CN115549651A - 一种模拟多重雷击的冲击电流发生器 - Google Patents

一种模拟多重雷击的冲击电流发生器 Download PDF

Info

Publication number
CN115549651A
CN115549651A CN202211496338.1A CN202211496338A CN115549651A CN 115549651 A CN115549651 A CN 115549651A CN 202211496338 A CN202211496338 A CN 202211496338A CN 115549651 A CN115549651 A CN 115549651A
Authority
CN
China
Prior art keywords
module
pulse
charging
gate bipolar
stacked
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211496338.1A
Other languages
English (en)
Inventor
束洪春
马御棠
安宇阳
唐玉涛
韩一鸣
朱梦梦
周杰
易阳
何恺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN202211496338.1A priority Critical patent/CN115549651A/zh
Publication of CN115549651A publication Critical patent/CN115549651A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/53Generators characterised by the type of circuit or by the means used for producing pulses by the use of an energy-accumulating element discharged through the load by a switching device controlled by an external signal and not incorporating positive feedback
    • H03K3/57Generators characterised by the type of circuit or by the means used for producing pulses by the use of an energy-accumulating element discharged through the load by a switching device controlled by an external signal and not incorporating positive feedback the switching device being a semiconductor device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/20Modifications of basic electric elements for use in electric measuring instruments; Structural combinations of such elements with such instruments

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)

Abstract

本发明公开了一种模拟多重雷击的冲击电流发生器,属于新型电力***继电保护领域。电路拓扑结构由可纵向堆叠的脉冲模块、充电模块、闭锁模块、可横向堆叠的脉冲模块以及被试负载模块组成。其基本原理为:由可纵向堆叠的脉冲模块用来控制不同等级的雷电流幅值所需的充电电压,可横向堆叠的脉冲模块控制不同重数的雷电流数量。利用可纵向堆叠的脉冲模块或可横向堆叠的脉冲模块中的绝缘栅双极晶体管与反并联的二极管切换多重雷击的冲击电流发生器的充电及放电的回路,能够有效缩短放电回路中开关分、合等状态的动作时间;提高了多重雷击的冲击电流发生器运行的稳定性和可靠性,使得电流发生器产生的冲击电流与实际的多重雷电流波形更接近。

Description

一种模拟多重雷击的冲击电流发生器
技术领域
本发明属于新型电力***继电保护领域,具体涉及一种模拟多重雷击的冲击电流发生器。
背景技术
雷电是大自然中气体放电的自然现象,其高频雷电流对电力***的安全性造成极大的威胁,同时对人们的生产生活产生了极大的影响。为了避免雷电对电力***的影响,人们对雷电现象进行了大量的研究,同时也制定了雷电流的波形标准.
美国机动车工程师学会(SAE)制定的SAE ARP 5412 雷电环境及相关试验波形,与欧洲民用航空设备组织发布的ED(EUROCAE Documents)系列标准ED-84雷电环境及相关试验波形中,规定了多重雷击波(Multiple stroke waveform set)的波形标准。自然雷电环境的电流实验分量A、B、C、D,每个分量模拟闪电雷击电流的不同特性,其中D分量表示再次回击电流分量,参照多重雷电流回击波标准的规定,再次回击电流脉冲波的峰值为100kA(相对误差±10%),1%峰值区间上(不超过500μs)的作用积分为0.25*106A2s(相对误差±20%),波前时间不大于 25μs,电流持续时间不超过500μs,第二个脉冲和之后n个电流脉冲的峰值为50kA,波前时间和持续时间与第一个脉冲相同。两个电流脉冲波之间的最小时间间隔为10ms,最大时间间隔为200ms。
传统的多重雷电流冲击电流发生器,主要包括高压直流充电电源A;高压直流充电电源B;电容器组C1、C2、…、C(n-1)、Cn;充电电阻R1、R2、…、R(n-1)、Rn,调波阻抗Z1、Z2、…、Z(n-1)、Zn;三电极高压放电球隙G1、G2、…、G(n-1)、Gn;其存在的问题是三电极高压放电球隙 G1、 G2、…、G(n-1)、Gn结构复杂,每对放电球隙都要有一套球间隙调节的传动机构,需要一套球间隙大小的测量装置,同时还要有三电极放电球隙的触发脉冲放大器。除了这些复杂的机构和装置外,还要有大量的充电电阻R1、R2、…、R(n-1)、Rn。如果球间隙大小调整不合适,充电过程中,有些放电球隙有可能还没有触发就误动作放电;充电完成后,在控制***依次对三电极高压放电球隙G1、G2、…、G(n-1)、Gn进行触发时,由于大电流脉冲放电回路引起地电位的抬升和电磁干扰会造成各个球间隙之间有可能发生自放电或不放电的故障,从而使得冲击电流发生器运行不稳定、不可靠,导致试验失败。
发明内容
本发明要解决的技术问题是提供一种模拟多重雷击的冲击电流发生器,用以克服现有技术中的不足,采用若干绝缘栅双极晶体管代替三电极高压放电球隙,从而简化***的结构,不再需要球间隙调节的传动机构和测量球间隙大小的装置,以及触发三电极放电球隙的脉冲放大器,控制可纵向堆叠的脉冲模块中绝缘栅双极晶体管G1…G1n与反并联二极管D1…D1n堆叠的数量调整不同等级雷电流所需的充电电压;控制可横向堆叠的脉冲模块数量可完成一至多重雷击冲击电流的模拟;同时可横向堆叠的脉冲模块中的二极管D2…Dn使得相互并联的电容器G2…Gn在充电过程中一直与高压直流充电电源S2处于导通状态,充电回路可共用充电电阻R2,省掉各支路充电电阻,使得整套冲击电流发生器结构得以简化。
本发明采用的技术方案是:一种模拟多重雷击的冲击电流发生器,包括充电模块1、充电模块2、可纵向堆叠的脉冲模块、闭锁模块、可横向堆叠的脉冲模块以及被试负载模块,闭锁模块由绝缘栅双极晶体管V1、V2构成,被试负载模块作为公共放电支路,将电路拓扑划分为首次雷电流发生电路和第2…n重雷电流发生电路,在首次雷电流发生电路拓扑中,被试负载模块和闭锁模块中的缘栅双极晶体管V1串联后再与充电模块1并联,由可纵向堆叠的脉冲模块与前述电路(即被试负载模块和闭锁模块中的缘栅双极晶体管V1串联后再与充电模块1并联形成的电路)串联构成完整的首次雷电流发生电路;在第2…n重雷电流发生电路拓扑中,被试负载模块和闭锁模块中的绝缘栅双极晶体管V2串联后与充电模块2并联,可横向堆叠的脉冲模块中的各独立脉冲模块2…n与前述电路(即被试负载模块和闭锁模块中的绝缘栅双极晶体管V2串联后与充电模块2并联形成的电路)相串联构成相对应的第2…n重雷电流发生电路。
具体地,所述的可纵向堆叠的脉冲模块为:由多个绝缘栅双极晶体管G1…G1n与反并联二极管D1…D1n纵向堆叠后与电容器C1以及调波电阻Z1串联所形成的高压脉冲模块1或由绝缘栅双极晶体管G1与二极管D1反并联后与电容器C1以及调波电阻Z1串联形成的脉冲模块1,其中n是根据不同等级雷电流参数选取堆叠的数量,利用可纵向堆叠的脉冲模块能够提供不同幅值雷电流所需的充电电压。
具体地,所述的可横向堆叠的脉冲模块为:各脉冲模块2…n按照横向堆叠的方向依次并联,相邻的脉冲模块n-1与脉冲模块n之间串联二极管D(n-1)-n,其中n>2;二极管D(n-1)-n的正向导通方向与横向堆叠的方向相反,即二级管D(n-1)-n的阳极接在了电容器Cn的负极上,使得脉冲模块n只能按照横向堆叠的方向对被试负载模块放电,而不能反向对脉冲模块n-1…2放电;通过对可横向堆叠的脉冲模块数量的控制,可完成一至多重雷击冲击电流的模拟。
具体地,所述的充电模块1由高压直流充电电源S1串联充电电阻R1以及绝缘栅双极晶体管V3 组成;充电模块2由高压直流充电电源S2串联充电电阻R2以及绝缘栅双极晶体管V4 组成,充电过程中,充电模块1与可纵向堆叠的脉冲模块串联构成充电回路,充电模块2与可横向堆叠的脉冲模块串联构成各脉冲模块2…n的并联充电回路;放电过程中,可纵向堆叠的脉冲模块与被试负载模块之间串联,被试负载模块与可横向堆叠的脉冲模块中的各独立脉冲模块2…n之间串联,调整各独立脉冲模块2…n的导通时间即可获取完整的多重雷电流波形。
具体地,充电时绝缘栅双极晶体管V1、V2同时断开,以此隔离充电模块1与充电模块2;放电时利用绝缘栅双极晶体管V1与V2的脉冲触发信号互补形成闭锁回路,即绝缘栅双极晶体管V1触发回路输入高电平信号时绝缘栅双极晶体管V2不输入触发信号或输入低电平信号,使得模拟首次雷电流的脉冲模块1与之后若干独立脉冲模块2~n的放电过程相互独立。
具体地,利用可纵向堆叠的脉冲模块中的绝缘栅双极晶体管G1n与二极管D1n的反并联或可横向堆叠的脉冲模块中的绝缘栅双极晶体管G2…Gn与二极管D2…Dn的反并联实现充放电装置之间的切换,同时可横向堆叠的脉冲模块中的二极管D2…Dn使得相互并联的电容器G2…Gn在充电过程中一直与高压直流充电电源S2处于导通状态,充电回路可共用充电电阻R2,省掉各支路充电电阻,使得整套冲击电流发生器结构得以简化。
具体地,负载模块为需进行冲击放电实验的各种待测品。
本发明的有益效果是:
1.利用可纵向堆叠的脉冲模块中的绝缘栅双极晶体管G1n与二极管D1n的反并联或可横向堆叠的脉冲模块中的绝缘栅双极晶体管G2…Gn与二极管D2…Dn的反并联实现充放电装置之间的切换,使得充放电回路不能同时导通,避免传统发生器中因球间隙大小调整不合适,在充电过程中,未触发就误动作放电的现象。
2.由多个绝缘栅双极晶体管G1…G1n与反并联二极管D1…D1n纵向堆叠后串联电容器C1以及调波电阻Z1所形成的可纵向堆叠的脉冲模块可用于调整不同等级雷电流所需的充电电压。
3.可横向堆叠的脉冲模块中的二极管D2…Dn使得相互并联的电容器G2…Gn在充电过程中一直与高压直流充电电源S2处于导通状态,充电回路可共用充电电阻R2,省掉各支路充电电阻,使得整套冲击电流发生器结构得以简化。
4.对可横向堆叠的脉冲模块的控制,可完成一至多重雷击冲击电流的模拟。
附图说明
图1是纵向堆叠实现不同幅值的雷电流发生电路;
图2是三重雷击的冲击电流波形;
图3是横向堆叠实现不同重数的雷电流发生电路;
图4是多重雷击的冲击电流波形。
具体实施方式
下面结合附图和具体实施例,对本发明做进一步说明。
实施例1:如图1-4所示,一种模拟多重雷击的冲击电流发生器,包括充电模块1、充电模块2、可纵向堆叠的脉冲模块、闭锁模块、可横向堆叠的脉冲模块以及被试负载模块,闭锁模块由绝缘栅双极晶体管V1、V2构成,被试负载模块作为公共放电支路,将电路拓扑划分为首次雷电流发生电路和第2…n重雷电流发生电路,在首次雷电流发生电路拓扑中,被试负载模块和闭锁模块中的缘栅双极晶体管V1串联后再与充电模块1并联,由可纵向堆叠的脉冲模块与前述电路(即被试负载模块和闭锁模块中的缘栅双极晶体管V1串联后再与充电模块1并联形成的电路)串联构成完整的首次雷电流发生电路;在第2…n重雷电流发生电路拓扑中,被试负载模块和闭锁模块中的绝缘栅双极晶体管V2串联后与充电模块2并联,可横向堆叠的脉冲模块中的各独立脉冲模块2…n与前述电路(即被试负载模块和闭锁模块中的绝缘栅双极晶体管V2串联后与充电模块2并联形成的电路)相串联构成相对应的第2…n重雷电流发生电路。
进一步地,所述的可纵向堆叠的脉冲模块为:由多个绝缘栅双极晶体管G1…G1n与反并联二极管D1…D1n纵向堆叠后与电容器C1以及调波电阻Z1串联所形成的高压脉冲模块1或由绝缘栅双极晶体管G1与二极管D1反并联后与电容器C1以及调波电阻Z1串联形成的脉冲模块1,其中n是根据不同等级雷电流参数选取堆叠的数量,利用可纵向堆叠的脉冲模块能够提供不同幅值雷电流所需的充电电压。
进一步地,所述的可横向堆叠的脉冲模块为:各脉冲模块2…n按照横向堆叠的方向依次并联,相邻的脉冲模块n-1与脉冲模块n之间串联二极管D(n-1)-n,其中n>2;二极管D(n-1)-n的正向导通方向与横向堆叠的方向相反,即二级管D(n-1)-n的阳极接在了电容器Cn的负极上,使得脉冲模块n只能按照横向堆叠的方向对被试负载模块放电,而不能反向对脉冲模块n-1…2放电;通过对可横向堆叠的脉冲模块数量的控制,可完成一至多重雷击冲击电流的模拟。
进一步地,所述的充电模块1由高压直流充电电源S1串联充电电阻R1以及绝缘栅双极晶体管V3 组成;充电模块2由高压直流充电电源S2串联充电电阻R2以及绝缘栅双极晶体管V4 组成,充电过程中,充电模块1与可纵向堆叠的脉冲模块串联构成充电回路,充电模块2与可横向堆叠的脉冲模块串联构成各脉冲模块2…n的并联充电回路;放电过程中,可纵向堆叠的脉冲模块与被试负载模块之间串联,被试负载模块与可横向堆叠的脉冲模块中的各独立脉冲模块2…n之间串联,调整各独立脉冲模块2…n的导通时间即可获取完整的多重雷电流波形。
进一步地,按照多重雷冲击电流标准的规定,第一个电流脉冲波的峰值为其余电流脉冲波峰值的两倍,一般需要充电电压更高一些,因此,采用两支绝缘栅双极晶体管(V1、V2)构成充电闭锁模块。充电时绝缘栅双极晶体管V1、V2同时断开,以此隔离充电模块1与充电模块2;放电时利用绝缘栅双极晶体管V1与V2的脉冲触发信号互补形成闭锁回路,即绝缘栅双极晶体管V1触发回路输入高电平信号时绝缘栅双极晶体管V2不输入触发信号或输入低电平信号,使得模拟首次雷电流的脉冲模块1与之后若干独立脉冲模块2~n的放电过程相互独立。
进一步地,利用可纵向堆叠的脉冲模块中的绝缘栅双极晶体管G1n与二极管D1n的反并联或可横向堆叠的脉冲模块中的绝缘栅双极晶体管G2…Gn与二极管D2…Dn的反并联实现充放电装置之间的切换,同时可横向堆叠的脉冲模块中的二极管D2…Dn使得相互并联的电容器G2…Gn在充电过程中一直与高压直流充电电源S2处于导通状态,充电回路可共用充电电阻R2,省掉各支路充电电阻,使得整套冲击电流发生器结构得以简化。
进一步地,负载模块为需进行冲击放电实验的各种待测品。
下面结合具体的实例对本发明进行详细的说明。
实例1:利用可纵向堆叠的脉冲模块实现首次雷击电流为A分量的三重雷电流波形。根据美国机动车工程师学会(SAE)制定的SAE ARP 5412 雷电环境及相关试验波形标准,对雷电流分量A的规定为:峰值时间为6.4μs,脉冲半宽为69 μs,电流峰值200 kA。如图1所示:电容器C1、C2、C3充电时,闭锁模块中的绝缘栅双极晶体管V1、V2处于断开状态,将充电模块1与充电模块2隔离开,使得高压直流电源S1能够为电容器C1提供独立充电电流;同时充电模块1与充电模块2中的绝缘栅双极晶体管V3、V4施加正向脉冲导通,高压直流充电电源S1经过充电电阻R1、绝缘栅双极晶体管V3、调波电阻Z1以及可纵向堆叠模块中绝缘栅双极晶体管G1n…G1与反向并联的二极管D1n…D1对电容器C1充电;高压直流充电电源S2经过充电电阻R2、绝缘栅双极晶体管V4、调波电阻Z2、Z3以及二极管D2、D3对电容器C2、C3完成并联充电。
电流发生器的放电回路是RLC回路,充电完成后关闭充电模块1与充电模块2中绝缘栅双极晶体管V3、V4;如果需要实现三重雷电流脉冲的时间间隔为50ms(如图2,Δt=50ms)的雷电流波形,则在发出放电指令延时0 ms后可纵向堆叠的脉冲模块中的绝缘栅双极晶体管G1…G1n以及闭锁模块中的绝缘栅双极晶体管V1导通,此时电容器C1经过绝缘栅双极晶体管G1…G1n、调波电阻Z1以及绝缘栅双极晶体管 V1向被试负载L、R放电;延时50ms后可纵向堆叠的脉冲模块中的绝缘栅双极晶体管G1…G1n以及闭锁模块中的绝缘栅双极晶体管V1关闭的同时可横向堆叠的脉冲模块中的绝缘栅双极晶体管G2以及闭锁模块中的绝缘栅双极晶体管V2导通,电容器C2经过绝缘栅双极晶体管G2、调波电阻Z2以及绝缘栅双极晶体管V2向被试负载L、R放电;延时100ms后可横向堆叠的脉冲模块中的绝缘栅双极晶体管G3导通,电容器C3经绝缘栅双极晶体管G3、调波电阻Z3以及绝缘栅双极晶体管V2向被试负载L、R放电;各脉冲模块导通时间按照脉冲模块编号依次相差50ms;绝缘栅双极晶体管关断时间比自身导通时间延时50ms,即可纵向堆叠的脉冲模块中的绝缘栅双极晶体管G1…G1n以及闭锁模块中的绝缘栅双极晶体管V1延时0ms导通,延时50ms关闭;
可横向堆叠的脉冲模块中的绝缘栅双极晶体管G2以及闭锁模块中的绝缘栅双极晶体管V2延时50ms导通,其中绝缘栅双极晶体管G2延时100ms关闭。可横向堆叠的脉冲模块中的绝缘栅双极晶体管G3延时100ms导通,延时150ms关闭。由于闭锁模块中绝缘栅双极晶体管V1在电容器C1放电完成后关闭,因此绝缘栅双极晶体管V2延时100ms导通后无需关断,直至电容器C2、C3放电完成。通过选择合适的电容器容量、回路电感值、调波电阻、可得到需要的三重雷电流波形。
实例2:利用可横向堆叠的脉冲模块实现首次雷击电流为D分量的多重雷电流波形,根据美国机动车工程师学会(SAE)制定的SAE ARP 5412 雷电环境及相关试验波形标准,对雷电流分量D的规定为:第一个电流脉冲波的峰值为100kA,波前时间不大于 25μs,电流持续时间不超过500μs,第二个脉冲和之后十几或二十几个电流脉冲的峰值为50kA,波前时间和持续时间与第一个脉冲相同。如图3所示电容器C1…n充电时,闭锁模块中的绝缘栅双极晶体管V1、V2处于断开状态,将高压直流充电电源S1、S2隔离开,使得高压直流充电电源S1能够为C1提供独立充电电流;同时避免高压直流电源在给电容器组充电时向被试负载放电;充电模块1与充电模块2中的绝缘栅双极晶体管V3、V4施加正向脉冲导通,高压直流充电电源S1经过充电电阻R1,绝缘栅双极晶体管V3,调波电阻Z1以及二极管D1对电容器组C1充电,高压直流充电电源S2通过充电电阻R2,绝缘栅双极晶体管V4对电容组C2、C3、…、C n-1、Cn进行并联充电。如图3所示,若要得到不同重数的雷电流波形,则通过控制横向脉冲模块的并联支路数量n进行控制。本实施例n取14,模拟14重雷电流波形。
如图3所示电容器组充电完毕后,在充电模块1与充电模块2中的绝缘栅双极晶体管V3 、V4集电极与发射极之间施加反向脉冲,使绝缘栅双极晶体管V3、V4处于截至状态,断开充电回路;准备向被试负载放电。
在控制***发出放电指令后,脉冲模块1中的绝缘栅双极晶体管G1以及闭锁模块中的绝缘栅双极晶体管V1施加正向触发脉冲导通,如果需要实现每两个电流脉冲的时间间隔为50ms(如图4,Δt=50ms)的多重雷电流波形,在发出放电指令延时0ms后脉冲模块1中的绝缘栅双极晶体管G1以及闭锁模块中的绝缘栅双极晶体管V1导通,延时50ms后可横向堆叠的脉冲模块中的绝缘栅双极晶体管G2以及闭锁模块中的绝缘栅双极晶体管V2导通,延时50*(n-1)ms后可横向堆叠的脉冲模块中的绝缘栅双极晶体管Gn导通;可横向堆叠的脉冲模块中的绝缘栅双极晶体管按照编号G2…n导通时间依次相差50ms;绝缘栅双极晶体管关断时间比自身导通时间延时50ms,即关断时刻为n*50ms。在闭锁模块中的绝缘栅双极晶体管V1导通延时50ms关断的同时闭锁模块中的绝缘栅双极晶体管V2导通,此后闭锁模块中的绝缘栅双极晶体管V2可持续导通至电容器组放电完毕。如图4,n取值为14,则当控制***发出放电指令后,每隔50ms产生一个电流脉冲,共有14个脉冲, 14个多脉冲总时间不超过0 .7秒,满足雷电流波形标准。
以上结合附图对本发明的具体实施方式作了详细说明,但是本发明并不限于上述实施方式,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。

Claims (7)

1.一种模拟多重雷击的冲击电流发生器,其特征在于:包括充电模块1、充电模块2、可纵向堆叠的脉冲模块、闭锁模块、可横向堆叠的脉冲模块以及被试负载模块;闭锁模块由绝缘栅双极晶体管V1、V2构成,被试负载模块作为公共放电支路,将电路拓扑划分为首次雷电流发生电路和第2…n重雷电流发生电路,在首次雷电流发生电路拓扑中,被试负载模块和闭锁模块中的缘栅双极晶体管V1串联后再与充电模块1并联,然后再与可纵向堆叠的脉冲模块串联构成完整的首次雷电流发生电路;在第2…n重雷电流发生电路拓扑中,被试负载模块和闭锁模块中的绝缘栅双极晶体管V2串联后与充电模块2并联,然后再与可横向堆叠的脉冲模块中的各独立脉冲模块2…n相串联构成相对应的第2…n重雷电流发生电路。
2.根据权利要求1所述的一种模拟多重雷击的冲击电流发生器,其特征在于:所述的可纵向堆叠的脉冲模块为:由多个绝缘栅双极晶体管G1…G1n与反并联二极管D1…D1n纵向堆叠后与电容器C1以及调波电阻Z1串联所形成的高压脉冲模块1或由绝缘栅双极晶体管G1与二极管D1反并联后与电容器C1以及调波电阻Z1串联形成的脉冲模块1,其中n是根据不同等级雷电流参数选取堆叠的数量,利用可纵向堆叠的脉冲模块能够提供不同幅值雷电流所需的充电电压。
3.根据权利要求2所述的一种模拟多重雷击的冲击电流发生器,其特征在于:所述的可横向堆叠的脉冲模块为:各脉冲模块2…n按照横向堆叠的方向依次并联,相邻的脉冲模块n-1与脉冲模块n之间串联二极管D(n-1)-n,其中n>2;二极管D(n-1)-n的正向导通方向与横向堆叠的方向相反,即二级管D(n-1)-n的阳极接在了电容器Cn的负极上,使得脉冲模块n只能按照横向堆叠的方向对被试负载模块放电,而不能反向对脉冲模块n-1…2放电;通过对可横向堆叠的脉冲模块数量的控制,可完成一至多重雷击冲击电流的模拟。
4.根据权利要求3所述的一种模拟多重雷击的冲击电流发生器,其特征在于:所述的充电模块1由高压直流充电电源S1串联充电电阻R1以及绝缘栅双极晶体管V3 组成;充电模块2由高压直流充电电源S2串联充电电阻R2以及绝缘栅双极晶体管V4 组成,充电过程中,充电模块1与可纵向堆叠的脉冲模块串联构成充电回路,充电模块2与可横向堆叠的脉冲模块串联构成各脉冲模块2…n的并联充电回路;放电过程中,可纵向堆叠的脉冲模块与被试负载模块之间串联,被试负载模块与可横向堆叠的脉冲模块中的各独立脉冲模块2…n之间串联,调整各独立脉冲模块2…n的导通时间即可获取完整的多重雷电流波形。
5.根据权利要求4所述的一种模拟多重雷击的冲击电流发生器,其特征在于:闭锁模块中:充电时绝缘栅双极晶体管V1、V2同时断开,以此隔离充电模块1与充电模块2;放电时利用绝缘栅双极晶体管V1与V2的脉冲触发信号互补形成闭锁回路,即绝缘栅双极晶体管V1触发回路输入高电平信号时绝缘栅双极晶体管V2不输入触发信号或输入低电平信号,使得模拟首次雷电流的脉冲模块1与之后若干独立脉冲模块2~n的放电过程相互独立。
6.根据权利要求5所述的一种模拟多重雷击的冲击电流发生器,其特征在于:利用可纵向堆叠的脉冲模块中的绝缘栅双极晶体管G1n与二极管D1n的反并联或可横向堆叠的脉冲模块中的绝缘栅双极晶体管G2…Gn与二极管D2…Dn的反并联实现充放电装置之间的切换,同时可横向堆叠的脉冲模块中的二极管D2…Dn使得相互并联的电容器G2…Gn在充电过程中一直与高压直流充电电源S2处于导通状态,充电回路可共用充电电阻R2,省掉各支路充电电阻,使得整套冲击电流发生器结构得以简化。
7.根据权利要求1所述的一种模拟多重雷击的冲击电流发生器,其特征在于:负载模块为需进行冲击放电实验的各种待测品。
CN202211496338.1A 2022-11-26 2022-11-26 一种模拟多重雷击的冲击电流发生器 Pending CN115549651A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211496338.1A CN115549651A (zh) 2022-11-26 2022-11-26 一种模拟多重雷击的冲击电流发生器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211496338.1A CN115549651A (zh) 2022-11-26 2022-11-26 一种模拟多重雷击的冲击电流发生器

Publications (1)

Publication Number Publication Date
CN115549651A true CN115549651A (zh) 2022-12-30

Family

ID=84722613

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211496338.1A Pending CN115549651A (zh) 2022-11-26 2022-11-26 一种模拟多重雷击的冲击电流发生器

Country Status (1)

Country Link
CN (1) CN115549651A (zh)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6172467B1 (en) * 1997-08-12 2001-01-09 Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh Method and device for producing series of impulse voltages to operate discharge lamps and circuit pertaining thereto
CN101124714A (zh) * 2004-05-04 2008-02-13 斯坦格尼斯工业公司 采用固态开关的高压脉冲电源
CN101127516A (zh) * 2007-09-14 2008-02-20 东南大学 高压脉冲电路
CN103036469A (zh) * 2012-12-07 2013-04-10 浙江大学 高压脉冲电源
CN103454463A (zh) * 2013-09-05 2013-12-18 国家电网公司 一种无间隙雷电冲击电流发生器
CN103475240A (zh) * 2013-09-05 2013-12-25 国家电网公司 一种无间隙雷电冲击电压发生器
CN103618472A (zh) * 2013-09-12 2014-03-05 复旦大学 具有单极性脉冲输出的全固态高压脉冲电流源
CN103675375A (zh) * 2013-12-31 2014-03-26 上海交通大学 电感放电型高陡度冲击电流发生器
JP2014082920A (ja) * 2012-10-15 2014-05-08 Omni Lps Co Ltd 複合インパルス電流発生器
US20150002238A1 (en) * 2013-06-27 2015-01-01 Electronics And Telecommunications Research Institute Stacked diode limiter
CN104764910A (zh) * 2012-07-27 2015-07-08 苏州泰思特电子科技有限公司 雷击瞬态冲击电流发生器
WO2016204699A2 (en) * 2015-06-18 2016-12-22 Hass, Rüdiger Pulse generator with adjustable and controled upward impulse current
CN108196100A (zh) * 2018-03-06 2018-06-22 北京华天机电研究所有限公司 采用真空开关实现的多重回击波冲击电流发生器
CN216013461U (zh) * 2021-09-03 2022-03-11 成都知力电子有限责任公司 受控触发气体放电开关及其应用的高速冲击电流发生器

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6172467B1 (en) * 1997-08-12 2001-01-09 Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh Method and device for producing series of impulse voltages to operate discharge lamps and circuit pertaining thereto
CN101124714A (zh) * 2004-05-04 2008-02-13 斯坦格尼斯工业公司 采用固态开关的高压脉冲电源
CN101127516A (zh) * 2007-09-14 2008-02-20 东南大学 高压脉冲电路
CN104764910A (zh) * 2012-07-27 2015-07-08 苏州泰思特电子科技有限公司 雷击瞬态冲击电流发生器
JP2014082920A (ja) * 2012-10-15 2014-05-08 Omni Lps Co Ltd 複合インパルス電流発生器
CN103036469A (zh) * 2012-12-07 2013-04-10 浙江大学 高压脉冲电源
US20150002238A1 (en) * 2013-06-27 2015-01-01 Electronics And Telecommunications Research Institute Stacked diode limiter
CN103475240A (zh) * 2013-09-05 2013-12-25 国家电网公司 一种无间隙雷电冲击电压发生器
CN103454463A (zh) * 2013-09-05 2013-12-18 国家电网公司 一种无间隙雷电冲击电流发生器
CN103618472A (zh) * 2013-09-12 2014-03-05 复旦大学 具有单极性脉冲输出的全固态高压脉冲电流源
CN103675375A (zh) * 2013-12-31 2014-03-26 上海交通大学 电感放电型高陡度冲击电流发生器
WO2016204699A2 (en) * 2015-06-18 2016-12-22 Hass, Rüdiger Pulse generator with adjustable and controled upward impulse current
CN108196100A (zh) * 2018-03-06 2018-06-22 北京华天机电研究所有限公司 采用真空开关实现的多重回击波冲击电流发生器
CN216013461U (zh) * 2021-09-03 2022-03-11 成都知力电子有限责任公司 受控触发气体放电开关及其应用的高速冲击电流发生器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RAFAEL FERRAZ 等: "Construction of an impulse current generator prototype applied in electrical grounding systems", 《2015 CHILEAN CONFERENCE ON ELECTRICAL, ELECTRONICS ENGINEERING, INFORMATION AND COMMUNICATION TECHNOLOGIES (CHILECON)》 *

Similar Documents

Publication Publication Date Title
US7855904B2 (en) Apparatus for producing voltage and current pulses
US4274134A (en) Method of and apparatus for high voltage pulse generation
CN112165313B (zh) 一种基于雪崩管的高幅值高重频快脉冲产生电路
CN103888015A (zh) 用于时效处理的高密度高能电脉冲发生装置
CN114448210A (zh) 一种晶闸管串联高压直流通路的动态均压电路及设计方法
US9543932B2 (en) Matrix stages solid state ultrafast switch
CN115549651A (zh) 一种模拟多重雷击的冲击电流发生器
CN105372462A (zh) 多波形冲击电流发生器
CN211627718U (zh) 一种多功能大电流冲击电磁兼容测试设备
CN110445480B (zh) 一种多级快前沿高压脉冲触发器及其同步方法
Redondo et al. New technique for uniform voltage sharing in series stacked semiconductors
CN107565845B (zh) 一种高压脉冲电源的负载匹配装置及方法
CN109490591B (zh) 高稳定性雷电冲击模拟器
CN108196100A (zh) 采用真空开关实现的多重回击波冲击电流发生器
CN208623563U (zh) 一种采用高压继电器隔离的方波电压源
Richter-Sand et al. Marx-stacked IGBT modulators for high voltage, high power applications
Barbosa et al. Development of solid-state drivers for the NIF plasma electrode pockels cell
Wang et al. Design and Ccomparison of Three Schemes of High Voltage Nanosecond Trigger
Pendleton et al. Compact solid state high repetition rate variable amplitude pulse generator
Mota et al. Generation of dc high voltage pulse for hipot testing using pfn based marx generator
CN205067543U (zh) 多波形冲击电流发生器
CN110768564B (zh) 一种复合推力器负载自适应电源***及供电方法
CN110739938B (zh) 一种电脉冲触发电路结构
CN210518240U (zh) 脉冲发生装置
CN117723799A (zh) 一种全固态电快速瞬变脉冲群模拟器***

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20221230