CN115551064A - 一种ofdm双向中继***中的功率分配方法 - Google Patents

一种ofdm双向中继***中的功率分配方法 Download PDF

Info

Publication number
CN115551064A
CN115551064A CN202211121167.4A CN202211121167A CN115551064A CN 115551064 A CN115551064 A CN 115551064A CN 202211121167 A CN202211121167 A CN 202211121167A CN 115551064 A CN115551064 A CN 115551064A
Authority
CN
China
Prior art keywords
subcarrier
error rate
bit error
power distribution
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211121167.4A
Other languages
English (en)
Inventor
沈先丽
徐少红
王冰洁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CRRC Nanjing Puzhen Co Ltd
Original Assignee
CRRC Nanjing Puzhen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CRRC Nanjing Puzhen Co Ltd filed Critical CRRC Nanjing Puzhen Co Ltd
Priority to CN202211121167.4A priority Critical patent/CN115551064A/zh
Publication of CN115551064A publication Critical patent/CN115551064A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/20TPC being performed according to specific parameters using error rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/22Communication route or path selection, e.g. power-based or shortest path routing using selective relaying for reaching a BTS [Base Transceiver Station] or an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • H04W52/346TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading distributing total power among users or channels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Relay Systems (AREA)

Abstract

本发明公开了一种OFDM双向中继***中的功率分配方法,包括在OFDM双向中继***中,采用联合子载波抑制‑子载波配对方法进行数据传输,同时基于本地信道状态信息,分别在多址接入阶段采用预先获取的本地次优功率分配策略、广播阶段采用预先获取的最优功率分配策略进行功率分配;其中:所述本地次优功率分配策略、最优功率分配策略获取方法包括:通过本地次优功率分配算法和拉格朗日对偶法对误比特率进行求解,求得次优功率分配策略;通过本地最优功率分配算法和拉格朗日对偶法对误比特率进行求解,求得最优功率分配策略,本发明在终端功率一定的条件下,通过提出的功率分配策略优化了各个终端不同子载波上加载的功率,提高了***误比特率性能。

Description

一种OFDM双向中继***中的功率分配方法
技术领域
本发明涉及一种OFDM双向中继***中的功率分配方法,属于无线通信技术领域。
背景技术
随着社会信息化程度不断提高,人们对移动数据业务的灵活性与多样化需求越来越大,移动数据流量也在逐年成倍增加。正交频分复用(Orthogonal Frequency DivisionMultiplexing,OFDM)技术,由于其具有高频谱利用率以及很好的抗多径衰落能力等特点,已经广泛应用于现代通信***。然而,在OFDM***中,频率选择性衰落造成不同的子载波具有不同的信道增益,信道质量较差的子载波会给OFDM***带来“木桶效应”,严重影响***整体性能。为了解决信道衰落对OFDM***性能的影响,提高OFDM***误比特率(Bit ErrorRate,BER)性能,文献“BARTOLI G,FANTACCI R,MARABISSI D,et al.SubcarriersSuppression methods for OFDM Systems with Decode-and-Forward NetworkCoding.IEEE Trans,Wireless Communication,2013,12(12):6034-6042.”提出了子载波抑制技术。子载波抑制技术即仅使用信道质量较好的子载波来传输信息,而将信道质量较差的子载波抑制不用。子载波抑制技术能够有效克服信道质量较差的子载波带来的“木桶效应”,从而提高OFDM***传输的可靠性。因此,子载波抑制技术为进一步提高OFDM***传输可靠性提供了新的思路。
为了扩大基站覆盖范围、获得分集增益,协同中继技术作为下一代无线通信***中的关键技术之一引起了学术界和业界的广泛关注,其核心思想是利用中继节点将源节点发送的信息进行放大或者去噪之后转发给目的节点。根据中继处理信号方式的不同,可以分为多种中继方式。其中,以放大转发(Amplify-and-Forward,AF)协议和译码转发(Decode-and-Forward,DF)协议最为常见。AF协议指的是中继对接收到的信号不进行译码处理,仅仅进行信号放大处理;而DF协议指的是中继对接收到的信号进行译码,恢复原始信号,然后重新编码后再发送出去。
中继的引入能够提高无线传输的可靠性,但同时也带来一些缺陷,如终端之间的协调、信号处理复杂度提高等。其中最为主要的是导致频带效率降低。为了弥补这一缺陷,基于无线通信中信号传输所具有的广播特性,网络编码技术被引入无线协同通信中,用以提高无线协同通信***的频带利用率。网络编码典型的应用场景是双向中继网络,即一对通信终端通过中继完成信息交换。由于这种具有电磁波混合特性的网络编码方法涉及调制/解调与编译码等物理层技术,我们称为物理层网络编码(Physical-Layer NetworkCoding,PLNC)。根据中继采用的协议不同(AF或DF),又称为AF-PLNC和DF-PLNC。
目前OFDM中继***已经得到广泛的研究。现有文献中提出将一些技术与OFDM中继技术相结合,用以提高***的数据速率和可靠性。除了传统的功率分配技术和多中继选择技术外,还包括子载波配对技术(Subcarriers Pairing,SP)和子载波抑制技术(Subcarriers Suppression,SS)。
子载波配对技术:通常用于单向多跳OFDM中继***中,其核心思想为将相邻两跳的不同子载波之间按照一定准则进行配对,同一符号在配对的子载波间传输,用以提高可达速率。
子载波抑制技术:是一项非常具有实际应用前景的OFDM技术。其核心思想是根据各个子载波的瞬时信道状态信息,选择信道条件较好的子载波加载符号,进行信息传输,而将信道条件较差的子载波抑制掉,避免因为深衰落导致信道条件很差的子载波浪费过多功率,从而影响***整体性能。文献“BARTOLI G,FANTACCI R,MARABISSI D,etal.Subcarriers Suppression methods for OFDM Systemswith Decode-and-ForwardNetwork Coding[J].IEEE Trans,Wireless Communication,2013,12(12):6034-6042.”中的仿真结果表明,在OFDM***中引入子载波抑制技术能在不影响吞吐量的前提下极大地提高***的误比特率性能。
现有技术提出一种联合子载波抑制-子载波配对方法,针对双向OFDM中继***,将子载波抑制技术与子载波配对技术相结合,相比于单纯的子载波抑制方案,联合子载波抑制-子载波配对方法(Subcarriers Pair based Subcarriers Suppression,SPSS)能够取得更好的误码率性能。然而,该方案仅仅采用了简单的功率分配方法,并没有考虑针对误比特率性能进行功率优化。
发明内容
本发明的目的在于克服现有技术中的不足,提供一种OFDM双向中继***中的功率分配方法,通过提出的功率分配方法提高***误比特率性能。
为达到上述目的,本发明是采用下述技术方案实现的:
第一方面,本发明提供了一种OFDM双向中继***中的功率分配方法,在OFDM双向中继***中,两个源节点S1和S2通过中继R进行信息交换,***采用时分多址协议,信号传输分为两个阶段,第一个阶段为多址接入阶段,S1和S2同时向R发送信号,R进行译码转发处理;第二阶段为广播阶段,R将处理后的信号广播给S1和S2,然后S1和S2进行译码,得到来自对方的信息,其特征在于,所述分配方法包括:
在OFDM双向中继***中,采用联合子载波抑制-子载波配对方法进行数据传输,同时分别在多址接入阶段采用预先获取的本地次优功率分配策略、广播阶段采用预先获取的最优功率分配策略进行功率分配;其中:
所述本地次优功率分配策略、最优功率分配策略获取方法包括:
获取在多址接入阶段采用联合子载波抑制-子载波配对方法进行数据传输条件下,第k个子载波上的第一误比特率;
获取在广播阶段采用联合子载波抑制-子载波配对方法进行数据传输条件下,Si(i=1,2)处第k个子载波上的第二误比特率;
通过本地次优功率分配算法和拉格朗日对偶法对第一误比特率进行求解,求得次优的功率分配策略;
通过本地最优功率分配算法和拉格朗日对偶法对第二误比特率进行求解,求得最优的功率分配策略。
进一步的,所述获取在多址接入阶段采用联合子载波抑制-子载波配对方法进行数据传输条件下,第k个子载波上的第一误比特率,包括:
获取在多址接入阶段未采用联合子载波抑制-子载波配对方法进行数据传输条件下,第k个子载波上的第一初始误比特率;
根据所述第一初始误比特率计算获取在多址接入阶段采用联合子载波抑制-子载波配对方法进行数据传输条件下,第k个子载波上的第一误比特率。
进一步的,所述获取在多址接入阶段未采用联合子载波抑制-子载波配对方法进行数据传输条件下,第k个子载波上的第一初始误比特率,包括:
在多址接入阶段,源节点Si(i=1,2)在第k个子载波上发送的基带信号表示为:
Figure BDA0003847091620000051
其中,ai,I[k]和ai,Q[k]分别为si[k]的同相分量和正交分量,且等概取±1;
假设任意两个端点之间的时域信道服从于LL径的瑞利衰落,且每一径的方差都相等,为1/LL,LL为正整数;当满足LL=K时,频域信号建模为服从均值为0,协方差矩阵为单位矩阵的环对称复高斯分布的随机向量;假设S1、S2和R具有独立的功率约束,分别为P1、P2和PR,各个端点在子载波间进行功率分配;通过功率分配,中继R在第k个子载波上的接收信号表示为:
Figure BDA0003847091620000052
其中,αi,k表示Si(i=1,2)处第k个子载波分配的功率占节点总功率的比例,因而存在功率约束:
Figure BDA0003847091620000053
Hi[k]表示Si(i=1,2)与R间第k个子载波的信道增益,nR[k]表示中继R处第k个子载波上的噪声,且有
Figure BDA0003847091620000054
假设所有端点均仅已知本地信道状态信息,且信道状态信息在整个信息传输过程中不改变;由于Si(i=1,2)已知其到R之间的信道状态信息,故采用相位补偿技术,使得到达R的信息相角为0,即Hi[k]可视为实数;
当接收到来自S1和S2的混合信号后,R对每一个子载波进行网络编码译码处理,判决规则为:
Figure BDA0003847091620000061
Figure BDA0003847091620000062
此时多址接入阶段给定信道条件下,第k个子载波上的第一初始误比特率公式如下:
Figure BDA0003847091620000063
其中,
Figure BDA0003847091620000064
Figure BDA0003847091620000065
进一步的,根据所述第一初始误比特率计算获取在多址接入阶段采用联合子载波抑制-子载波配对方法进行数据传输条件下,第k个子载波上的第一误比特率,包括:
根据所述第一初始误比特率进一步计算得到在多址接入阶段采用联合子载波抑制-子载波配对方法进行数据传输条件下,第k个子载波上的第一误比特率,公式如下:
Figure BDA0003847091620000071
其中,M表示未被抑制子载波个数。
进一步的,所述获取在广播阶段采用联合子载波抑制-子载波配对方法进行数据传输条件下,Si(i=1,2)处第k个子载波上的第二误比特率,包括:
获取在广播阶段未采用联合子载波抑制-子载波配对方法进行数据传输条件下,Si(i=1,2)处第k个子载波上的第二初始误比特率;
根据所述第二初始误比特率计算获取在广播阶段采用联合子载波抑制-子载波配对方法进行数据传输条件下,Si(i=1,2)处第k个子载波上的第二误比特率。
进一步的,所述获取在广播阶段未采用联合子载波抑制-子载波配对方法进行数据传输条件下,Si(i=1,2)处第k个子载波上的第二初始误比特率,包括:
广播阶段,中继发送估计符号
Figure BDA0003847091620000072
Figure BDA0003847091620000073
Si接收到信号表示为:
Figure BDA0003847091620000074
其中,βk表示R处第k个子载波分配的功率占R处总功率的比例,sR[k]表示中继R处第k个子载波上的发送信号,由下式给出:
Figure BDA0003847091620000075
ni[k]表示Si(i=1,2)处第k个子载波上的噪声;广播阶段S1和S2采用QPSK译码方式,因而在给定信道条件下,广播阶段Si(i=1,2)处第k个子载波上的第二初始误比特率为:
Figure BDA0003847091620000081
其中,
Figure BDA0003847091620000082
进一步的,根据所述第二初始误比特率计算获取在广播阶段采用联合子载波抑制-子载波配对方法进行数据传输条件下,Si(i=1,2)处第k个子载波上的第二误比特率,包括:
根据所述第二初始误比特率进一步计算得到在广播阶段采用联合子载波抑制-子载波配对方法进行数据传输条件下,Si(i=1,2)处第k个子载波上的第二误比特率,公式如下:
Figure BDA0003847091620000083
进一步的,所述通过本地次优功率分配算法和拉格朗日对偶法对第一误比特率进行求解,求得次优的功率分配策略,包括:
首先考虑S1处功率分配,假设S2处功率平均分配,此时优化问题转化为:
Figure BDA0003847091620000084
假设第一类子载波两侧子载波的集合为Ω1,第二类子载波中右侧被抑制左侧未被抑制的子载波集合为Ω21,第二类子载波中左侧被抑制右侧未被抑制的子载波集合为Ω22;采用本地次优功率分配进行分配,分配算法如下:
算法1S1处本地次优功率分配算法:
S1、令
Figure BDA0003847091620000091
计算
Figure BDA0003847091620000092
计算
Figure BDA0003847091620000093
通过
Figure BDA0003847091620000094
Figure BDA0003847091620000095
比较,确定
Figure BDA0003847091620000096
Figure BDA0003847091620000097
S2、通过
Figure BDA0003847091620000098
Figure BDA0003847091620000099
确定
Figure BDA00038470916200000910
的表达式;
S3、将
Figure BDA00038470916200000911
作为初值,利用优化算法求得使
Figure BDA00038470916200000912
最小化的{α1,k},记为
Figure BDA00038470916200000913
S4、通过
Figure BDA00038470916200000914
计算得到
Figure BDA00038470916200000915
S5、令
Figure BDA00038470916200000916
S6、通过
Figure BDA00038470916200000917
Figure BDA00038470916200000918
比较,确定
Figure BDA00038470916200000919
Figure BDA00038470916200000920
S7、若
Figure BDA00038470916200000921
则输出
Figure BDA00038470916200000922
反之令i=i+1,并返回步骤2;
其中,
Figure BDA00038470916200000923
Figure BDA00038470916200000924
算法1中步骤3表示为以下优化问题:
Figure BDA0003847091620000101
采用拉格朗日对偶法进行求解,包括:
(1)问题建模
拉格朗日函数为:
Figure BDA0003847091620000102
对偶函数为:
Figure BDA0003847091620000103
注意到对偶函数可分解,对偶函数可进一步等价为:
Figure BDA0003847091620000104
其中,
Figure BDA0003847091620000105
此时,对偶问题写为:
maxφ(λ) (20)
(2)对偶子问题求解
对偶子问题为:
Figure BDA0003847091620000111
一阶最优性条件为:
Figure BDA0003847091620000112
Figure BDA0003847091620000113
时,有:
Figure BDA0003847091620000114
Figure BDA0003847091620000115
时,有:
Figure BDA0003847091620000116
当k∈Ω21时,有:
Figure BDA0003847091620000117
由于
Figure BDA0003847091620000118
中的每一项都是关于
Figure BDA0003847091620000119
的单调函数,因此采用一维搜索法求解对偶子问题的最优解;
(3)对偶主问题的求解
Figure BDA0003847091620000121
的值带入对偶主问题,这样主问题采用次梯度算法进行求解,λ的更新方法如下:
Figure BDA0003847091620000122
其中t(i)是每次迭代的步长;次梯度算法保证收敛到最优值,通过足够多的迭代次数,得到近似最优值;
S2处功率分配方法与S1处相同,优化问题表示如下,步骤省略;
Figure BDA0003847091620000123
进一步的,通过本地最优功率分配算法和拉格朗日对偶法对第二误比特率进行求解,求得最优的功率分配策略,包括:
基于所述第二误比特率,此时优化问题表示为:
Figure BDA0003847091620000124
采用拉格朗日对偶法进行求解,包括:
(1)问题建模
拉格朗日函数为:
Figure BDA0003847091620000125
对偶函数为:
Figure BDA0003847091620000131
注意到对偶函数可分解,对偶函数可进一步等价为:
Figure BDA0003847091620000132
其中,
Figure BDA0003847091620000133
此时,对偶问题写为:
maxφ(μ) (33)
(2)对偶子问题求解
对偶子问题为
Figure BDA0003847091620000134
一阶最优性条件为
Figure BDA0003847091620000135
当k∈Ω1时,有:
Figure BDA0003847091620000136
对应βk可由以下方程组得到:
Figure BDA0003847091620000141
当k∈Ω21时,有:
Figure BDA0003847091620000142
求得对应
Figure BDA0003847091620000143
当k∈Ω22时,有:
Figure BDA0003847091620000144
求得对应
Figure BDA0003847091620000145
(3)对偶主问题的求解
Figure BDA0003847091620000146
的值带入对偶主问题,这样主问题采用次梯度算法进行求解,μ的更新方法如下:
Figure BDA0003847091620000147
其中t(i)是每次迭代的步长;次梯度算法保证收敛到最优值,通过足够多的迭代次数,得到近似最优值。
进一步的,利用计算机仿真检验采用本地次优功率分配策略、本地最优功率分配策略进行功率分配优化的联合子载波抑制-子载波配对方法的***BER性能,并与未使用本地次优功率分配策略、本地最优功率分配策略进行功率优化的联合子载波抑制-子载波配对方法的***BER性能进行比较。
与现有技术相比,本发明所达到的有益效果:
本发明提供一种OFDM双向中继***中的功率分配方法。通过对***误比特率表达式进行分析,将功率优化问题分为两部分。一部分是多址接入阶段,针对两侧信源的功率分配问题,考虑已知本地信道状态信息,提出了一种本地次优的功率分配优化策略;另一部分是广播阶段,针对中继处的功率分配问题,提出了一种最优的功率分配优化策略,在终端功率一定的条件下,通过优化各个终端不同子载波上加载的功率,达到减小***误比特率的效果。仿真结果表明,与现有的功率分配方法相比,本发明提出的功率分配方法能够带来***误比特率性能提升。具体体现为:
1、本发明提出的功率分配方法在误比特率性能方面比现有技术提升1-2dB;
2、本发明提出的功率分配方法在误比特率性能方面,在不同条件下都优于现有技术。
附图说明
图1是本发明实施例提供的一双向OFDM单中继***模型示意图;
图2是本发明实施例提供的基于SPSS的不同功率分配方法的BER性能对比示意图;
图3是本发明实施例提供的几种功率分配方法的BER随平均未被抑制子载波个数M的变化曲线。
具体实施方式
下面结合附图对本发明作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
实施例1
本实施例介绍一种OFDM双向中继***中的功率分配方法,包括:
在OFDM双向中继***中,两个源节点S1和S2通过中继R进行信息交换,***采用时分多址(Time Division Multiple Access,TDMA)协议,信号传输可以分为两个阶段,第一个阶段为多址接入阶段,S1和S2同时向R发送信号,R进行译码转发处理;第二阶段为广播阶段,R将处理后的信号广播给S1和S2,然后S1和S2进行译码,得到来自对方的信息。每个节点均采用OFDM传输方式,子载波个数为K,每个子载波上的符号采用QPSK调制方式。所述分配方法包括:
在OFDM双向中继***中,采用联合子载波抑制-子载波配对方法进行数据传输,同时分别在多址接入阶段采用预先获取的本地次优功率分配策略、广播阶段采用预先获取的最优功率分配策略进行功率分配;其中:
所述本地次优功率分配策略、最优功率分配策略获取方法包括:
获取在多址接入阶段采用联合子载波抑制-子载波配对方法进行数据传输条件下,第k个子载波上的第一误比特率;
获取在广播阶段采用联合子载波抑制-子载波配对方法进行数据传输条件下,Si(i=1,2)处第k个子载波上的第二误比特率;
通过本地次优功率分配算法和拉格朗日对偶法对第一误比特率进行求解,求得次优的功率分配策略;
通过本地最优功率分配算法和拉格朗日对偶法对第二误比特率进行求解,求得最优的功率分配策略。
本实施例提供的OFDM双向中继***中的功率分配方法,其应用过程具体涉及如下步骤:
1、***模型
在OFDM双向中继***中,两个源节点S1和S2通过中继R进行信息交换,如图1所示。***采用时分多址(Time Division Multiple Access,TDMA)协议,信号传输可以分为两个阶段。第一个阶段为多址接入(Multiple Access,MA)阶段,S1和S2同时向R发送信号,R进行译码转发处理;第二阶段为广播(Broadcast,BC)阶段,R将处理后的信号广播给S1和S2,然后S1和S2进行译码,得到来自对方的信息。每个节点均采用OFDM传输方式,子载波个数为K,每个子载波上的符号采用QPSK调制方式。
在多址接入阶段,节点Si(i=1,2)在第k个子载波上发送的基带信号可以表示为:
Figure BDA0003847091620000171
其中ai,I[k]和ai,Q[k]分别为si[k]的同相分量和正交分量,且等概取±1。假设任意两个端点之间的时域信道服从于LL(LL为正整数)径的瑞利衰落,且每一径的方差都相等,为1/LL。根据文献“HAO Z,YUAN L,MEIXIA T.Resource Allocation with SubcarrierPairing in OFDMA Two-Way Relay Ne tworks[J].IEEE Wireless CommunicationsLetters,2012,1(2):61-64.”,当满足LL=K时,频域信号可以建模为服从均值为0,协方差矩阵为单位矩阵的环对称复高斯分布的随机向量。假设S1、S2和R具有独立的功率约束,分别为P1、P2和PR,各个端点在子载波间进行功率分配。通过功率分配,中继R在第k个子载波上的接收信号可以表示为:
Figure BDA0003847091620000181
其中αi,k表示Si(i=1,2)处第k个子载波分配的功率占节点总功率的比例,因而存在功率约束:
Figure BDA0003847091620000182
Hi[k]表示Si(i=1,2)与R间第k个子载波的信道增益,nR[k]表示中继R处第k个子载波上的噪声,且有
Figure BDA0003847091620000183
假设所有端点均仅已知本地信道状态信息(Channel State Information,CSI),且CSI在整个信息传输过程中(即MA阶段和BC阶段)不改变。由于Si(i=1,2)已知其到R之间的CSI,故可以采用相位补偿技术,使得到达R的信息相角为0,即Hi[k]可视为实数。
当接收到来自S1和S2的混合信号后,R对每一个子载波进行网络编码译码处理,判决规则为:
Figure BDA0003847091620000184
Figure BDA0003847091620000185
此时多址接入阶段(MA阶段)给定信道条件下,第k个子载波上的误比特率可以表示为:
Figure BDA0003847091620000186
其中,
Figure BDA0003847091620000187
Figure BDA0003847091620000188
广播阶段(BC阶段),中继发送估计符号
Figure BDA0003847091620000189
Figure BDA00038470916200001810
Si接收到信号可以表示为:
Figure BDA0003847091620000191
其中,βk表示R处第k个子载波分配的功率占R处总功率的比例,sR[k]表示中继R处第k个子载波上的发送信号,由下式给出:
Figure BDA0003847091620000192
ni[k]表示Si(i=1,2)处第k个子载波上的噪声。广播阶段S1和S2采用QPSK译码方式,因而在给定信道条件下,广播阶段Si(i=1,2)处第k个子载波上的误比特率为:
Figure BDA0003847091620000193
其中,
Figure BDA0003847091620000194
2、联合子载波抑制-子载波配对方法(SPSS)
文献“WANG Jian,MA Wenfeng,XU Youyun,et al.Subcarrier Pairing basedSubcarrier Suppression for OFDM systems with Decode-and-Forward NetworkCoding[C].2015IEEE Wireless Communications and Networking Conference(WCNC),March,2015:551-556.”中提出将子载波配对技术与子载波抑制技术相结合,其实现基础为沿用文献“BARTOLI G,FANTACCI R,MARABISSI D,et al.Subcarriers Suppressionmethods for OFDM Systems with Decode-and-Forward Network Coding[J].IEEETrans,Wireless Communication,2013,12(12):6034-6042.”中的功率分配方式,称为信道反转。信道反转,即发送端在不同子载波上加载的功率与子载波对应的CSI模的平方成反比,从而使得每一个子载波上在接收端处的接收电平都相同,此时有:
Figure BDA0003847091620000201
其中,
Figure BDA0003847091620000202
表示Si(i=1,2)处的子载波抑制向量,且:
Figure BDA0003847091620000203
其中,“0”表示子载波被抑制,“1”表示没有被抑制;
Figure BDA0003847091620000209
为抑制门限,其取值使得
Figure BDA0003847091620000204
的重量为M。由于R两侧子载波抑制个数相同,因而会出现三种情况,1)两侧子载波均未被抑制,2)一侧被抑制,另一侧未被抑制,3)两侧均被抑制。而又由于第二种情况中,左侧被抑制与右侧被抑制的子载波会不成对出现。如果不进行任何额外的操作,每一个子载波上传输的符号均要经历信道条件较差的第二跳。而通过将两个子载波进行配对,可以在中继处将配对的子载波上的符号进行交换,从而每对符号都可以沿着对方的第一跳路径完成第二跳,这样,就可以获得很好的性能增益。子载波配对可以通过
Figure BDA0003847091620000205
Figure BDA0003847091620000206
生成子载波交换矩阵来实现。
广播阶段,中继R处仅采用简单的平均功率分配,即:
Figure BDA0003847091620000207
其中,
Figure BDA0003847091620000208
3、基于联合子载波配对与子载波抑制的功率优化分配
传统SPSS方案中,功率分配仅仅采用简单的信道反转和平均分配的方式。这种方式实现简单,但是并不能获得很好的误比特率性能,因此我们在SPSS方案的基础上考虑功率优化分配。假设第一类子载波两侧子载波的集合为Ω1,第二类子载波中右侧被抑制左侧未被抑制的子载波集合为Ω21,第二类子载波中左侧被抑制右侧未被抑制的子载波集合为Ω22,此时在信道条件固定的情况下,***的误比特率可以表示为:
Figure BDA0003847091620000211
其中,π(·)表示子载波配对函数,上式可以化简为:
Figure BDA0003847091620000212
由上式可以看到,多址接入阶段和广播阶段的功率分配优化可以分开进行。
3.1多址接入阶段功率分配
给定信道条件下,***多址接入阶段的误比特率可以改写为:
Figure BDA0003847091620000213
由于S1与S2均只已知本地CSI,在此条件下给出本地次优功率分配策略。
首先考虑S1处功率分配,由于S1不知道H2,因此假设S2处功率平均分配,此时优化问题转化为:
Figure BDA0003847091620000214
由于目标函数是多个不连续函数和的形式,难以求得全局最优功率分配,因此考虑实现本地次优的功率分配,分配算法如下:
Figure BDA0003847091620000221
其中,
Figure BDA0003847091620000222
Figure BDA0003847091620000223
算法1中步骤3可以表示为以下优化问题:
Figure BDA0003847091620000224
下面采用拉格朗日对偶法进行求解,包括:
(1)问题建模
拉格朗日函数为:
Figure BDA0003847091620000231
对偶函数为:
Figure BDA0003847091620000232
注意到对偶函数可分解,对偶函数可进一步等价为:
Figure BDA0003847091620000233
其中,
Figure BDA0003847091620000234
此时,对偶问题可以写为:
maxφ(λ) (24)
(2)对偶子问题求解
对偶子问题为:
Figure BDA0003847091620000235
一阶最优性条件为:
Figure BDA0003847091620000236
Figure BDA0003847091620000237
时,有:
Figure BDA0003847091620000241
Figure BDA0003847091620000242
时,有:
Figure BDA0003847091620000243
当k∈Ω21时,有:
Figure BDA0003847091620000244
由于
Figure BDA0003847091620000245
中的每一项都是关于
Figure BDA0003847091620000246
的单调函数,因此可以采用一维搜索法求解对偶子问题的最优解。
(3)对偶主问题的求解
Figure BDA0003847091620000247
的值带入对偶主问题,这样主问题可以采用次梯度算法进行求解,λ的更新方法如下:
Figure BDA0003847091620000248
其中t(i)是每次迭代的步长。次梯度算法可以保证收敛到最优值,通过足够多的迭代次数,可以得到近似最优值。
S2处功率分配方法与S1处相同,优化问题可以表示如下,步骤省略。
Figure BDA0003847091620000249
3.2广播阶段功率分配
给定信道条件下,***广播阶段误比特率可以改写为:
Figure BDA0003847091620000251
此时优化问题可以表示为:
Figure BDA0003847091620000252
下面采用拉格朗日对偶法进行求解,包括:
(1)问题建模
拉格朗日函数为:
Figure BDA0003847091620000253
对偶函数为:
Figure BDA0003847091620000254
注意到对偶函数可分解,对偶函数可进一步等价为:
Figure BDA0003847091620000255
其中,
Figure BDA0003847091620000256
此时,对偶问题可以写为:
maxφ(μ) (38)
(2)对偶子问题求解
对偶子问题为
Figure BDA0003847091620000261
一阶最优性条件为
Figure BDA0003847091620000262
当k∈Ω1时,有:
Figure BDA0003847091620000263
对应βk可由以下方程组得到:
Figure BDA0003847091620000264
当k∈Ω21时,有:
Figure BDA0003847091620000265
求得对应
Figure BDA0003847091620000266
当k∈Ω22时,有:
Figure BDA0003847091620000267
求得对应
Figure BDA0003847091620000268
(3)对偶主问题的求解
Figure BDA0003847091620000269
的值带入对偶主问题,这样主问题可以采用次梯度算法进行求解,μ的更新方法如下:
Figure BDA0003847091620000271
其中t(i)是每次迭代的步长。次梯度算法可以保证收敛到最优值,通过足够多的迭代次数,可以得到近似最优值。
4、计算机仿真
本发明利用计算机仿真检验所提功率分配方法的BER性能,并与文献“WANG Jian,MA Wenfeng,XU Youyun,et al.Subcarrier Pairing based Subcarrier Suppressionfor OFDM systems with Decode-and-Forward Network Coding[C].2015IEEE WirelessCommunications and Networking Conference(WCNC),March,2015:551-556.”所提的未使用功率优化的SPSS方法进行比较。其中,方法1为MA阶段和BC阶段均采用平均功率分配;方法2为MA阶段采用信道反转功率分配,BC阶段采用平均分配;本发明所提方法为MA阶段采用本地次优功率分配,BC阶段采用最优功率分配;假设所有节点的传输功率都设为1,子载波个数用K表示,M表示未被抑制的子载波个数。各子载波上均采用QPSK调制方式。
图2考察了基于SPSS的不同功率分配方法之间的BER性能,K=32,M=27。可以看到本发明所提的功率分配方法在整个信噪比范围内的误比特率性能都要优于现有的方法1和方法2,整体上本发明所提的功率分配方法优于方法1大约2dB,优于方法2大约1dB。
图3比较了几种功率分配方法的BER随平均未被抑制子载波个数M的变化曲线。图3中,LL=16,ρ=5,10,15dB。M在32到24之间变化。从图中可以看出当M逐渐减小时,几种分配方法的BER均逐渐变小,方法1与方法2性能之间出现交叉,而本发明所提的功率分配方法则在不同M取值下都取得最优的BER性能。因此,本发明所提的功率分配优化方法在不同条件下都能够对BER性能有很好的改善。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。

Claims (10)

1.一种OFDM双向中继***中的功率分配方法,在OFDM双向中继***中,两个源节点S1和S2通过中继R进行信息交换,***采用时分多址协议,信号传输分为两个阶段,第一个阶段为多址接入阶段,S1和S2同时向R发送信号,R进行译码转发处理;第二阶段为广播阶段,R将处理后的信号广播给S1和S2,然后S1和S2进行译码,得到来自对方的信息,其特征在于,所述分配方法包括:
在OFDM双向中继***中,采用联合子载波抑制-子载波配对方法进行数据传输,同时分别在多址接入阶段采用预先获取的本地次优功率分配策略、广播阶段采用预先获取的最优功率分配策略进行功率分配;其中:
所述本地次优功率分配策略、最优功率分配策略获取方法包括:
获取在多址接入阶段采用联合子载波抑制-子载波配对方法进行数据传输条件下,第k个子载波上的第一误比特率;
获取在广播阶段采用联合子载波抑制-子载波配对方法进行数据传输条件下,Si(i=1,2)处第k个子载波上的第二误比特率;
通过本地次优功率分配算法和拉格朗日对偶法对第一误比特率进行求解,求得次优的功率分配策略;
通过本地最优功率分配算法和拉格朗日对偶法对第二误比特率进行求解,求得最优的功率分配策略。
2.根据权利要求1所述的OFDM双向中继***中的功率分配方法,其特征在于,所述获取在多址接入阶段采用联合子载波抑制-子载波配对方法进行数据传输条件下,第k个子载波上的第一误比特率,包括:
获取在多址接入阶段未采用联合子载波抑制-子载波配对方法进行数据传输条件下,第k个子载波上的第一初始误比特率;
根据所述第一初始误比特率计算获取在多址接入阶段采用联合子载波抑制-子载波配对方法进行数据传输条件下,第k个子载波上的第一误比特率。
3.根据权利要求2所述的OFDM双向中继***中的功率分配方法,其特征在于,所述获取在多址接入阶段未采用联合子载波抑制-子载波配对方法进行数据传输条件下,第k个子载波上的第一初始误比特率,包括:
在多址接入阶段,源节点Si(i=1,2)在第k个子载波上发送的基带信号表示为:
Figure FDA0003847091610000021
其中,ai,I[k]和ai,Q[k]分别为si[k]的同相分量和正交分量,且等概取±1;假设任意两个端点之间的时域信道服从于LL径的瑞利衰落,且每一径的方差都相等,为1/LL,LL为正整数;当满足LL=K时,频域信号建模为服从均值为0,协方差矩阵为单位矩阵的环对称复高斯分布的随机向量;假设S1、S2和R具有独立的功率约束,分别为P1、P2和PR,各个端点在子载波间进行功率分配;通过功率分配,中继R在第k个子载波上的接收信号表示为:
Figure FDA0003847091610000022
其中,αi,k表示Si(i=1,2)处第k个子载波分配的功率占节点总功率的比例,因而存在功率约束:
Figure FDA0003847091610000023
Hi[k]表示Si(i=1,2)与R间第k个子载波的信道增益,nR[k]表示中继R处第k个子载波上的噪声,且有
Figure FDA0003847091610000031
假设所有端点均仅已知本地信道状态信息,且信道状态信息在整个信息传输过程中不改变;由于Si(i=1,2)已知其到R之间的信道状态信息,故采用相位补偿技术,使得到达R的信息相角为0,即Hi[k]可视为实数;
当接收到来自S1和S2的混合信号后,R对每一个子载波进行网络编码译码处理,判决规则为:
Figure FDA0003847091610000032
Figure FDA0003847091610000033
此时多址接入阶段给定信道条件下,第k个子载波上的第一初始误比特率公式如下:
Figure FDA0003847091610000034
其中,
Figure FDA0003847091610000035
Figure FDA0003847091610000036
4.根据权利要求3所述的OFDM双向中继***中的功率分配方法,其特征在于,根据所述第一初始误比特率计算获取在多址接入阶段采用联合子载波抑制-子载波配对方法进行数据传输条件下,第k个子载波上的第一误比特率,包括:
根据所述第一初始误比特率进一步计算得到在多址接入阶段采用联合子载波抑制-子载波配对方法进行数据传输条件下,第k个子载波上的第一误比特率,公式如下:
Figure FDA0003847091610000041
其中,M表示未被抑制子载波个数。
5.根据权利要求4所述的OFDM双向中继***中的功率分配方法,其特征在于,所述获取在广播阶段采用联合子载波抑制-子载波配对方法进行数据传输条件下,Si(i=1,2)处第k个子载波上的第二误比特率,包括:
获取在广播阶段未采用联合子载波抑制-子载波配对方法进行数据传输条件下,Si(i=1,2)处第k个子载波上的第二初始误比特率;
根据所述第二初始误比特率计算获取在广播阶段采用联合子载波抑制-子载波配对方法进行数据传输条件下,Si(i=1,2)处第k个子载波上的第二误比特率。
6.根据权利要求5所述的OFDM双向中继***中的功率分配方法,其特征在于,所述获取在广播阶段未采用联合子载波抑制-子载波配对方法进行数据传输条件下,Si(i=1,2)处第k个子载波上的第二初始误比特率,包括:
广播阶段,中继发送估计符号
Figure FDA0003847091610000042
Figure FDA0003847091610000043
Si接收到信号表示为:
Figure FDA0003847091610000051
其中,βk表示R处第k个子载波分配的功率占R处总功率的比例,sR[k]表示中继R处第k个子载波上的发送信号,由下式给出:
Figure FDA0003847091610000052
ni[k]表示Si(i=1,2)处第k个子载波上的噪声;广播阶段S1和S2采用QPSK译码方式,因而在给定信道条件下,广播阶段Si(i=1,2)处第k个子载波上的第二初始误比特率为:
Figure FDA0003847091610000053
其中,
Figure FDA0003847091610000054
7.根据权利要求6所述的OFDM双向中继***中的功率分配方法,其特征在于,根据所述第二初始误比特率计算获取在广播阶段采用联合子载波抑制-子载波配对方法进行数据传输条件下,Si(i=1,2)处第k个子载波上的第二误比特率,包括:
根据所述第二初始误比特率进一步计算得到在广播阶段采用联合子载波抑制-子载波配对方法进行数据传输条件下,Si(i=1,2)处第k个子载波上的第二误比特率,公式如下:
Figure FDA0003847091610000055
8.根据权利要求7所述的OFDM双向中继***中的功率分配方法,其特征在于,所述通过本地次优功率分配算法和拉格朗日对偶法对第一误比特率进行求解,求得次优的功率分配策略,包括:
首先考虑S1处功率分配,假设S2处功率平均分配,此时优化问题转化为:
Figure FDA0003847091610000061
Figure FDA0003847091610000062
假设第一类子载波两侧子载波的集合为Ω1,第二类子载波中右侧被抑制左侧未被抑制的子载波集合为Ω21,第二类子载波中左侧被抑制右侧未被抑制的子载波集合为Ω22;采用本地次优功率分配进行分配,分配算法如下:
算法1S1处本地次优功率分配算法:
S1、令
Figure FDA0003847091610000063
计算
Figure FDA0003847091610000064
计算
Figure FDA0003847091610000065
通过F1 (0)[k]与
Figure FDA0003847091610000066
比较,确定
Figure FDA0003847091610000067
Figure FDA0003847091610000068
S2、通过
Figure FDA0003847091610000069
Figure FDA00038470916100000610
确定
Figure FDA00038470916100000611
的表达式;
S3、将
Figure FDA00038470916100000612
作为初值,利用优化算法求得使
Figure FDA00038470916100000613
最小化的{α1,k},记为
Figure FDA00038470916100000614
S4、通过
Figure FDA00038470916100000615
计算得到
Figure FDA00038470916100000616
S5、令
Figure FDA00038470916100000617
S6、通过F1 (i+1)[k]与
Figure FDA00038470916100000618
比较,确定
Figure FDA00038470916100000619
Figure FDA00038470916100000620
S7、若
Figure FDA00038470916100000621
则输出
Figure FDA00038470916100000622
反之令i=i+1,并返回步骤2;
其中,
Figure FDA00038470916100000623
Figure FDA0003847091610000071
Figure FDA0003847091610000072
算法1中步骤3表示为以下优化问题:
Figure FDA0003847091610000073
Figure FDA0003847091610000074
采用拉格朗日对偶法进行求解,包括:
(1)问题建模
拉格朗日函数为:
Figure FDA0003847091610000075
对偶函数为:
Figure FDA0003847091610000076
注意到对偶函数可分解,对偶函数可进一步等价为:
Figure FDA0003847091610000077
其中,
Figure FDA0003847091610000081
此时,对偶问题写为:
maxφ(λ)(20)
(2)对偶子问题求解对偶子问题为:
Figure FDA0003847091610000082
一阶最优性条件为:
Figure FDA0003847091610000083
Figure FDA0003847091610000084
时,有:
Figure FDA0003847091610000085
Figure FDA0003847091610000086
时,有:
Figure FDA0003847091610000087
当k∈Ω21时,有:
Figure FDA0003847091610000088
由于
Figure FDA0003847091610000091
中的每一项都是关于
Figure FDA0003847091610000092
的单调函数,因此采用一维搜索法求解对偶子问题的最优解;
(3)对偶主问题的求解
Figure FDA0003847091610000093
的值带入对偶主问题,这样主问题采用次梯度算法进行求解,λ的更新方法如下:
Figure FDA0003847091610000094
其中t(i)是每次迭代的步长;次梯度算法保证收敛到最优值,通过足够多的迭代次数,得到近似最优值;
S2处功率分配方法与S1处相同,优化问题表示如下,步骤省略;
Figure FDA0003847091610000095
Figure FDA0003847091610000096
9.根据权利要求8所述的OFDM双向中继***中的功率分配方法,其特征在于,通过本地最优功率分配算法和拉格朗日对偶法对第二误比特率进行求解,求得最优的功率分配策略,包括:
基于所述第二误比特率,此时优化问题表示为:
Figure FDA0003847091610000097
Figure FDA0003847091610000098
采用拉格朗日对偶法进行求解,包括:
(1)问题建模
拉格朗日函数为:
Figure FDA0003847091610000101
对偶函数为:
Figure FDA0003847091610000102
注意到对偶函数可分解,对偶函数可进一步等价为:
Figure FDA0003847091610000103
其中,
Figure FDA0003847091610000104
此时,对偶问题写为:
maxφ(μ)(33)
(2)对偶子问题求解
对偶子问题为
Figure FDA0003847091610000105
一阶最优性条件为
Figure FDA0003847091610000106
当k∈Ω1时,有:
Figure FDA0003847091610000111
对应βk可由以下方程组得到:
Figure FDA0003847091610000112
当k∈Ω21时,有:
Figure FDA0003847091610000113
求得对应
Figure FDA0003847091610000114
当k∈Ω22时,有:
Figure FDA0003847091610000115
求得对应
Figure FDA0003847091610000116
(3)对偶主问题的求解
Figure FDA0003847091610000117
的值带入对偶主问题,这样主问题采用次梯度算法进行求解,μ的更新方法如下:
Figure FDA0003847091610000118
其中t(i)是每次迭代的步长;次梯度算法保证收敛到最优值,通过足够多的迭代次数,得到近似最优值。
10.根据权利要求9所述的OFDM双向中继***中的功率分配方法,其特征在于:利用计算机仿真检验采用本地次优功率分配策略、本地最优功率分配策略进行功率分配优化的联合子载波抑制-子载波配对方法的***BER性能,并与未使用本地次优功率分配策略、本地最优功率分配策略进行功率优化的联合子载波抑制-子载波配对方法的***BER性能进行比较。
CN202211121167.4A 2022-09-15 2022-09-15 一种ofdm双向中继***中的功率分配方法 Pending CN115551064A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211121167.4A CN115551064A (zh) 2022-09-15 2022-09-15 一种ofdm双向中继***中的功率分配方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211121167.4A CN115551064A (zh) 2022-09-15 2022-09-15 一种ofdm双向中继***中的功率分配方法

Publications (1)

Publication Number Publication Date
CN115551064A true CN115551064A (zh) 2022-12-30

Family

ID=84728197

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211121167.4A Pending CN115551064A (zh) 2022-09-15 2022-09-15 一种ofdm双向中继***中的功率分配方法

Country Status (1)

Country Link
CN (1) CN115551064A (zh)

Similar Documents

Publication Publication Date Title
Zhang et al. Cooperative OFDM channel estimation in the presence of frequency offsets
Kim et al. Rate maximization based power allocation and relay selection with IRI consideration for two-path AF relaying
Khennoufa et al. Bit error rate and outage probability analysis for multi-hop decode-and-forward relay-aided NOMA with imperfect SIC and imperfect CSI
Zhang et al. Improved OFDMA uplink transmission via cooperative relaying in the presence of frequency offsets—Part I: Ergodic information rate analysis
Zhu et al. Cooperative stepwise relaying and combining for multihop vehicular wireless communication
Al Attabi Single Relay Selection in the Cognitive Cooperative Network: Toward Bandwidth Efficiency Improvement
Attarkashani et al. Throughput maximization using cross-layer design in wireless sensor networks
Zhang et al. Performance analysis of user ordering schemes in cooperative power-domain non-orthogonal multiple access network
Alexan et al. A comparative study on power allocation for cooperative systems over rayleigh fading channels
Garg et al. 5g network advanced techniques: A literature review
CN115551064A (zh) 一种ofdm双向中继***中的功率分配方法
CN101656560B (zh) 一种高效频谱利用率的协作通信方法
Bhute et al. A survey on relay selection strategies in cooperative wireless network for capacity enhancement
Kocan et al. On the optimal subcarrier mapping scheme in OFDM decode-and-forward relay systems
Andrawes et al. Survey on performance of adaptive modulation scheme with cooperative diversity in wireless systems
CN105704079A (zh) 基于plnc的双向ofdm多中继***中的联合子载波抑制与中继选择方法
Safia et al. Error analysis of cooperative NOMA with practical constraints: hardware-impairment, imperfect SIC and CSI
Li A spectral efficient NOMA-based two-way relaying scheme for wireless networks with two relays
CN103051427B (zh) 基于网络编码的双工无线中继通信方法
Kang et al. Cooperative communication system with multiple relays for performance improvement in wireless communication system
Li et al. An enhanced denoise-and-forward relaying scheme for fading channel with low computational complexity
Afanasieva et al. Wireless Systems with New Cooperative Relaying Algorithm
Eom et al. Device-to-Device Relaying Scheme based on Message Passing Algorithm in the Uplink Cellular System
Kocan et al. BER performance enhancement in OFDM AF fixed gain relay systems
Pulini et al. Improving the performance of AeroMACS by cooperative communications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination