的信令,来确定用于传输到所述基站的TB的大小。所述第一装置还可以被配置为:在至少一个时隙中向所述基站发送在所述TB上的信息,所述TB具有所确定的大小。
在本公开内容的第二方面中,提供了第二方法、第二计算机可读介质和第二装置。所述第二装置可以是基站或其组件,其可以被配置为:向UE发送用于配置与要由所述UE用于传输的TB大小相关联的缩放因子或时隙聚合因子中的至少一项的信令。所述第二装置还可以被配置为:从所述UE接收在具有基于所述缩放因子或所述时隙聚合因子中的至少一项的大小的至少一个TB上的信息。
为了实现前述目的和相关目的,一个或多个方面包括下文中充分地描述以及在权利要求中具体指出的特征。下文的描述和附图详细阐述一个或多个方面的某些说明性特征。然而,这些特征仅指示可以在其中采用各个方面的原理的各种方式中的一些方式,以及本说明书旨在包括全部这样的方面以及其等效物。
附图说明
图1是示出无线通信***和接入网络的示例的示意图。
图2A是示出根据本公开内容的各个方面的第一帧的示例的示意图。
图2B是示出根据本公开内容的各个方面的子帧内的下行链路信道的示例的示意图。
图2C是示出根据本公开内容的各个方面的第二帧的示例的示意图。
图2D是示出根据本公开内容的各个方面的子帧内的上行链路信道的示例的示意图。
图3是示出接入网络中的基站和用户设备(UE)的示例的示意图。
图4是示出由基站和UE进行的无线通信和操作的示例流程的呼叫流程图。
图5是由UE进行无线通信的示例方法的流程图。
图6是由基站进行无线通信的示例方法的流程图。
图7是示出用于示例装置的硬件实现的示例的示意图。
图8是示出用于示例装置的硬件实现的示例的另一示意图。
具体实施方式
下文结合附图阐述的详细描述旨在作为对各种配置的描述,而不旨在表示可以在其中实践本文所描述的概念的唯一配置。出于提供对各个概念的全面理解的目的,详细描述包括特定细节。然而,对于本领域技术人员将显而易见的是,可以在没有这些特定细节的情况下实践这些概念。在一些情况下,以框图的形式示出公知的结构和组件,以便避免使这样的概念模糊。
现在将参考各种装置和方法来给出电信***的若干方面。这些装置和方法将在下文的具体实施方式中进行描述,以及在附图中通过各个框、组件、电路、过程、算法等(被统称为“元素”)来示出。可以使用电子硬件、计算机软件或其任何组合来实现这些元素。这样的元素是实现成硬件还是软件,取决于特定应用和施加到整个***上的设计约束。
通过举例的方式,元素、或元素的任何部分或元素的任何组合可以被实现为包括一个或多个处理器的“处理***”。处理器的示例包括微处理器、微控制器、图形处理单元(GPU)、中央处理单元(CPU)、应用处理器、数字信号处理器(DSP)、精简指令集计算(RISC)处理器、片上***(SoC)、基带处理器、现场可编程门阵列(FPGA)、可编程逻辑器件(PLD)、状态机、门控逻辑、分立硬件电路以及被配置为执行遍及本公开内容描述的各种功能的其它合适的硬件。在处理***中的一个或多个处理器可以执行软件。无论是被称为软件、固件、中间件、微代码、硬件描述语言或者其它名称,软件都应当被广泛地解释为意指指令、指令集、计算机可执行代码、代码段、程序代码、程序、子程序、软件组件、应用、软件应用、软件包、例程、子例程、对象、可执行文件、执行的线程、过程、函数等。
相应地,在一个或多个示例实施例中,所描述的功能可以在硬件、软件或者其任何组合中实现。如果在软件中实现,则功能可以作为一个或多个指令或计算机可执行代码来在计算机可读介质上进行存储或者编码。计算机可读介质包括计算机存储介质。存储介质可以是可以由计算机存取的任何可用介质。通过示例而非限制的方式,这样的计算机可读介质可以包括随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程ROM(EEPROM)、光盘存储、磁盘存储、其它磁存储设备、前述类型的计算机可读介质的组合、或者能够用于以能够由计算机存取的指令或数据结构的形式存储计算机可执行代码的任何其它介质。
图1是示出无线通信***和接入网络100的示例的示意图。无线通信***(还被称为无线广域网(WWAN))包括基站102、用户设备(UE)104、演进分组核心(EPC)160以及另一核心网络190(例如,5G核心(5GC))。基站102可以包括宏小区(高功率蜂窝基站)和/或小型小区(低功率蜂窝基站)。宏小区包括基站。小型小区包括毫微微小区、微微小区和微小区。
被配置用于4G长期演进(LTE)(被统称为演进型通用移动电信***(UMTS)陆地无线电接入网络(E-UTRAN))的基站102可以通过第一回程链路132(例如,S1接口)来与EPC160对接。被配置用于5G新无线电(NR)(其可以被统称为下一代无线电接入网络(RAN)(NG-RAN))的基站102可以通过第二回程链路184来与核心网络190对接。除了其它功能之外,基站102还可以执行以下功能中的一个或多个功能:用户数据的传输、无线电信道加密和解密、完整性保护、报头压缩、移动性控制功能(例如,切换、双连接)、小区间干扰协调、连接建立和释放、负载均衡、针对非接入层(NAS)消息的分发、NAS节点选择、同步、RAN共享、多媒体广播多播服务(MBMS)、用户和设备追踪、RAN信息管理(RIM)、寻呼、定位和对警告消息的递送。
在一些方面中,基站102可以通过第三回程链路134(例如,X2接口)彼此直接或间接地(例如,通过EPC 160或核心网络190)通信。第一回程链路132、第二回程链路184和第三回程链路134可以是有线的或无线的。基站102中的至少一些基站可以被配置用于集成接入和回程(IAB)。因此,这样的基站可以与其它这样的基站进行无线通信。例如,被配置用于IAB的基站102中的至少一些基站可以具有拆分架构,其包括中央单元(CU)、分布式单元(DU)、无线单元(RU)、远程无线头端(RRH)和/或远程单元中的至少一者,其中的一些或全部可以是并置或分布式的和/或可以彼此进行通信。在这样的拆分架构的一些配置中,CU可以实现无线电资源控制(RRC)层的一些或全部功能,而DU可以实现无线电链路控制(RLC)层的功能中的一些或全部功能。
说明性地,被配置用于IAB的基站102中的一些基站可以通过相应的CU与IAB施主节点或其它父IAB节点(例如,基站)的DU进行通信,并且进一步地可以通过相应的DU与子IAB节点(例如,其它基站)和/或UE 104中的一个或多个进行通信。被配置用于IAB的基站102中的一者或多者可以是通过CU与EPC 160和/或核心网络190中的至少一者连接的IAB施主。在这样做时,作为IAB施主进行操作的基站102可以针对一个或多个UE和/或其它IAB节点(其可以与IAB施主直接地或者间接地连接(例如,与IAB施主分开达多于一跳))提供去往EPC 160或核心网络190中的一者的链路。在与EPC 160或核心网络190进行通信的背景下,UE和IAB节点两者可以与IAB施主的DU进行通信。在一些另外的方面中,基站102中的一者或多者可以被配置有开放式RAN(ORAN)和/或虚拟化RAN(VRAN)中的连接,这可以通过至少一个相应的CU、DU、RU、RRH和/或远程单元来实现。
基站102可以与UE 104进行无线通信。基站102中的每个基站可以针对相应的地理覆盖区域110提供通信覆盖。可以存在重叠的地理覆盖区域110。例如,小型小区102'可以具有与一个或多个宏基站102的覆盖区域110重叠的覆盖区域110'。包括小型小区和宏小区两者的网络可以被称为异构网络。异构网络还可以包括家庭演进型节点B(eNB)(HeNB),HeNB可以向被称为封闭用户组(CSG)的受限制组提供服务。
在基站102与UE 104之间的通信链路120可以包括从UE 104到基站102的上行链路(还被称为反向链路)传输和/或从基站102到UE 104的下行链路(还被称为前向链路)传输。通信链路120可以使用多输入多输出(MIMO)天线技术,其包括空间复用、波束成形和/或发射分集。通信链路120可以是通过一个或多个分量载波(CC)的。基站102/UE 104可以使用在用于每个方向上的传输的总共多达Yx兆赫(MHz)(例如,x个CC)的载波聚合中分配的、每载波多达Y MHz(例如,5、10、15、20、100、400等MHz)带宽的频谱。CC可以彼此相邻或者可以彼此不相邻。对CC的分配可以是关于下行链路和上行链路不对称的(例如,比上行链路相比,针对下行链路可以分配更多或更少的CC)。
CC可以包括主CC和一个或多个辅CC。主CC可以被称为主小区(PCell),并且每个辅CC可以被称为辅小区(SCell)。当UE对于在接入网络级别的基站以及对于在核心网络级别的至少一个核心网络实体(例如,AMF和/或MME)是已知的,并且UE被配置为在接入网络中接收下行链路控制信息(例如,UE可以处于RRC连接状态)时,PCell也可以被称为“服务小区”。在针对UE配置载波聚合的一些情况下,PCell和一个或多个SCell中的每一者可以是服务小区。
某些UE 104可以使用设备到设备(D2D)通信链路158与彼此进行通信。D2D通信链路158可以使用下行链路/上行链路WWAN频谱。D2D通信链路158可以使用一个或多个侧行链路信道,诸如物理侧行链路广播信道(PSBCH)、物理侧行链路发现信道(PSDCH)、物理侧行链路共享信道(PSSCH)以及物理侧行链路控制信道(PSCCH)。D2D通信可以是通过各种各样的无线D2D通信***的,诸如例如,WiMedia、蓝牙、ZigBee、基于电气与电子工程师协会(IEEE)802.11标准的Wi-Fi、LTE或NR。
无线通信***还可以包括例如在5千兆赫(GHz)非许可频谱等中经由通信链路154来与Wi-Fi站(STA)152相通信的Wi-Fi接入点(AP)150。当在非许可频谱中通信时,STA 152/AP 150可以在通信之前执行空闲信道评估(CCA)以便确定信道是否可用。
小型小区102'可以在经许可和/或非许可频谱中操作。当在非许可频谱中操作时,小型小区102'可以采用NR以及使用如由Wi-Fi AP 150所使用的相同的非许可频谱(例如,5GHz等)。在非许可频谱中采用NR的小型小区102'可以提升对接入网络的覆盖和/或增加接入网络的容量。
电磁频谱通常基于频率/波长而被细分为各种类别、频带、信道等。在5G NR中,两个初始操作频带已经被标识为频率范围名称FR1(410MHz-7.125GHz)和FR2(24.25GHz-52.6GHz)。FR1与FR2之间的频率有时被称为中频带频率。尽管FR1的一部分大于6GHz,但是在各种文档和文章中FR1通常(可互换地)被称为“低于6GHz”频带。关于FR2有时会出现类似的命名问题,尽管与被国际电信联盟(ITU)标识为“毫米波”频带的极高频(EHF)频带(30GHz-300GHz)不同,但是在文档和文章中FR2通常(可互换地)被称为“毫米波”(或“mmWave”或简称“mmW”)频带。
考虑到以上方面,除非另有具体说明,否则应当理解,如果在本文中使用术语“低于6GHz”等,则其可以广泛地表示可以小于6GHz、可以在FR1内、或可以包括中频带频率的频率。此外,除非另有具体说明,否则应当理解,如果在本文中使用术语“毫米波”等,则其可以广泛地表示可以包括中频带频率、可以在FR2内、或者可以在EHF频带内的频率。
基站102(无论是小型小区102’还是大型小区(例如,宏基站))可以包括和/或被称为eNB、gNodeB(gNB)或另一类型的基站。一些基站(诸如gNB 180)可以在传统的低于6GHz频谱中、在毫米波频率和/或近毫米波频率中操作,以与UE 104相通信。当gNB 180在毫米波或者近毫米波频率中操作时,gNB 180可以被称为毫米波基站。毫米波基站180可以利用与UE104的波束成形182,以补偿路径损耗和短距离。基站180和UE 104可以各自包括多个天线,诸如天线元件、天线面板和/或天线阵列以促进波束成形。
基站180可以在一个或多个发送方向182'上向UE 104发送波束成形信号。UE 104可以在一个或多个接收方向182”上从基站180接收波束成形信号。UE 104还可以在一个或多个发送方向上向基站180发送波束成形信号。基站180可以在一个或多个接收方向上从UE104接收波束成形信号。基站180/UE 104可以执行波束训练以确定针对基站180/UE 104中的每一者的最佳接收和发送方向。用于基站180的发送方向和接收方向可以是相同的或者可以是不相同的。用于UE 104的发送方向和接收方向可以是相同的或者可以是不相同的。
EPC 160可以包括移动性管理实体(MME)162、其它MME 164、服务网关166、MBMS网关168、广播多播服务中心(BM-SC)170和分组数据网络(PDN)网关172。MME 162可以与归属用户服务器(HSS)174相通信。MME 162是处理UE 104与EPC 160之间的信令的控制节点。通常,MME 162提供承载和连接管理。全部用户互联网协议(IP)分组是通过服务网关166来传送的,所述服务网关本身连接到PDN网关172。PDN网关172向UE提供IP地址分配以及其它功能。PDN网关172和BM-SC 170连接到IP服务176。IP服务176可以包括互联网、内联网、IP多媒体子***(IMS)、分组交换(PS)流服务和/或其它IP服务。BM-SC 170可以提供用于MBMS用户服务供应和传递的功能。BM-SC 170可以用作针对内容提供方MBMS传输的入口点,可以用以授权并发起公共陆地移动网络(PLMN)内的MBMS承载服务,以及可以用以调度MBMS传输。MBMS网关168可以用以向属于对特定服务进行广播的多播广播单频网络(MBSFN)区域的基站102分发MBMS业务,以及可以负责会话管理(开始/停止)和负责收集与eMBMS相关的计费信息。
核心网络190可以包括接入和移动性管理功能(AMF)192、其它AMF 193、会话管理功能(SMF)194和用户平面功能(UPF)195。AMF 192可以与统一数据管理(UDM)196进行通信。AMF 192是处理UE 104与核心网络190之间的信令的控制节点。通常,AMF 192提供服务质量(QoS)流和会话管理。全部用户IP分组是通过UPF 195来传输的。UPF 195提供UE IP地址分配以及其它功能。UPF 195连接到IP服务197。IP服务197可以包括互联网、内联网、IMS、PS流服务和/或其它IP服务。
基站可以包括和/或被称为gNB、节点B、eNB、接入点、基站收发机、无线电基站、无线电收发机、收发机功能单元、基本服务集(BSS)、扩展服务集(ESS)、发送接收点(TRP)、或者某种其它适当的术语。基站102针对UE 104提供去往EPC 160或核心网络190的接入点。UE104的示例包括蜂窝电话、智能电话、会话发起协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线单元、全球定位***、多媒体设备、视频设备、数字音频播放器(例如,MP3播放器)、摄像机、游戏控制台、平板电脑、智能设备、可穿戴设备、运载工具、电表、气泵、大型或小型厨房电器、医疗保健设备、植入物、传感器/致动器、显示器、或者任何其它类似功能的设备。UE 104中的一些UE可以被称为IoT设备(例如,停车计费表、气泵、烤箱、运载工具、心脏监护仪等)。UE 104还可以称为站、移动站、订户站、移动单元、订户单元、无线单元、远程单元、移动设备、无线设备、无线通信设备、远程设备、移动订户站、接入终端、移动终端、无线终端、远程终端、手持设备、用户代理、移动客户端、客户端或者某种其它适当的术语。
再次参考图1,在某些方面中,无线电接入网络和其它无线网络可以建立定时结构,以将无线信道离散地划分为相应的时间资源集合。时间资源可以是可单独地识别的,并且因此,无线信道上的传输可以在时域中进行复用。一些无线电接入技术或其它无线技术可以指代传输在无线电或其它无线通信链路上的持续时间,其以传输时间间隔(TTI)为单位。
说明性地,TTI可以是可用作调度单元(例如,用于同步或协调通信)的。例如,可以在调度传输块(TB)在设备的介质访问控制(MAC)层和物理(PHY)层之间的传输时使用TTI。对于每个TTI,可以在设备的MAC层和PHY层之间传输TB中的一个或两个(或另一数量的)TB。长期演进(LTE)无线电接入技术(RAT)的一些版本已经将TTI固定在一(1)毫秒(ms)的持续时间以用于在无线电空中接口上进行传输。然而,5G新无线电(NR)RAT的一些版本允许可变持续时间的TTI(例如,通过不同的子载波间隔配置来实现)。
TTI可以用于确认(ACK)/否定(或非)确认(NACK)反馈机制,诸如作为MAC层实现的混合自动重传请求(HARQ)。虽然这种反馈机制可以改进数据保护并且减少丢失或不可恢复的数据的事件(例如,其中比特集合的传输和所有重传都完全丢失),但是在等待HARQ过程上的ACK反馈时产生一些时延开销量。
减少这种时延开销的方法可以包括TTI捆绑和/或时隙聚合。TTI捆绑可以指代在连续TTI集合上将传输(例如,至少一个TB)与一个或多个对应的重传(例如,具有相同的信息但是具有不同纠错/检测比特集合的TB)“捆绑”,连续TTI集合是在不考虑相关联的HARQ过程上的HARQ反馈的情况下发送的。这种方法对于在小区边缘附近操作或以其它方式具有有限(上行链路)覆盖的UE可能特别有益,因为UE将不会在发送重传之前等待HARQ反馈,并且进一步地,基站可以发送针对作为整体的传输/重传的捆绑的ACK或NACK反馈(而不是针对每个TTI单独地发送)。
与TTI捆绑类似,时隙聚合可以包括在一个或多个经聚合的时隙内调度传输,一个或多个经聚合的时隙然后可以与一个HARQ过程相关联以用于反馈目的。在一些实现中,可以在连续(或连贯)时隙或非连续(或非连贯)时隙的集合内将传输(例如,至少一个TB)与一个或多个重传进行聚合。在一些其它实现中,传输可以包括在多个连续或非连续时隙内调度的比特,其可以包括不具有通过TTI捆绑提供的重传保护的数据。
与在针对每个单独的TTI交换ACK/NACK反馈和/或在接收到针对另一传输(或重传)的ACK/NAC反馈时预测重传的情况下相比,使用任一机制(或其它类似的机制),都在较大的程度上利用了HARQ过程。因此,可以减少在往返时间(RTT)中固有的时延,同时也潜在地减少了与根据ACK/NACK反馈预测重传相称的开销。这样的机制可以提高针对在小区边缘和其它覆盖受限场景中的UE的可靠性和吞吐量。此外,这样的捆绑和聚合机制可以减少来自RLC层的分段的数量。
在一些方面中,对于位于有限覆盖区域内的UE,可以将数据分组分割成较小大小的分组,以便适配在链路预算内。数据分组的每个分段可以利用单独的HARQ过程来发送。然而,这种分割可能增加所发送的控制信息量。在一种配置中,时隙聚合或TTI捆绑可以使得能够在多个时隙(例如,四(4)个时隙)的跨度内发送整个有效载荷/分组,而无需任何额外的分割或增加所发送的控制信息。
具体而言,这样的TB传输方案可以通过冗余版本(RV)循环来实现。简而言之,RV循环可以涉及根据已知模式来分别潜在地在时隙n、时隙n+1、时隙n+2、时隙n+3中循环通过不同的RV,例如,RV 0、RV 2、RV 3、RV 1。然而,在循环到下一RV之前,在多个时隙内重复相同的RV可以允许跨越多个时隙对比特进行符号或软合并,从而允许在接收基站处进行解码时经聚合的时隙(例如,其中使用相同RV而不循环到下一RV的时隙)有效地充当单个TB。
举例来说而非进行限制,基站可以为位于小区的边缘或以其它方式在有限覆盖内的UE分配RB,基站可以在RB上将调制和编码方案(MCS)的调制阶数配置为正交相移键控(QPSK)。说明性地,每个RB的九(9)个符号可以被分配用于上行链路数据信道(诸如物理上行链路共享信道(PUSCH))上的数据传输,并且三(3)个符号可以被分配用于解调参考信号(DM-RS)。
在这样的配置的时域中,一个时隙可以具有携带一数量的编码比特的容量,该数量等于RB数量与每个RB的子载波数量、所分配的数据符号数量和(例如,在PUSCH上每个时隙配置的)重复数量相乘的乘积。因此,利用一(1)个RB、十二(12)个子载波、九(9)个数据符号和两(2)个重复,可以在每个时隙发送总共1×12×9×2=216个编码比特。关于该举例进一步而言,UE可以获得(例如,UE的下层可以从高层获得)被配置有具有328个比特的总大小的稳健报头压缩(RoHC)的自适应多速率(AMR)有效载荷。
总共328个比特大于被配置为在每个时隙发送的216个编码比特。UE可以具有以用于发送AMR有效载荷和RoHC报头的一个选项可以包括将有效载荷细分为两(2)个有效载荷(例如,当总共存在328个比特时,每个有效载荷为164个比特),并且将两个有效载荷细分作为两个单独的TB进行发送。考虑到与携带来自多个其它层(诸如层2(L2)的RLC、介质访问控制(MAC)和分组数据汇聚(PDCP)层)的信息相称的开销(其可以是五(5)个字节或四十(40)个比特),两个TB中的每个TB可以携带一数量的比特,该数量等于分组开销与经细分的有效载荷大小相加的总和,或者40+164=204个比特。使用具有RV循环的两(2)个重复,用于发送具有RoHC的AMR有效载荷(当被细分为两(2)个TB时)的有效码率可以等于每个TB的比特数量除以可用于在每个时隙中传输的编码比特数量的商,或204÷216÷2=0.4722。
图1示出了这样的示例,其中,一个UE 104’可以在被配置有相对小的大小或短持续时间的TB上向基站102’发送一些上行链路传输,以适应差的链路预算。因此,两个比特分段127a、127b可以分开在两个TB 117a、117b上。两个比特分段127a、127b中的每一者可以包括204个比特的相应集合以及相应的错误检测码(EDC)和/或纠错码(ECC)(EDC/ECC)比特,诸如奇偶校验比特。第一比特分段127a可以被携带在前两(2)个时隙中的第一TB 117a中作为具有RV循环的两个重复,并且类似地,第二分段127b可以被携带在后两(2)个时隙中的第二TB 117b中作为具有不同比特的RV循环(并且因此具有不同的EDC/ECC比特)的两个重复。就HARQ处理和/或其它对时间或可靠性敏感操作而言,与单个TB的开销相比,在两个TB117a、117b上的这种分割可能涉及较大开销。
因此,另一选项可以是UE将328个比特作为单个TB进行发送,但是在具有RV循环的四(4)个重复上。如图1所示,UE 104可以在四(4)个时隙内将所有AMR有效载荷比特125(具有RoHC)作为单个TB 115进行发送,其中每个时隙有一个重复,并且RV跨越所有四个重复/时隙是一致的。虽然由于TB 115的大小超过针对一个时隙配置的编码比特数量(例如,每个时隙216个比特),第一传输(第一时隙(时隙1)中的AMR有效载荷比特125的子集)可能是不可解码的,但是RV循环可以使得跨越所有四(4)个时隙的所有比特125能够作为单个TB 115来解码。
实际上,可以利用TTI捆绑或时隙聚合来配置一个TB,该TB具有至少等于用于传输和报头的比特数量的总和的大小,或者328+40=368。这样的配置可以占用具有RV循环的多达四(4)(或更多)个重复,并且因此,用于在四(4)个时隙内将具有RoHC的AMR有效载荷作为单个TB进行发送的有效码率可以等于单个TB的比特数量除以可用于在每个时隙中进行传输的编码比特数量的商,或者328÷216÷4=0.4259。用于整个TB(例如,在具有相同RV的四(4)个时隙内携带具有RoHC的所有AMR有效载荷比特的TB)的该有效码率可以与较小大小的TB相当,同时避免或减少由较小TB大小导致的增加的HARQ使用、增加且冗余的信令、增加的处理器负载和网络拥塞等的不利附加因素。
例如,在减少空中接口上的时延和其它开销方面,这种较大的TB可以是有益的,这是因为相对于较小的TB大小,可以提高频谱效率。由于将具有RoHC的AMR有效载荷跨越两(2)个TB分离需要两(2)个不同的EDC/ECC比特集合以及来自一个或多个L2层(例如,MAC、RLC、PDCP)中的每个层的两个不同的报头,因此在分割有效载荷时可能增加开销,这至少部分地因为针对额外TB采纳了额外的HARQ过程,这可能涉及用于额外的HARQ过程的额外处理功率和ACK/NACK反馈的额外信令。换句话说,在设备性能和空中接口上的网络拥塞方面,较大的TB大小可以是有益的,这是因为与相对较小的TB大小相比,明显减少了针对相对较大的TB大小而编码、发送、解码等的控制和/或其它开销信令量。
可量化地,信道性能可以被测量为每比特信号能量与平均噪声比(Eb/No)或每符号信号能量与平均噪声比(Es/No)。针对4正交幅度调制(4QAM)的调制阶数来实现10-2和10-5的目标块错误率(BLER)所需要的Eb/No(或Es/No)(例如,如在抽头延迟线信道(TDLC)上评估的)可以与有效载荷的比特大小相关。那么对于具有较小比特大小的有效载荷,用于实现目标BLER的Eb/No与TB大小成反比。也就是说,TB上的有效载荷越小,针对该数据有效载荷达到目标BLER所需要的Eb/No就越高。因此,较大的TB大小必然有助于提高的数据可靠性,并且因此,增加或扩大用于上行链路传输的TB大小可以导致更高或相当的有效码率、更低的Eb/No(或Es/No)以及通常更可靠的上行链路通信。
因此,本公开内容描述了用于扩大或增加TB大小的各种技术和解决方案。这种增加对于在小区边缘附近或以其它方式在有限覆盖内的UE可能特别有价值,这是因为增加的TB大小可以导致数据可靠性的成比例增加。加上较低的信令开销和提高的频谱效率,UE和网络(例如,基站)通信和性能两者可以比使用较小的TB大小的通信和性能有所提高。
在各个方面中,UE 104或其组件可以被配置为基于从基站102/180接收的用于配置与TB大小相关联的缩放因子或时隙聚合因子中的至少一项的信令来确定用于传输到基站102/180的TB的大小。UE 104还可以被配置为在至少一个时隙中向基站102/180发送在TB上的信息,其中TB具有所确定的大小(198),所确定的大小可以是从另一TB的大小扩大或增加的。
相应地,基站102/180可以被配置为向UE 104发送用于配置与要由UE 104用于传输的TB大小相关联的缩放因子或时隙聚合因子中的至少一项的信令。基站102/180还可以被配置为从UE 104接收在具有基于缩放因子或时隙聚合因子中的至少一项的大小(例如,放大或增加的大小)的至少一个TB上的信息(198)。
尽管本公开内容可能侧重于5G NR,但是本文描述的概念和各个方面可以适用于其它类似领域,诸如LTE、改进的LTE(LTE-A)、码分多址(CDMA)、全球移动通信***(GSM)或其它无线/无线电接入技术。
图2A是示出5G NR帧结构内的第一子帧的示例的示意图200。图2B是示出5G NR子帧内的下行链路信道的示例的示意图230。图2C是示出5G NR帧结构内的第二子帧的示例的示意图250。图2D是示出5G NR子帧内的上行链路信道的示例的示意图280。5G NR帧结构可以是频分双工(FDD),其中对于特定的子载波集合(载波***带宽),该子载波集合内的子帧专用于下行链路或上行链路,或者5G NR帧结构可以是时分双工(TDD),其中对于特定的子载波集合(载波***带宽),该子载波集合内的子帧专用于下行链路和上行链路两者。在图2A、2C所提供的示例中,假设5G NR帧结构是TDD,其中,子帧4被配置有时隙格式28(其中主要是下行链路),其中D是下行链路,U是上行链路,并且F是在下行链路/上行链路之间灵活使用的,并且子帧3被配置有时隙格式34(其中主要是上行链路)。虽然子帧3、4分别被示为具有时隙格式34、28,但是任何特定的子帧可以被配置有各种可用时隙格式0-61中的任何一者。时隙格式0、1分别是全下行链路、上行链路。其它时隙格式2-61包括下行链路、上行链路和灵活符号的混合。UE通过接收的时隙格式指示符(SFI)而被配置有时隙格式(通过下行链路控制信息(DCI)动态地配置,或通过RRC信令半静态/静态地配置)。要注意的是,下文的描述还适用于作为TDD的5G NR帧结构。
其它无线通信技术可以具有不同的帧结构和/或不同的信道。帧(例如,具有10毫秒(ms))可以被划分为相同大小的子帧(1ms)。每个子帧可以包括一个或多个时隙。子帧还可以包括微时隙,微时隙可以包括7、4或2个符号。每个时隙可以包括7或14个符号,这取决于时隙配置。对于时隙配置0,每个时隙可以包括14个符号,以及对于时隙配置1,每个时隙可以包括7个符号。在下行链路上的符号可以是循环前缀(CP)正交频分复用(OFDM)(CP-OFDM)符号。在上行链路上的符号可以是CP-OFDM符号(对于高吞吐量场景)或离散傅里叶变换(DFT)扩展OFDM(DFT-s-OFDM)符号(还被称为单载波频分多址(SC-FDMA)符号)(对于功率受限场景;限于单流传输)。子帧内的时隙数量是基于时隙配置和数字方案(numerology)的。对于时隙配置0,不同的数字方案μ0至4允许每个子帧分别有1、2、4、8和16个时隙。对于时隙配置1,不同的数字方案0至2允许每个子帧分别有2、4和8个时隙。因此,对于时隙配置0和数字方案μ,存在14个符号/时隙和2μ个时隙/子帧。子载波间隔和符号长度/持续时间是数字方案的函数。子载波间隔可以等于2μ*15千赫兹(kHz),其中μ是数字方案0至4。照此,数字方案μ=0具有15kHz的子载波间隔,以及数字方案μ=4具有240kHz的子载波间隔。符号长度/持续时间与子载波间隔成反比。图2A-2D提供了每时隙具有14个符号的时隙配置0以及每子帧具有4个时隙的数字方案μ=2的示例。时隙持续时间是0.25ms,子载波间隔是60kHz,并且符号持续时间近似为16.67微秒(μs)。在帧集合内,可以存在频分复用的一个或多个不同的带宽部分(BWP)(参见图2B)。每个BWP可以具有特定的数字方案。
资源网格可以用于表示帧结构。每个时隙可以包括资源块(RB)(还被称为物理RB(PRB)),其扩展12个连续子载波。资源网格可以被划分为多个资源元素(RE)。通过每个RE携带的比特数量可以取决于调制方案。
如图2A所示,RE中的一些RE携带针对UE的至少一个导频和/或参考信号(RS)。在一些配置中,RS可以包括用于在UE处的信道估计的至少一个解调RS(DM-RS)(针对一个特定配置被指示成Rx,其中,100x是端口号,但是其它DM-RS配置是可能的)和/或至少一个信道状态信息(CSI)RS(CSI-RS)。在一些其它配置中,RS可以另外或替代地包括至少一个波束测量(或管理)RS(BRS)、至少一个波束细化RS(BRRS)和/或至少一个相位跟踪RS(PT-RS)。
图2B示出了帧的子帧内的各种下行链路信道的示例。物理下行链路控制信道(PDCCH)在一个或多个控制信道单元(CCE)中携带DCI,每个CCE包括九个RE组(REG),每个REG包括OFDM符号中的四个连续的RE。在一个BWP内的PDCCH可以被称为控制资源集合(CORESET)。额外的BWP可以跨越信道带宽位于较大和/或较低的频率处。主同步信号(PSS)可以在帧的特定子帧的符号2内。PSS由UE 104用来确定子帧/符号时序和物理层标识。辅同步信号(SSS)可以在帧的特定子帧的符号4内。SSS由UE用来确定物理层小区标识组号和无线帧时序。基于物理层标识和物理层小区标识组号,UE可以确定物理小区标识符(PCI)。基于PCI,UE可以确定前述DM-RS的位置。携带主信息块(MIB)的物理广播信道(PBCH)可以与PSS和SSS在逻辑上分组在一起以形成同步信号(SS)/PBCH块(还被称为SS块(SSB))。MIB提供***带宽中的RB数量和***帧号(SFN)。物理下行链路共享信道(PDSCH)携带用户数据、不通过PBCH发送的广播***信息(诸如***信息块(SIB))以及寻呼消息。
如图2C所示,RE中的一些RE携带用于基站处的信道估计的DM-RS(针对一种特定配置,其被指示为R,但是其它DMRS配置是可能的)。UE可以发送用于物理上行链路控制信道(PUCCH)的DM-RS和用于物理上行链路共享信道(PUSCH)的DM-RS。可以在PUSCH的前一个或两个符号中发送PUSCH DM-RS。可以根据发送短PUCCH还是长PUCCH以及根据所使用的特定PUCCH格式,以不同的配置来发送PUCCH DM-RS。UE可以发送探测参考信号(SRS)。SRS可以是在子帧的最后的符号中发送的。SRS可以具有梳结构,并且UE可以在所述梳中的一个梳上发送SRS。SRS可以由基站用于信道质量估计,以便在上行链路上实现取决于频率的调度。
图2D示出了帧的子帧内的各种上行链路信道的示例。PUCCH可以如在一种配置中所指示地定位。PUCCH携带上行链路控制信息(UCI),其可以包括调度请求(SR)、信道质量指示符(CQI)、预编码矩阵指示符(PMI)、秩指示符(RI)和HARQ ACK/NACK反馈。PUSCH携带数据,以及可以另外用于携带缓冲器状态报告(BSR)、功率余量报告(PHR)和/或UCI。
图3是在接入网络中的基站310与UE 350相通信的框图。在下行链路中,来自EPC160的IP分组可以被提供给控制器/处理器375。控制器/处理器375实现L2和L3功能。L3包括RRC层,以及L2包括服务数据适配协议(SDAP)层、PDCP层、RLC层和MAC层。控制器/处理器375提供:RRC层功能,其与以下各项相关联:对***信息(例如,MIB、SIB)的广播、RRC连接控制(例如,RRC连接寻呼、RRC连接建立、RRC连接修改和RRC连接释放)、RAT间移动性和用于UE测量报告的测量配置;PDCP层功能,其与以下各项相关联:报头压缩/解压缩、安全性(加密、解密、完整性保护、完整性验证)和切换支持功能;RLC层功能,其与以下各项相关联:对上层分组数据单元(PDU)的传送、通过ARQ的纠错、对RLC服务数据单元(SDU)的串接、分段和重组、对RLC数据PDU的重新分段和对RLC数据PDU的重新排序;以及MAC层功能,其与以下各项相关联:逻辑信道与传输信道之间的映射、对MAC SDU到TB上的复用、对MAC SDU从TB的解复用、调度信息报告、通过HARQ的纠错、优先级处理和逻辑信道优先化。
发送(TX)处理器316和接收(RX)处理器370实现与各种信号处理功能相关联的层1(L1)功能。包括物理(PHY)层的层1可以包括对传输信道的错误检测、对传输信道的前向纠错(FEC)编码/解码、交织、速率匹配、到物理信道上的映射、对物理信道的调制/解调、以及MIMO天线处理。TX处理器316基于各种调制方案(例如,二进制相移键控(BPSK)、QPSK、M相移相键控(M-PSK)、M阶正交幅度调制(M-QAM))来处理到信号星座的映射。然后,可以将经编码和调制的符号分成并行的流。然后,可以将每个流映射到OFDM子载波、在时域和/或频域中与参考信号(例如,导频)进行复用,以及然后使用快速傅立叶逆变换(IFFT)将其组合在一起,以产生携带时域OFDM符号流的物理信道。对OFDM流进行空间预编码以产生多个空间流。来自信道估计器374的信道估计可以用以确定编码和调制方案以及用于空间处理。信道估计可以从由UE 350发送的参考信号和/或信道状况反馈来推导。然后,将每个空间流经由分别的发射机318TX来提供给不同的天线320。每个发射机318TX可以利用相应的空间流来对射频(RF)载波进行调制以用于传输。
在UE 350处,每个接收机354RX通过其相应的天线352来接收信号。每个接收机354RX对调制到RF载波上的信息进行恢复并将该信息提供给接收(RX)处理器356。TX处理器368和RX处理器356实现与各种信号处理功能相关联的L1功能。RX处理器356可以对信息执行空间处理以恢复目的地为UE 350的任何空间流。如果多个空间流目的地为UE 350,则RX处理器356可以将它们组合成单个OFDM符号流。然后,RX处理器356使用快速傅立叶变换(FFT)来将OFDM符号流从时域转换到频域。频域信号可以包括针对OFDM信号的每个子载波的分别的OFDM符号流。通过确定由基站310发送的最有可能的信号星座点来对每个子载波上的符号以及参考信号进行恢复和解调。这些软决策可以是基于由信道估计器358计算出的信道估计的。然后,对软决策进行解码和解交织来恢复最初由基站310在物理信道上发送的数据和控制信号。然后将数据和控制信号提供给控制器/处理器359,控制器/处理器359实现L3和L2功能。
控制器/处理器359可以与存储程序代码和数据的存储器360相关联。存储器360可以被称为计算机可读介质。在上行链路中,控制器/处理器359提供传输信道与逻辑信道之间的解复用、分组重组、解密、报头解压缩和控制信号处理,以恢复来自EPC 160的IP分组。控制器/处理器359还负责使用ACK和/或NACK协议的错误检测以支持HARQ操作。
与结合由基站310进行的下行链路传输所描述的功能类似,控制器/处理器359提供:RRC层功能,其与以下各项相关联:***信息(例如,MIB、SIB)获取、RRC连接和测量报告;PDCP层功能,其与以下各项相关联:报头压缩/解压缩和安全性(加密、解密、完整性保护、完整性验证);RLC层功能,其与以下各项相关联:对上层PDU的传送、通过ARQ的纠错、对RLCSDU的串接、分段和重组、对RLC数据PDU的重新分段和对RLC数据PDU的重新排序;以及MAC层功能,其与以下各项相关联:在逻辑信道与传输信道之间的映射、对MAC SDU到TB上的复用、对MAC SDU从TB的解复用、调度信息报告、通过HARQ的纠错、优先级处理和逻辑信道优先化。
由信道估计器358从由基站310发送的参考信号或反馈推导的信道估计可以由TX处理器368用以选择适当的编码和调制方案,以及用以促进空间处理。可以经由分别的发射机354TX来将由TX处理器368生成的空间流提供给不同天线352。每个发射机354TX可以利用相应的空间流来对RF载波进行调制以用于传输。
在基站310处,以类似于结合UE 350处的接收机功能所描述的方式来处理上行链路传输。每个接收机318RX通过其相应的天线320来接收信号。每个接收机318RX对调制到RF载波上的信息进行恢复并且将该信息提供给RX处理器370。
控制器/处理器375可以与存储程序代码和数据的存储器376相关联。存储器376可以被称为计算机可读介质。在上行链路中,控制器/处理器375提供传输信道与逻辑信道之间的解复用、分组重组、解密、报头解压缩、控制信号处理,以恢复来自UE 350的IP分组。来自控制器/处理器375的IP分组可以被提供给EPC 160。控制器/处理器375还负责使用ACK和/或NACK协议的错误检测来支持HARQ操作。
在一些方面中,TX处理器368、RX处理器356和控制器/处理器359中的至少一者可以被配置为执行与图1的(198)相关的各方面。
在一些其它方面中,TX处理器316、RX处理器370和控制器/处理器375中的至少一者可以被配置为执行与图1的(198)相关的各方面。
图4是示出由基站402和UE 404进行的无线通信和操作的示例流程的呼叫流程图400。基站402可以确定指导UE 404在具有经修改的大小的TB中发送数据有效载荷406。关于基站指导UE 404在具有经修改的大小的TB中发送数据有效载荷的确定可以是基于从UE404接收的BSR的。因此,基站402可以从UE 404接收BSR 428,并且基于所接收的BSR,可以确定指导UE 404在具有经修改的大小的TB中发送数据有效载荷。
例如,BSR可以向基站402通知来自UE 404的未决上行链路传输的数据量,并且潜在地通知这样的数据的分组结构。因此,基站402可以选择或确定适合于供UE 404使用(例如,以使得UE 404能够在单个相应的TB上包括每个单独分组的有效载荷比特)的TB大小。基站402可以计算这样的TB相对于由UE 404用于去往基站402的上行链路传输的当前配置的TB大小的大小。基站402可以依据缩放因子或时隙聚合因子来识别该计算出的TB大小,缩放因子或时隙聚合因子可以指代连续时隙被配置以便在这些连续时隙上使用RV循环的重复数量,因此具有相同RV的这样的时隙可以被视为单个TB。缩放因子或时隙聚合因子可以大于或等于一(1)。缩放因子或时隙聚合因子可以不适用于从基站402到UE 404的下行链路信令,因为TB大小可以通过缩小或减小而有益于基站到UE的下行链路传输。
基站402可以向UE 404发送用于指示MCS、缩放因子S、每个时隙指派的资源数量或时隙聚合因子中的至少一项的信号408。在一些方面中,信号408可以包括来自基站402的用于配置与TB大小相关联的缩放因子或时隙聚合因数中的至少一项的信令。该信息可以指示调制阶数或编码率中的至少一项,并且缩放因子可以是由UE 404基于调制阶数或编码率中的所述至少一项来确定的。
信号408可以包括DCI、配置的授权(CG)、MAC控制元素(CE)和/或RRC消息。换句话说,基站402可以向UE 404发送包括DCI、CG、MAC CE和/或RRC消息的信号,其指示MCS、缩放因子S、每个时隙指派的资源数量或时隙聚合因子中的至少一项。
在一些其它方面中,来自基站402的信令包括索引值,该索引值标识表中的使用该索引值指示缩放因子的条目。例如,UE 404可以从基站402接收用于配置表中的条目集合的其它信令,条目集合中的每个条目至少包括与大于或等于一(1)的相应缩放因子相对应的相应索引值。
UE 404可以基于从基站402接收的信号来确定TB的大小。首先,UE 404可以确定上行链路TB大小缩放因子S(下文简称为缩放因子S)410以确定TB的大小。缩放因子S不同于针对某些下行链路配置(例如,寻呼和随机接入配置)指派的大小缩放因子。缩放因子S可以具有大于或等于1的值。该信号可以包括缩放因子S的值和/或用信号通知缩放因子S的预定义指示符。例如,表1示出了缩放因子S的示例。缩放因子S可以由基站402用信号通知给UE404,并且UE 404可以被DCI、CG(例如,MAC-CE)和/或RRC消息驱动。也就是说,基站402可以在该信号的TB缩放字段中包括比特值,以使用DCI、CG(例如,MAC-CE)和/或RRC消息来向UE404指示缩放因子S。
TB缩放字段 缩放因子S
00 1
01 2
10 4
11 预留
<表1–用于经修改的上行链路TB大小确定的示例缩放因子表>
UE 404确定(和使用)缩放因子S的激活/去激活可以针对多个上行链路时隙数量来半静态地控制,或者响应于从基站402发送的激活/去激活码来动态地控制。具体地,基站402可以向UE 404发送DCI、CG和/或RRC消息,以半静态地或动态地指示UE 404将经修改的TB大小用于上行链路通信。例如,基站402可以半静态地指导UE 404确定缩放因子S,并且将缩放因子S用于设置数量的后续上行链路通信时隙。在其它方面中,可以使用新的缩放因子S,直到接收到显式去激活。基站402还可以动态地激活或去激活UE 404确定缩放因子S并且将缩放因子S用于设置数量的后续上行链路通信时隙。在去激活时,UE 404可以恢复到不基于缩放因子S来确定TB的大小。
UE 404可以基于从基站402接收的DCI、CG和/或RRC消息,基于由UE 404和基站402提前商定的预定义规则来选择缩放因子S。例如,UE 404可以被配置为:当被指派给UE 404的RB数量低于预定义RB门限值时,确定缩放值S并且确定用于上行链路传输的经修改的TB大小。UE 404可以被配置为:当所指派的MCS具有低于预定义RB门限值的调制阶数(例如,将其使用限制到仅具有QPSK调制的MCS)时,确定缩放值S并且确定用于上行链路传输的经修改的TB大小。此外,UE 404可以将缩放值S确定为等于在从基站402接收的DCI中配置的用于数据的重复数量(例如,pusch-AggregationFactor)。预定规则也可以是上文以任何形式的任何组合。
UE 404可以使用缩放因子S并且执行以下操作来确定TB 412的经修改的大小。当确定经修改的TB大小时,UE 404可以利用以下信息:被指派给UE的符号和RB的数量、DM-RS开销、其它开销、层数量和/或编码率。
首先,UE 404可以确定针对PRB内的PUSCH分配的RE数量N′RE
Figure BDA0003917323050000121
其中,
Figure BDA0003917323050000122
Figure BDA0003917323050000123
是被分配给PUSCH的符号和RB的数量,
Figure BDA0003917323050000124
是被指派用于DM-RS开销因子的资源数量,并且
Figure BDA0003917323050000125
是额外开销因子。
UE 404可以确定被分配给PUSCH的RE总数(NRE):
NRE=nprb*min(156,N′RE)
其中,nprb表示被指派给UE 404的PRB总数。
然后,UE 404可以确定经修改的中间信息比特数量(Ninfo):
Ninfo=S*NRE*R*Qm
其中,S是缩放因子,R是编码率,Qm是调制阶数,并且ν是层数量。
在获得经修改的中间信息比特数量Ninfo时,UE 404可以根据两种方法中的一种方法来确定经修改的TB大小,对该方法的选择是基于Ninfo是否等于或小于3824(Ninfo≤3824)的。
当Ninfo等于或小于3824时,UE 404可以计算经量化的中间信息比特数量N′info
Figure BDA0003917323050000126
其中,
Figure BDA0003917323050000131
然后,UE 404可以使用经量化的中间信息比特数量N′info作为索引值,以从表2中找到TB大小。
Figure BDA0003917323050000132
<表2–用于TB大小的示例表,其中Ninfo≤3824>
然而,当Ninfo不等于或小于3824时,即当Ninfo大于3824时,UE可以根据以下等式来计算N′info
Figure BDA0003917323050000141
其中,
Figure BDA0003917323050000142
此外,如果编码率R等于或小于1/4(R≤1/4),则UE 404可以根据以下公式来确定TB大小:
Figure BDA0003917323050000143
其中,
Figure BDA0003917323050000144
如果编码率R不等于或小于1/4(R>1/4),则UE 404可以确定TB大小(TBS):
Figure BDA0003917323050000145
其中,N′info<8424,或者
Figure BDA0003917323050000146
其中,N′info≥8424,
其中,
Figure BDA0003917323050000147
在一些方面中,使用缩放因子S可以将每个时隙的有效码率增加到大于1的值。然而,每个MCS可以具有编码率限制。例如,对于被限制为QPSK的MCS,编码率可以被限制为0.66。因此,UE 404可以将调制阶数414移位以支持使用缩放因子S选择的较大的TB大小。MCS指定调制阶数和编码方案。因此,UE 404被配置为根据MCS来编码和调制数据。调制阶数可以是由与MCS相关联的数据结构(例如,表)中的被标记为Qm的参数来定义的。调制阶数和Qm参数之间的关系可以由相同或不同的数据结构给出,在表3中示出了其示例:
Qm 调制阶数
2 QPSK
4 16QAM
6 64QAM
8 256QAM
<表3–MCS调制阶数>
在一种配置中,UE 404可以将调制阶数移位以确定TB的大小和/或发送TB。具体而言,基站402可以在信号(诸如DCI、CG和/或RRC消息)中向UE 404发送用于将调制阶数移位到较高的调制阶数以确定TB的大小和/或当通过上行链路通信发送TB时将调制阶数移回较低的调制阶数的指令。
在一种配置中,基站402可以指导UE 404使用在MCS索引表中定义的预留范围内的MCS。具体而言,可以指导UE 404以第一调制阶数来发送TB,并且以在预留范围内的MCS的第二调制阶数来重传TB,第二调制阶数低于第一调制阶数。例如,UE 404可以首先向基站402发送使用16QAM MCS而编码和发送的TB,并且重传使用QPSK而编码和发送的TB。因此,UE404可以首先尝试通过较高的调制阶数来发送第一TB。当通信状况有太多噪声或具有太多损失时,存在第一传输因噪声/干扰而失败的高可能性。然而,第一传输是可独立解码的。使用较低码率第二调制阶数来重传TB可以补偿使得TB能够在基站402处成功地接收的有噪声的信道状况。因此,UE 404可以降低违反针对某些类型的传输(例如,语音呼叫传输)的分组延迟预算的可能性。
在另一配置中,基站402可以在DCI、CG和/或RRC消息中添加比特,以指导UE 404调低用于上行链路传输的调制阶数MCS。例如,基站402可以生成DCI以包括用于指示MCS的5个比特并且包括用于指示校正/修改的额外比特。响应于接收DCI、CG和/或RRC消息,UE 404可以基于如指导的MCS的第一调制阶数来确定TB大小,并且将调制阶数移位到低于第一调制阶数的第二调制阶数,并且使用第二调制阶数来重传TB。
具体而言,UE基于具有在DCI、CG和/或RRC消息中提供的第一调制阶数的MCS来确定TB的大小。一旦确定TB大小并且编码完成,UE 404就可以将调制阶数调低为第二调制阶数,并且将编码比特映射到处于第二调制阶数的调制符号。例如,基站402可以向UE 404发送DCI,DCI利用校正/修改比特来用信号通知16QAM MCS。UE 404可以且基于16QAM MCS来选择TB大小并且对数据有效载荷进行编码。然后,UE 404可以将调制阶数调低为QPSK,将编码比特映射到QPSK的调制符号,并且以QPSK调制阶数来发送TB。因此,基站402可以指导UE针对MCS使用与正常值相比较高的值,使得可以选择较大的TB大小来发送数据。
UE 404可以在一系列上行链路时隙418中通过上行链路传输向基站402发送TB416。基站402可以从UE 404接收上行链路传输,并且最初可能无法解码第一时隙。然而,基站402可以存储(例如,缓冲)第一时隙的比特,并且当基站402接收到后续时隙时,基站402可以执行软或符号合并以解码其中包括的有效载荷(例如,根据在该系列的时隙中以其对比特进行编码的RV循环)。
图5是无线通信的方法的流程图500。该方法可以由UE(例如,UE 104、350、404)、装置(例如,装置702)和/或其任何组件来执行。根据各个方面,可以调换、省略和/或同时执行所示的框中的一个或多个框。
在502处,UE可以从基站接收用于配置与TB大小相关联的缩放因子或时隙聚合因子中的至少一项的信令。例如,该信令可以包括来自基站的DCI、CG、MAC CE和/或RRC消息。DCI可以包括来自基站的用于确定用于上行链路传输的经修改的TB大小和/或将MCS的调制阶数移位的半静态或动态指令。该信息可以指示调制阶数或编码率中的至少一项,并且缩放因子可以是由UE基于调制阶数或编码率中的至少一项来确定的。
在图4的背景下,502可以包括UE 404从基站402接收信令408,信令408包括DCI、CG、MAC CE和/或RRC消息中的至少一项。在图7的背景下,502可以由图7的接收组件730来执行。
在504处,UE可以基于从基站接收的DCI、CG和/或RRC消息来确定缩放因子S。在一些方面中,来自基站的信令包括索引值,该索引值标识表中的使用该索引值指示缩放因子的条目。例如,UE可以从基站接收用于配置表中的条目集合的其它信令,条目集合中的每个条目至少包括与大于或等于一(1)的相应缩放因子相对应的相应索引值。
缩放因子和/或时隙聚合因子可以与从与另一TB大小相关联的另一有效码率增加有效码率相关联。缩放因子和/或时隙聚合因子可以不适用于从基站到UE的下行链路信令。例如,可以配置不同的表来修改下行链路上的TB的大小,可以配置下行链路缩放因子来减小TB大小,并且下行链路标量值可以小于或等于一(1)。相反,缩放因子和/或时隙聚合因子可以适用于上行链路传输,并且可以大于或等于一(1)。
UE可以基于从基站接收的DCI、CG和/或RRC消息,基于由UE和基站提前商定的预定义规则来选择缩放因子S。例如,UE可以被配置为:当被指派给UE的RB数量低于预定义RB门限值时,确定缩放值S并且确定用于上行链路传输的经修改的TB大小。UE可以被配置为:当所指派的MCS具有低于预定义RB门限值的调制阶数时,确定缩放值S并且确定用于上行链路传输的经修改的TB大小。此外,UE可以确定缩放值S等于在从基站接收的DCI中配置的用于数据的重复数量(例如,pusch-AggregationFactor)。预定规则也可以是上文以任何形式的任何组合。
在图4的背景下,504可以包括UE 404基于从基站402接收的DCI、CG和/或RRC消息的信令408来确定缩放因子S。在图7的背景下,504可以由图7的缩放因子确定组件742来执行。
在506处,UE可以基于所接收的信令来确定用于上行链路传输的TB的经修改的大小。例如,信令可以包括DCI、CG和/或RRC消息。例如,UE可以基于从基站接收的用于配置与TB大小相关联的缩放因子或时隙聚合因子中的至少一项的信令来确定用于传输到基站的TB的大小。UE可以基于在从基站接收的DCI、CG和/或RRC消息中指示的被指派给UE的符号和RB的数量、DM-RS开销、其它开销、层数量和/或编码率来确定TB的大小。在一些方面中,UE可以通过乘以中间信息比特集合来获得中间信息比特集合,中间信息比特集合是基于缩放因子与用于发送该信息的层数量、用于发送该信息的编码率、用于发送该信息的调制阶数以及被分配用于发送该信息的RE数量相乘的乘积。然后,UE可以将中间信息比特集合与至少一个门限进行比较,以确定UE将在计算经修改的TB大小时要遵循的方法。
在图4的背景下,506可以包括UE 404基于所接收的包括DCI、CG和/或RRC消息的信令408来确定用于上行链路传输的TB的经修改的大小(412)。在图7的背景下,506可以由图7的TB大小确定组件744来执行。
在508处,UE可以基于所接收的DCI、CG和/或RRC消息来将MCS的调制阶数移位,以适应TB的经修改的大小。例如,用于配置与TB大小相关联的缩放因子或时隙聚合因子中的至少一项的信令可以包括用于指示调制阶数或编码率中的至少一项的信息,并且可以基于调制阶数或编码率中的所述至少一项来确定缩放因子。
在图4的背景下,508可以包括UE 404基于包括所接收的DCI、CG和/或RRC消息的信令408来将MCS的调制阶数移位414,以适应TB 416的经修改的大小。在图7的背景下,508可以由图7的数据MCS组件746来执行。
在510处,UE可以向基站发送包括数据有效载荷的TB。TB可以具有所确定的大小,例如,TB可以具有相对于其它TB而扩大或增加的大小。例如,TB可以包括多个时隙,其中有效载荷比特集合被映射在多个时隙中并且被编码有跨越多个时隙一致的冗余版本。
在图4的背景下,510可以包括UE 404在顺序时隙集合418上向基站402发送具有所确定的(例如,放大或增加的)大小的TB(该TB包括数据有效载荷)。在图7的背景下,510可以由图7的数据MCS组件746和/或发送组件734来执行。
在一些方面中,如在512处所示,UE可以在接收用于配置与要携带来自UE的信息的TB的大小相关联的缩放因子或时隙聚合因子中的至少一项之前,向基站发送缓冲器状态报告。基站可以基于BSR来指导UE在具有经修改的大小的TB中发送数据有效载荷,并且在包括DCI、CG和/或RRC消息的信令408中向UE发送这样的指令或与配置相关的指令。
在图4的背景下,510可以包括UE 404向基站402发送BSR 428(例如,在基站402指导UE 404在具有经修改的大小的TB中发送数据有效载荷406之前)。也就是说,基站402可以响应于接收BSR 428或基于BSR 428来向UE 404发送信令408。在图7的背景下,512可以由图7的BSR生成组件740和发送组件734来执行。
图6是无线通信的方法的流程图600。该方法可以由基站(例如,基站102/180、310、402)、装置(例如,装置802)和/或其任何组件来执行。根据各个方面,可以调换、省略和/或同时执行所示的框中的一个或多个框。
在602处,基站可以从UE接收BSR,该BSR可以指示在UE处缓冲的用于上行链路传输的数据。基站可以确定经缓冲的数据是否包括具有可以容纳在当前配置的大小的单个TB上的大小的一个或多个有效载荷,或者经缓冲的数据是否包括具有大于(或等于)当前针对TB配置的大小的大小的多个分组。如果是后者,基站可以确定UE可以从增加的TB大小中受益,例如,如果基站检测到UE在小区边缘附近或者在有限覆盖内的话。
在图4的背景下,602可以包括基站402从UE 404接收BSR 428。在图8的背景下,606可以由图8的接收组件830来执行。
在604处,基站可以基于所接收的BSR来确定指导UE在具有经修改的大小的TB中发送数据有效载荷。基站可以确定由BSR指示的经缓冲的数据是否包括具有可以容纳在当前配置的大小的单个TB上的大小的一个或多个有效载荷,或者经缓冲的数据是否包括具有大于(或等于)当前针对TB配置的大小的大小的多个分组。如果是后者,基站可以确定UE可以从增加的TB大小中受益,例如,如果基站检测到UE在小区边缘附近或者在有限覆盖内的话。因此,基站可以确定指导UE在具有经修改的大小的TB中发送数据有效载荷。
在图4的背景下,604可以包括基站402确定指导UE 404在具有经修改的大小的TB416中发送数据有效载荷406。在图8的背景下,602可以由图8的TB大小确定组件840来执行。
在606处,基站可以向UE发送用于配置与用于由UE进行的上行链路传输的TB大小相关联的缩放因子或时隙聚合因子中的至少一项的信令。例如,该信令可以包括来自基站的DCI、CG、MAC CE和/或RRC消息。DCI可以包括来自基站的用于确定用于上行链路传输的经修改的TB大小和/或将MCS的调制阶数移位的半静态或动态指令。该信息可以指示调制阶数或编码率中的至少一项,并且缩放因子可以是由UE基于调制阶数或编码率中的所述至少一项来确定的。
在一些方面中,来自基站的信令包括索引值,该索引值标识表中的使用该索引值指示缩放因子的条目。例如,基站可以向UE发送用于配置表中的条目集合的其它信令,条目集合中的每个条目至少包括与大于或等于一(1)的相应缩放因子相对应的相应索引值。
缩放因子和/或时隙聚合因子可以与从与另一TB大小相关联的另一有效码率增加有效码率相关联。缩放因子和/或时隙聚合因子可以不适用于从基站到UE的下行链路信令。例如,可以配置不同的表来修改下行链路上的TB的大小,并且可以配置下行链路缩放因子来减小TB大小,并且下行链路标量值可以小于或等于一(1)。相反,缩放因子和/或时隙聚合因子可以适用于上行链路传输,并且可以大于或等于一(1)。
在图4的背景下,606可以包括基站402向UE 404发送用于配置与用于由UE 405进行的上行链路传输的TB大小相关联的缩放因子或时隙聚合因子中的至少一项的信令408。信令508可以包括来自基站402的DCI、CG、MAC CE和/或RRC消息中的至少一项。在图8的背景下,606可以由图8的信号生成组件842和发送组件834来执行。
在608处,基站可以从UE接收具有放大或增加的大小的包括数据有效载荷的TB,例如,TB可以相对于其它TB具有放大或增加的大小。例如,TB可以包括多个时隙,有效载荷比特集合被映射在多个时隙中并且被编码有跨越多个时隙一致的冗余版本。
在图4的背景下,608可以包括基站402在顺序时隙集合418上从UE 404接收具有所确定的(例如,放大或增加的)大小的TB 416。在图8的背景下,608可以由图8的接收组件830来执行。
图7是示出用于装置702的硬件实现的示例的示意图700。装置702可以是UE或类似设备,或者装置702可以是UE或类似设备的组件。装置702可以包括蜂窝基带处理器704(也被称为调制解调器)和/或蜂窝RF收发机722,它们可以耦合在一起和/或整合到相同的封装或模块中。
在一些方面中,装置702可以接受或可以包括一个或多个订户身份模块(SIM)卡720,其可以包括一个或多个集成电路、芯片或类似电路,并且其可以是可移除的或嵌入的。一个或多个SIM卡720可以携带标识和/或认证信息,诸如国际移动订户身份(IMSI)和/或IMSI相关密钥。此外,装置702可以包括以下各者中的一者或多者:耦合到安全数字(SD)卡708和屏幕710的应用处理器706、蓝牙模块712、无线局域网(WLAN)模块714、全球定位***(GPS)模块716和/或电源718。
蜂窝基带处理器704通过蜂窝RF收发机722来与基站102/180进行通信。蜂窝基带处理器704可以包括计算机可读介质/存储器。计算机可读介质/存储器可以是非暂时性的。蜂窝基带处理器704负责通用处理,包括执行被存储在计算机可读介质/存储器上的软件。当由蜂窝基带处理器704执行时,软件使得蜂窝基带处理器704执行上文描述的各种功能。计算机可读介质/存储器还可以用于存储由蜂窝基带处理器704在执行软件时操纵的数据。蜂窝基带处理器704还包括接收组件730、通信管理器732和发送组件734。通信管理器732包括一个或多个所示的组件。在通信管理器732内的组件可以被存储在计算机可读介质/存储器中,和/或被配置为在蜂窝基带处理器704内的硬件。
在图3的背景下,蜂窝基带处理器704可以是UE 350的组件,并且可以包括TX处理器368、RX处理器356和/或控制器/处理器359中的至少一者和/或存储器360。在一种配置中,装置702可以是调制解调器芯片和/或可以被实现为基带处理器704,而在另一配置中,装置702可以是整个UE(例如,图3的UE 350),并且可以包括在装置702的背景中示出的上述模块、组件和/或电路中的一些或全部。在一种配置中,蜂窝RF收发机722可以被实现为发射机354TX和/或接收机354RX中的至少一者。
接收组件730可以被配置为在无线信道上接收信令,诸如来自基站102/180的信令。发送组件734可以被配置为在无线信道上发送信令,诸如向基站102/180发送信令。通信管理器732可以协调或管理由装置702进行的一些或所有无线通信,包括跨越接收组件730和发送组件734。
接收组件730可以向通信管理器732提供在接收到的信令中包括的一些或所有数据和/或控制信息,并且通信管理器732可以生成要在发送的信令中包括的数据和/或控制信息中的一些或全部,并且将其提供给发送组件734。通信管理器732可以包括各种示出的组件,包括被配置为处理接收到的数据和/或控制信息的一个或多个组件、和/或被配置为生成用于传输的数据和/或控制信息的一个或多个组件。
通信管理器732尤其可以包括BSR生成组件740、缩放因子确定组件742、TB大小确定组件744和数据MCS组件746。BSR生成组件740可以被配置为生成和发送(通过发送组件734)BSR。例如,BSR生成组件740可以检测下层的缓冲器(例如,L2或L1)中的用于上行链路传输到基站102/180的数据,并且可以生成用于指示经缓冲的数据的至少一部分的大小的BSR。然后,发送组件734可以向基站102/180发送BSR。
缩放因子确定组件742可以被配置为基于从基站102/180接收的信令来确定缩放因子或时隙聚合因子中的至少一项,例如,如结合图5的504所描述的。在一些方面中,用于配置与TB大小相关联的缩放因子或时隙聚合因子中的至少一项的信令可以包括用于指示调制阶数或编码率中的至少一项的信息,并且缩放因子是基于调制阶数或编码率中的至少一项来确定的。缩放因子可以大于或等于一(1)。缩放因子可以与从与另一TB大小相关联的另一有效码率增加有效码率相关联。缩放因子或时隙聚合因子中的至少一项不适用于来自基站102/180的下行链路信令。
在另一示例中,缩放因子确定组件742可以基于从基站102/180接收的信令来确定缩放因子。例如,缩放因子确定组件742可以(通过接收组件730)从基站接收用于配置表中的条目集合的其它信令,条目集合中的每个条目至少包括与大于或等于一(1)的相应缩放因子相对应的相应索引值。然后,缩放因子确定组件742可以识别表中的使用索引值指示缩放因子的条目,其中来自基站的信令包括该索引值。
TB大小确定组件744可以被配置为基于从基站接收的用于配置与TB大小相关联的缩放因子或时隙聚合因子中的至少一项的信令来确定用于传输到基站的TB的大小,例如,如结合图5的504所描述的。例如,TB的大小可以是基于中间信息比特集合的,中间信息比特集合是基于缩放因子与用于发送该信息的层数量、用于发送该信息的编码率、用于发送该信息的调制阶数以及被分配用于发送该信息的RE数量相乘的乘积的。缩放因子确定组件742可以使用上述变量来计算中间信息比特集合,并且然后可以将中间信息比特集合与至少一个门限进行比较。TB的大小可以是进一步基于将中间信息比特集合与门限进行比较来确定的。
数据MCS组件746可以被配置为将具有所确定的大小的TB的MCS移位,例如,如结合图5的508所描述的。发送组件734可以被配置为在至少一个时隙中向基站102/180发送在TB上的信息,TB具有所确定的大小,例如,如结合图5的510所描述的。
装置702可以包括额外组件,这些额外组件执行图4和/或5的前述呼叫流程图和/或流程图中的算法的框、操作、信令等中的一些或全部。因此,图4和/或5的前述呼叫流程图和/或流程图中的框、操作、信令等中的一些或全部可以由组件执行,并且装置702可以包括这些组件中的一个或多个组件。组件可以是专门被配置为执行所述过程/算法的一个或多个硬件组件,由被配置为执行所述过程/算法的处理器来实现,被存储在计算机可读介质内以由处理器来实现,或其某种组合。
在一种配置中,装置702(并且具体地,蜂窝基带处理器704)包括:用于基于从基站接收的用于配置与传输块(TB)大小相关联的缩放因子或时隙聚合因子中的至少一项的信令来确定用于传输到基站的TB的大小的单元;以及用于在至少一个时隙中向基站发送在TB上的信息的单元,TB具有所确定的大小。
在一种配置中,TB的大小是进一步基于中间信息比特集合的,该中间信息比特集合是基于缩放因子与用于发送该信息的层数量、用于发送该信息的编码率、用于发送该信息的调制阶数以及被分配用于发送该信息的RE数量相乘的乘积的。
在一种配置中,装置702(并且具体地,蜂窝基带处理器704)包括:用于将中间信息比特集合与至少一个门限进行比较的单元,并且TB的大小是进一步基于将中间信息比特集合与门限进行比较来确定的。
在一种配置中,装置702(并且具体地,蜂窝基带处理器704)包括:用于基于从基站接收的信令来确定缩放因子的单元。
在一种配置中,缩放因子是基于时隙聚合因子来确定的,并且时隙聚合因子与针对上行链路共享信道上的上行链路传输配置的重复数量相关联。
在一种配置中,用于确定缩放因子的单元被配置为使用索引值来识别表中的指示缩放因子的条目,并且来自基站的信令包括索引值。
在一种配置中,装置702(并且具体地,蜂窝基带处理器704)包括:用于从基站接收用于配置表中的条目集合的其它信令的单元,条目集合中的每个条目至少包括与大于或等于一(1)的相应缩放因子相对应的相应索引值。
在一种配置中,用于配置与TB大小相关联的缩放因子或时隙聚合因子中的至少一项的信令包括用于指示调制阶数或编码率中的至少一项的信息,并且缩放因子是基于调制阶数或编码率中的至少一项来确定的。
在一种配置中,缩放因子大于或等于一(1)。
在一种配置中,缩放因子与从与另一TB大小相关联的另一有效码率增加有效码率相关联。
在一种配置中,缩放因子或时隙聚合因子中的至少一项不适用于从基站到装置702的下行链路信令。
前述单元可以是装置702的被配置为执行由前述单元所记载的功能的前述组件中的一个或多个组件。如上所述,装置702可以包括TX处理器368、RX处理器356和控制器/处理器359。因此,在一种配置中,前述单元可以是被配置为执行由前述单元记载的功能的TX处理器368、RX处理器356和控制器/处理器359。
图8是示出用于装置802的硬件实现的示例的示意图800。装置802可以是基站或类似设备,或者装置802可以是基站或类似设备或***的组件。装置802可以包括基带单元804。基带单元804可以通过蜂窝RF收发机进行通信。例如,基带单元804可以通过蜂窝RF收发机与UE 104进行通信(诸如用于下行链路和/或上行链路通信)和/或与基站102/180进行通信(诸如用于IAB)。
基带单元804可以包括计算机可读介质/存储器,其可以是非暂时性的。基带单元804负责通用处理,包括执行被存储在计算机可读介质/存储器上的软件。当由基带单元804执行时,软件使得基带单元804执行上文描述的各种功能。计算机可读介质/存储器还可以用于存储由基带单元804在执行软件时操纵的数据。基带单元804还包括接收组件830、通信管理器832和发送组件834。通信管理器832包括一个或多个所示的组件。在通信管理器832内的组件可以被存储在计算机可读介质/存储器中,和/或被配置为在基带单元804内的硬件。基带单元804可以是基站310的组件,并且可以包括TX处理器316、RX处理器370和/或控制器/处理器375中的至少一者和/或存储器376。
接收组件830可以被配置为在无线信道上接收信令,诸如来自UE 104的信令。发送组件834可以被配置为在无线信道上发送信令,诸如向UE 104发送信令。通信管理器832可以协调或管理由装置802进行的一些或所有无线通信,包括跨越接收组件830和发送组件834。
接收组件830可以向通信管理器832提供在接收到的信令中包括的一些或所有数据和/或控制信息,并且通信管理器832可以生成要在发送的信令中包括的数据和/或控制信息中的一些或全部,并且将其提供给发送组件834。通信管理器832可以包括各种示出的组件,包括被配置为处理接收到的数据和/或控制信息的一个或多个组件、和/或被配置为生成用于传输的数据和/或控制信息的一个或多个组件。在一些方面中,对数据和/或控制信息的生成可以包括打包或以其它方式重新格式化从核心网络(诸如核心网络190或EPC160)接收的数据和/或者控制信息以用于传输。
通信管理器832包括TB大小确定组件840和信号生成组件842。TB大小确定组件840可以被配置为从UE 104接收(通过接收组件)BSR,其可以指示在UE 104处缓冲的用于上行链路传输的数据,例如,如结合图6的602所描述的。
TB大小确定组件840可以确定经缓冲的数据是否包括具有可以容纳在当前配置的大小的单个TB上的大小的一个或多个有效载荷,或者经缓冲的数据是否包括大于(或等于)当前针对TB配置的大小的大小的多个分组。如果是后者,则TB大小确定组件840可以确定UE104可以从增加的TB大小中受益,例如,如果TB大小确定组件840检测到UE 104在小区边缘附近或在有限覆盖内的话。
TB大小确定组件840可以基于所接收的BSR来确定指导UE 104在具有经修改的大小的TB中发送数据有效载荷,例如,如结合图6的604所描述的。TB大小确定组件840可以确定由BSR指示的经缓冲的数据是否包括具有可以容纳在当前配置的大小的单个TB上的大小的一个或多个有效载荷,或者经缓冲的数据是否包括大于(或等于)当前针对TB配置的大小的大小的多个分组。如果是后者,则TB大小确定组件840可以确定UE 104可以从增加的TB大小中受益,例如,如果TB大小确定组件840检测到UE 104在小区边缘附近或在有限覆盖内的话。因此,TB大小确定组件840可以确定指导UE 104在具有经修改的大小的TB中发送数据有效载荷。
信号生成组件842可以生成用于配置与由UE 104进行的上行链路传输的TB大小相关联的缩放因子或时隙聚合因子中的至少一项的信令,并且(通过发送组件834)向UE 104发送该信令,例如,如结合图6的606所描述的。例如,该信令可以包括来自装置802的DCI、CG、MAC CE和/或RRC消息。DCI可以包括来自装置802的用于确定用于上行链路传输的经修改的TB大小和/或将MCS的调制阶数移位的半静态或动态指令。该信息可以指示调制阶数或编码率中的至少一项,并且缩放因子可以是由UE 104基于调制阶数或编码率中的至少一项来确定的。
在一些方面中,来自信号生成组件842的信令包括索引值,该索引值标识表中的使用该索引值指示缩放因子的条目。例如,信号生成组件842可以生成用于配置表中的条目集合的其它信令并且向UE 104发送所述其它信令,条目集合中的每个条目至少包括与大于或等于一(1)的相应缩放因子相对应的相应索引值。
缩放因子和/或时隙聚合因子可以与从与另一TB大小相关联的另一有效码率中增加有效码率相关联。缩放因子和/或时隙聚合因子可以不适用于去往UE 104的下行链路信令。例如,可以配置不同的表来修改下行链路上TB的大小,并且可以配置下行链路缩放因子来减小TB大小,并且下行链路标量值可以小于或等于一(1)。相反,缩放因子和/或时隙聚合因子可以适用于上行链路传输,并且可以大于或等于一(1)。
接收组件830可以从UE 104接收具有放大或增加的大小的包括数据有效载荷的TB,例如,如结合图6的608所描述的。TB可以相对于其它TB而被放大或增加。例如,TB可以包括多个时隙,有效载荷比特集合被映射在多个时隙中并且被编码有跨越多个时隙一致的冗余版本。
装置802可以包括额外组件,这些额外组件执行图4和/或6的前述呼叫流程图和/或流程图中的算法的框、操作、信令等中的一些或全部。因此,图4和/或6的前述呼叫流程图和/或流程图中的框、操作、信令等中的一些或全部可以由组件执行,并且装置802可以包括这些组件中的一个或多个组件。组件可以是专门被配置为执行所述过程/算法的一个或多个硬件组件,由被配置为执行所述过程/算法的处理器来实现,被存储在计算机可读介质内以由处理器来实现,或其某种组合。
在一种配置中,装置802(并且具体地,蜂窝基带处理器804)包括:用于向UE发送用于配置与要由UE进行传输的TB大小相关联的缩放因子或时隙聚合因子中的至少一项的信令的单元;以及用于从UE接收在具有基于缩放因子或时隙聚合因子中的至少一项的大小的至少一个TB上的信息的单元。
在一种配置中,TB的大小是进一步基于以下各项中的至少一项的:被配置用于由UE传输该信息的层数量、被配置用于传输的编码率、被配置用于传输的调制阶数或被分配给传输的RE数量。
在一种配置中,用于配置与TB大小相关联的缩放因子或时隙聚合因子中的至少一项的信令包括DCI消息、MAC CE、CG或RRC消息中的至少一项。
在一种配置中,时隙聚合因子与被配置用于由UE在上行链路共享信道上进行上行链路传输的重复数量相关联。
在一种配置中,用于配置与TB大小相关联的缩放因子或时隙聚合因子中的至少一项的信令包括与表中的指示缩放因子的条目相对应的索引值。
在一种配置中,装置802(并且具体地,基带单元804)包括:用于向UE发送用于配置表的条目集合的其它信令的单元,条目集合中的每个条目至少包括与大于或等于一(1)的相应缩放因子相对应的相应索引值。
在一种配置中,用于配置与TB大小相关联的缩放因子或时隙聚合因子中的至少一项的信令包括用于指示调制阶数或编码率中的至少一项的信息,并且TB的大小是基于调制阶数或编码率中的至少一项的。
在一种配置中,缩放因子大于或等于一(1)。
在一种配置中,缩放因子与从与另一TB大小相关联的另一有效码率增加有效码率相关联。
在一种配置中,缩放因子或时隙聚合因子中的至少一项不适用于从装置802到UE的下行链路信令。
前述单元可以是装置802的被配置为执行由前述单元所记载的功能的前述组件中的一个或多个组件。如上所述,装置802可以包括TX处理器316、RX处理器370和控制器/处理器75。因此,在一种配置中,前述单元可以是被配置为执行由前述单元记载的功能的TX处理器316、RX处理器370和控制器/处理器375。
要理解的是,所公开的过程/流程图中的框的特定顺序或层次是对示例方法的说明。要理解的是,基于设计偏好,可以重新排列所述过程/流程图中的框的特定顺序或层次。此外,可以将一些框组合或者省略。所附的方法权利要求以示例顺序给出了各个框的元素,而并不意指限于所给出的特定顺序或层次。
下文的示例仅是说明性的并且可以与本文描述的其它实施例或教导的方面结合,而不受限制。
<请忽略。将在权利要求定稿之后完成>
示例1是<>。
示例2是根据示例1所述的<>,<>。
示例3是根据示例1和2中任一项所述的<>,<>。
示例4是根据示例1至3中任一项所述的<>,<>。
提供前面的描述以使得本领域的任何技术人员能够实践本文描述的各个方面。对这些方面的各种修改对于本领域技术人员将是显而易见的,以及本文所定义的通用原理可以应用到其它方面。因此,权利要求不旨在限于本文所示出的各方面,而是要被赋予与语言相一致的全部范围。因此,本文所采用的语言并非旨在将权利要求的范围仅限于本文所示的那些方面,而是被赋予与权利要求的语言一致的全部范围。
作为一个示例,语言“确定”可以涵盖各种各样的动作,并且因此可以不限于本公开内容明确地描述或示出的概念和方面。在一些上下文中,“确定”可以包括计算、运算、处理、测量、推导、调查、查找(例如,在表、数据库或另一数据结构中查找)、查明、解决、选择、挑选、建立等。在一些其它上下文中,“确定”可以包括一些通信和/或存储器操作/过程,通过通信和/或存储器操作/过程获取一些信息或值,诸如“接收”(例如,接收信息)、“访问”(例如,访问存储器中的数据)、“检测”等。
作为另一示例,除非明确地声明如此,否则以单数形式对元素的引用不旨在意指“一个且仅一个”,而是“一个或多个”。具体地,除非明确地如此声明,否则以单数形式对元素的引用并不意指“一个且仅一个”,而是“一个或多个”。诸如“如果”、“当……时”和“在……的同时”的术语应当被解释为“在……的条件下”,而不意指立即的时间关系或反应。也就是说,这些短语(例如,“当……时”)并不意指响应于动作的发生或在动作的发生期间的立即动作,而仅意指如果满足条件则动作将发生,但不要求针对动作发生的特定或立即的时间约束。本文使用词语“示例性的”以意指“用作示例、实例或说明”。本文中被描述为“示例性的”任何方面不一定被解释为优选于其它方面或者比其它方面有优势。除非另有明确声明,否则术语“一些”指代一个或多个。诸如“A、B或C中的至少一个”、“A、B或C中的一个或多个”、“A、B和C中的至少一个”、“A、B和C中的一个或多个”、以及“A、B、C或其任何组合”的组合包括A、B和/或C的任何组合,并且可以包括A的倍数、B的倍数或C的倍数。具体地,诸如“A、B或C中的至少一个”、“A、B、或C中的一个或多个”、“A、B和C中的至少一个”、“A、B和C中的一个或多个”、以及“A、B、C或其任何组合”的组合可以是仅A、仅B、仅C、A和B、A和C、B和C、或A和B和C,其中任何这样的组合可以包含A、B或C中的一个或多个成员。遍及本公开内容描述的各个方面的元素的对于本领域的普通技术人员是已知或者稍后将知的全部结构和功能等效物通过引用的方式明确地并入本文中,并且旨在由权利要求包含。此外,本文中所公开的内容不旨在奉献给公众,不管这样的公开内容是否明确被记载在权利要求中。词语“模块”、“机制”、“元素”、“设备”等等可以不是词语“单元”的替代。因而,没有权利要求元素要被解释为功能单元,除非元素是明确地使用短语“用于……的单元”来记载的。

Claims (30)

1.一种用户设备(UE)处的无线通信的方法,包括:
基于从基站接收的用于配置与用于传输到所述基站的传输块(TB)的大小相关联的缩放因子或时隙聚合因子中的至少一项的信令,来确定所述TB的所述大小;以及
在至少一个时隙中向所述基站发送在所述TB上的信息,所述TB具有所确定的大小。
2.根据权利要求1所述的方法,其中,所述TB的所述大小是进一步基于中间信息比特集合的,所述中间信息比特集合是基于所述缩放因子与用于发送所述信息的层数量、用于发送所述信息的编码率、用于发送所述信息的调制阶数以及被分配用于发送所述信息的资源元素(RE)数量相乘的乘积的。
3.根据权利要求2所述的方法,还包括:
将所述中间信息比特集合与至少一个门限进行比较,其中
所述TB的所述大小是进一步基于将所述中间信息比特集合与所述门限进行所述比较来确定的。
4.根据权利要求1所述的方法,还包括:
基于从所述基站接收的所述信令来确定所述缩放因子。
5.根据权利要求4所述的方法,其中,所述缩放因子是基于所述时隙聚合因子来确定的,并且所述时隙聚合因子与针对上行链路共享信道上的上行链路传输配置的重复数量相关联。
6.根据权利要求4所述的方法,其中,确定所述缩放因子包括:
使用索引值来识别表中的指示所述缩放因子的条目,
其中,来自所述基站的所述信令包括所述索引值。
7.根据权利要求6所述的方法,还包括:
从所述基站接收用于配置所述表中的条目集合的其它信令,所述条目集合中的每个条目至少包括与大于或等于一(1)的相应缩放因子相对应的相应索引值。
8.根据权利要求4所述的方法,其中,用于配置与所述TB的所述大小相关联的所述缩放因子或所述时隙聚合因子中的所述至少一项的所述信令包括用于指示调制阶数或编码率中的至少一项的信息,并且所述缩放因子是基于所述调制阶数或所述编码率中的所述至少一项来确定的。
9.根据权利要求1所述的方法,其中,所述缩放因子大于或等于一(1)。
10.根据权利要求9所述的方法,其中,所述缩放因子与从与所述TB的另一大小相关联的另一有效码率增加有效码率相关联。
11.根据权利要求1所述的方法,其中,所述缩放因子或所述时隙聚合因子中的所述至少一项不适用于从所述基站到所述UE的下行链路信令。
12.一种基站处的无线通信的方法,包括:
向用户设备(UE)发送用于配置与要由所述UE用于传输的传输块(TB)的大小相关联的缩放因子或时隙聚合因子中的至少一项的信令;以及
从所述UE接收在具有基于所述缩放因子或所述时隙聚合因子中的至少一项的大小的至少一个TB上的信息。
13.根据权利要求12所述的方法,其中,所述TB的所述大小是进一步基于以下各项中的至少一项的:被配置用于由所述UE传输所述信息的层数量、被配置用于所述传输的编码率、被配置用于所述传输的调制阶数或者被分配给所述传输的资源元素(RE)数量。
14.根据权利要求12所述的方法,其中,用于配置与所述TB的所述大小相关联的所述缩放因子或所述时隙聚合因子中的所述至少一项的所述信令包括以下各项中的至少一项:下行链路控制信息(DCI)消息、介质访问控制(MAC)控制元素(CE)、配置的授权(CG)、或者无线电资源控制(RRC)消息。
15.根据权利要求12所述的方法,其中,所述时隙聚合因子与被配置用于由所述UE在上行链路共享信道上进行上行链路传输的重复数量相关联。
16.根据权利要求12所述的方法,其中,用于配置与所述TB的所述大小相关联的所述缩放因子或所述时隙聚合因子中的所述至少一项的所述信令包括与表中的指示所述缩放因子的条目相对应的索引值。
17.根据权利要求16所述的方法,还包括:
向所述UE发送用于配置所述表的条目集合的其它信令,所述条目集合中的每个条目至少包括与大于或等于一(1)的相应缩放因子相对应的相应索引值。
18.根据权利要求12所述的方法,其中,用于配置与所述TB的所述大小相关联的所述缩放因子或所述时隙聚合因子中的所述至少一项的所述信令包括用于指示调制阶数或编码率中的至少一项的信息,并且所述TB的所述大小是基于所述调制阶数或所述编码率中的所述至少一项的。
19.根据权利要求12所述的方法,其中,所述缩放因子大于或等于一(1)。
20.根据权利要求19所述的方法,其中,所述缩放因子与从与另一TB的另一大小相关联的另一有效码率增加有效码率相关联。
21.根据权利要求12所述的方法,其中,所述缩放因子或所述时隙聚合因子中的所述至少一项不适用于从所述基站到所述UE的下行链路信令。
22.一种用于用户设备(UE)处的无线通信的装置,包括:
存储器;以及
至少一个处理器,其耦合到所述存储器并且被配置为:
基于从基站接收的用于配置与用于传输到所述基站的传输块(TB)的大小相关联的缩放因子或时隙聚合因子中的至少一项的信令,来确定所述TB的所述大小;以及
向所述基站发送在至少一个时隙中在所述TB上的信息,所述TB具有所确定的大小。
23.根据权利要求22所述的装置,其中,所述TB的所述大小是进一步基于中间信息比特集合的,所述中间信息比特集合是基于所述缩放因子与用于发送所述信息的层数量、用于发送所述信息的编码率、用于发送所述信息的调制阶数以及被分配用于发送所述信息的资源元素(RE)数量相乘的乘积的。
24.根据权利要求23所述的装置,其中,所述至少一个处理器还被配置为:
将所述中间信息比特集合与至少一个门限进行比较,其中
所述TB的所述大小是进一步基于将所述中间信息比特集合与所述门限进行所述比较来确定的。
25.根据权利要求22所述的装置,其中,所述至少一个处理器还被配置为:
基于从所述基站接收的所述信令来确定所述缩放因子。
26.根据权利要求25所述的装置,其中,所述缩放因子是基于所述时隙聚合因子来确定的,并且所述时隙聚合因子与针对上行链路共享信道上的上行链路传输配置的重复数量相关联。
27.根据权利要求25所述的装置,其中,确定所述缩放因子包括:使用索引值来识别表中的指示所述缩放因子的条目,其中,来自所述基站的所述信令包括所述索引值。
28.一种用于基站处的无线通信的装置,包括:
存储器;以及
至少一个处理器,其耦合到所述存储器并且被配置为:
向用户设备(UE)发送用于配置与要由所述UE用于传输的传输块(TB)大小相关联的缩放因子或时隙聚合因子中的至少一项的信令;以及
从所述UE接收在具有基于所述缩放因子或所述时隙聚合因子中的至少一项的大小的至少一个TB上的信息。
29.根据权利要求28所述的装置,其中,所述TB的所述大小是进一步基于以下各项中的至少一项的:被配置用于由所述UE传输所述信息的层数量、被配置用于所述传输的编码率、被配置用于所述传输的调制阶数或者被分配给所述传输的资源元素(RE)数量。
30.根据权利要求28所述的装置,其中,用于配置与所述TB的所述大小相关联的所述缩放因子或所述时隙聚合因子中的所述至少一项的所述信令包括以下各项中的至少一项:下行链路控制信息(DCI)消息、介质访问控制(MAC)控制元素(CE)、配置的授权(CG)、或者无线电资源控制(RRC)消息。
CN202180032179.7A 2020-05-11 2021-05-11 用于上行链路传输的传输块的可缩放大小设定 Pending CN115552817A (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US202063023227P 2020-05-11 2020-05-11
US63/023,227 2020-05-11
US17/316,605 2021-05-10
US17/316,605 US20210352527A1 (en) 2020-05-11 2021-05-10 Scalable sizing of transport blocks for uplink transmissions
PCT/US2021/031848 WO2021231480A1 (en) 2020-05-11 2021-05-11 Scalable sizing of transport blocks for uplink transmissions

Publications (1)

Publication Number Publication Date
CN115552817A true CN115552817A (zh) 2022-12-30

Family

ID=78413516

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202180032179.7A Pending CN115552817A (zh) 2020-05-11 2021-05-11 用于上行链路传输的传输块的可缩放大小设定

Country Status (4)

Country Link
US (1) US20210352527A1 (zh)
EP (1) EP4150805A1 (zh)
CN (1) CN115552817A (zh)
WO (1) WO2021231480A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220303984A1 (en) * 2020-09-18 2022-09-22 Apple Inc. Network based operations for super-slot based data transmission
EP4197217A4 (en) * 2020-09-18 2024-05-01 Apple Inc. SUPER-SLOT BASED DATA TRANSMISSION IN WIRELESS COMMUNICATION
US11889348B2 (en) * 2021-02-19 2024-01-30 Qualcomm Incorporated Techniques for compressing feedback values in wireless communications
KR20220129270A (ko) * 2021-03-16 2022-09-23 삼성전자주식회사 무선 통신 시스템에서 상향링크 채널 전송을 위한 방법 및 장치
CN116801408A (zh) * 2022-03-11 2023-09-22 北京三星通信技术研究有限公司 确定传输资源的方法和设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109565375A (zh) * 2017-05-04 2019-04-02 华为技术有限公司 一种资源指示的方法和设备
CN109565361A (zh) * 2017-03-23 2019-04-02 Lg电子株式会社 用于确定传输块大小的方法及无线装置
US20190349116A1 (en) * 2018-05-11 2019-11-14 Qualcomm Incorporated Transport block size scaling factor indication for ultra-reliable low-latency communication
US20200077414A1 (en) * 2017-03-17 2020-03-05 Intel IP Corporation Channel quality indicator table design for wideband coverage enhancement in multefire systems

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11057926B2 (en) * 2017-02-04 2021-07-06 Qualcomm Incorporated Physical uplink shared channel coverage enhancements
CN109152017B (zh) * 2017-06-16 2021-02-05 华为技术有限公司 一种传输块大小的确定方法和装置
US20220132495A1 (en) * 2019-01-11 2022-04-28 Lg Electronics Inc. Method and user equipment for performing uplink transmission, and method for performing uplink reception
WO2020199044A1 (zh) * 2019-03-29 2020-10-08 华为技术有限公司 一种tbs的确定方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200077414A1 (en) * 2017-03-17 2020-03-05 Intel IP Corporation Channel quality indicator table design for wideband coverage enhancement in multefire systems
CN109565361A (zh) * 2017-03-23 2019-04-02 Lg电子株式会社 用于确定传输块大小的方法及无线装置
CN109565375A (zh) * 2017-05-04 2019-04-02 华为技术有限公司 一种资源指示的方法和设备
US20190349116A1 (en) * 2018-05-11 2019-11-14 Qualcomm Incorporated Transport block size scaling factor indication for ultra-reliable low-latency communication

Also Published As

Publication number Publication date
EP4150805A1 (en) 2023-03-22
US20210352527A1 (en) 2021-11-11
WO2021231480A1 (en) 2021-11-18

Similar Documents

Publication Publication Date Title
CN115349293A (zh) 用于多跨载波调度的dci设计
US11617181B2 (en) Multi-stage downlink grant for multiple PDSCH
CN115918009A (zh) 用于全双工信道的csi资源和报告配置
US20210352527A1 (en) Scalable sizing of transport blocks for uplink transmissions
US20210377951A1 (en) Facilitating multi-cluster control resource sets for downlink control channel repetition
US20220095324A1 (en) Transmission time implicitly triggering uci multiplexing on pusch with different priorities
CN114830585A (zh) 用于激活上行链路触发状态的信令
KR20230066563A (ko) 지연된 harq를 갖는 sps를 위한 코드북 생성
WO2021212028A1 (en) Apparatus for transmitting a harq buffer flush indicator for code block transmissions
US11750336B2 (en) Type 3 HARQ-ACK codebook enhancements for URLLC
CN117356152A (zh) 对增加数量的侧行链路经配置准许的支持
KR20220167372A (ko) 시간 영역 리소스 할당-기반 harq-ack 피드백 생성
CN114830586A (zh) 用于上行链路波束激活的信令
US11984983B2 (en) Carrier selection for PUCCH repetition with PUCCH carrier switching
US20240032026A1 (en) Multiplexing of overlapped uplink channel transmission repetitions
US11621822B2 (en) Mitigation of crowded UL SPS feedback transmissions
WO2021032046A1 (en) Network coding design
KR20230058397A (ko) 상이한 캐리어들 상의 업링크 및 srs 송신들의 관리
US11792803B2 (en) Methods and apparatus for utilizing UL symbols for deferred SPS HARQ-ACK transmissions
WO2023050446A1 (en) Uci multiplexing for simultaneous pusch transmission
US20230135716A1 (en) Procedure for combining hd/fd csi in one report on pusch/pucch transmissions
US20230045191A1 (en) Semi-persistent scheduling physical uplink control channel (pucch) hybrid automatic repeat request deferral for pucch groups
WO2022073181A1 (en) Starting bit determination for pusch repetition with transport block size scaling
CN116711244A (zh) 用于高频段无线通信的调制和译码方案能力
EP4238258A1 (en) Delayed semi-persistent scheduling harq-ack with physical uplink channel repetition

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination