CN115522207A - 一种在喷砂酸蚀钛表面构建pll/cpp-acp自组装多层膜的制备方法 - Google Patents

一种在喷砂酸蚀钛表面构建pll/cpp-acp自组装多层膜的制备方法 Download PDF

Info

Publication number
CN115522207A
CN115522207A CN202211054932.5A CN202211054932A CN115522207A CN 115522207 A CN115522207 A CN 115522207A CN 202211054932 A CN202211054932 A CN 202211054932A CN 115522207 A CN115522207 A CN 115522207A
Authority
CN
China
Prior art keywords
titanium
acid
pll
solution
cpp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211054932.5A
Other languages
English (en)
Other versions
CN115522207B (zh
Inventor
邱憬
柳姚
沈哲
许燕
朱文卿
周洁仪
钱鑫娜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Affiliated Stomatological Hospital of Nanjing Medical University
Original Assignee
Affiliated Stomatological Hospital of Nanjing Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Affiliated Stomatological Hospital of Nanjing Medical University filed Critical Affiliated Stomatological Hospital of Nanjing Medical University
Priority to CN202211054932.5A priority Critical patent/CN115522207B/zh
Publication of CN115522207A publication Critical patent/CN115522207A/zh
Application granted granted Critical
Publication of CN115522207B publication Critical patent/CN115522207B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/10Other heavy metals
    • C23G1/106Other heavy metals refractory metals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/06Titanium or titanium alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/14Cleaning or pickling metallic material with solutions or molten salts with alkaline solutions
    • C23G1/20Other heavy metals
    • C23G1/205Other heavy metals refractory metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Transplantation (AREA)
  • Dermatology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本发明公开了一种在喷砂酸蚀钛表面构建PLL/CPP‑ACP自组装多层膜的制备方法,属于材料领域。该方法是将纯钛打磨抛光,喷砂,超声清洗并干燥;干燥后的纯钛采用氢氟酸/硝酸混合液常温酸蚀,之后超声清洗干燥,干燥后再经浓盐酸/浓硫酸混合酸75~85℃水浴温度下酸蚀,超声清洗并干燥,使钛表面形成微米结构,得到酸蚀钛材料;将酸蚀钛材料加入氢氧化钠溶液中进行碱化,碱化后的钛片置于PLL溶液中,之后将PLL预处理后的钛片交替、反复浸入CPP‑ACP溶液和PLL溶液中,即可得到目标产品。本发明工艺简单,仅氢氧化钠碱热处理及自组装技术即可形成钛表面纳米结构并加载生物活性钙离子,所需设备简单,成本低廉,钛表面兼具纳米结构以及钙元素修饰。

Description

一种在喷砂酸蚀钛表面构建PLL/CPP-ACP自组装多层膜的制 备方法
技术领域
本发明属于生物材料领域。具体涉及一种在喷砂酸蚀钛表面构建PLL/CPP-ACP自组装多层膜的制备方法。
背景技术
钛及钛合金材料因具有良好的耐腐蚀性、生物相容性和机械性能,被广泛应用于骨科及口腔科医疗领域,如骨固定装置和种植体。然而钛材料具有生物惰性,植入骨组织时缺乏显著的生物活性,因此快速完成骨结合仍然是一个巨大的挑战。人们已经对钛表面修饰进行了大量的尝试,以期诱导骨的快速生长。碱热处理是最常用的处理之一,可形成改性微米或纳米钛表面,促进钛表面成骨细胞碱性磷酸酶和胶原合成,诱导骨形成。层层自组装技术是制备厚度可控、分子结构可控的生物活性多层膜的最有效、最有前途的方法之一,具有巨大的商业化潜力[F.X.Xiao,M.Pagliaro,Y.J.Xu,B.Liu,Layer-by-layer assemblyof versatile nanoarchitectures with diverse dimensionality:a new perspectivefor rational construction of multilayer assemblies,Chemical Society Reviews45(11)(2016)3088-3121]。
CPP含有的-ser(P)-ser(P)-ser(P)-glu-glu-序列,与二价金属离子具有高亲和力,因此可以稳定ACP形成CPP-ACP复合物,为稳定的钙磷再矿化***。CPP-ACP作为钙、磷的储存库,可以显著提高对这两种离子的生物利用率,并使溶液中维持较高浓度的钙离子、磷酸根离子或离子对[N.L.Huq,K.J.Cross,E.C.Reynolds,Molecular modelling of themultiphosphorylated casein phosphopeptide alphaS1-casein(59-79)based on NMRconstraints,The Journal of dairy research 71(1)(2004)28-32.]。钙是一种能促进细胞增殖、分化的重要微量元素,对成骨细胞分化和骨组织发育有直接影响,并且时骨钙素和胶原蛋白表达等多种细胞活动的有效调节因子[E.Gabusi,C.Manferdini,F.Grassi,A.Piacentini,L.Cattini,G.Filardo,E.Lambertini,R.Piva,N.Zini,A.Facchini,G.Lisignoli,Extracellular calcium chronically induced human osteoblastseffects:Specific modulation of osteocalcin and collagen type XV,Journal ofcellular physiology 227(8)(2012)3151-3161].
现有技术在形成微米、纳米级微结构和沉积钙离子的方法较复杂,需要的设备较为复杂,技术敏感性高,处理时间长,制备表面粒度较粗。
发明内容
解决的技术问题:本发明针对上述现有技术的不足,提供一种在喷砂酸蚀钛表面构建PLL/CPP-ACP自组装多层膜的制备方法,无需复杂的设备,技术敏感性低。本发明制备的钛样品具有纳米结构以及钙元素修饰,工艺简单,易于加工,制备成本低廉。
技术方案:
一种在喷砂酸蚀钛表面构建PLL/CPP-ACP自组装多层膜的制备方法,该方法包括如下步骤:
步骤A):将纯钛打磨抛光,喷砂,超声清洗并干燥;
步骤B):将步骤A)干燥后的纯钛采用氢氟酸/硝酸混合液常温酸蚀5~15min,之后超声清洗干燥,干燥后再经浓盐酸/浓硫酸混合酸75~85℃水浴温度下酸蚀25~35min,超声清洗并干燥,使钛表面形成微米结构,得到酸蚀钛材料;
步骤C):将酸蚀钛材料加入氢氧化钠溶液中,60-80℃水浴条件下碱化反应10-14h后再清洗;
步骤D):将步骤C)碱化后的钛片置于PLL(poly(L-lysine),多聚左旋赖氨酸)溶液中,4-6℃孵育10-12h,得到PLL预处理后的钛片;
步骤E):将PLL预处理后的钛片交替、反复浸入CPP-ACP(caseinphosphopeptides-amorphous calcium phosphate,酪蛋白磷酸肽-无定形磷酸钙)和PLL溶液中,循环10次,每次浸泡10-20min,浸泡后荡洗,室温干燥,得到含钙纳米钛材料。
本发明技术方案中:步骤A)中纯钛试样抛光使用标号依次为600#,800#,1200#,1500#的砂纸由粗砂到细砂将纯钛逐级打磨抛光。
本发明技术方案中:步骤A)中纯钛试样喷砂使用80目Al2O3砂,压力0.4MPa,距离1.5cm,喷砂15s。
本发明技术方案中:步骤B)中氢氟酸/硝酸混合液中水:氢氟酸溶液:硝酸溶液的体积比为1000:1~3:3~5;氢氟酸溶液的体积浓度为0.22%,硝酸溶液的体积浓度为0.57%。
本发明技术方案中:步骤B)中浓盐酸/浓硫酸混合酸中水:浓盐酸溶液:浓硫酸溶液体积比为4~7:0.5~1.5:0.5~1.5,盐酸溶液的体积浓度为37%,硫酸溶液的体积浓度为98%。
本发明技术方案中:步骤C)中氢氧化钠溶液的浓度为1~3mol/L。
本发明技术方案中:步骤D)和步骤E)中所述的PLL多聚左旋赖氨酸的浓度为2.5mg/mL,步骤E)中CPP-ACP溶液的质量浓度为0.5-3.0%。
有益效果:本发明工艺简单,仅氢氧化钠碱热处理及自组装技术即可形成钛表面纳米结构并加载生物活性钙离子,所需设备简单,成本低廉,钛表面兼具纳米结构以及钙元素修饰。PLL/CPP-ACP钛表面可增强钛与骨的相容和结合能力,有利于钛表面成骨细胞的增殖和分化,以提高钛的骨整合能力。其中,当CPP-ACP的浓度为3.0%时,钛表面结构更致密,亲水性更佳,其表面成骨细胞增殖和黏附性更强,更有利于成骨细胞成骨相关蛋白的表达。
附图说明
图1为本发明实施例1所制得的样本扫描电镜图(40000倍);
图2为本发明实施例2所制得的样本扫描电镜图(40000倍);
图3为本发明实施例1、2所测得的XPS图谱;
图4为以本发明实施例1、2为实验组,喷砂酸蚀(SLA)钛表面为对照组,所测得的3组钛片的水接触角;
图5为以本发明实施例1、2为实验组,喷砂酸蚀(SLA)钛表面为对照组,将MC3T3-E1成骨细胞系接种于其表面培养8h后,所拍摄的细胞黏附图像;
图6为以本发明实施例1、2为实验组,喷砂酸蚀(SLA)钛表面为对照组,将MC3T3-E1成骨细胞系接种于其表面培养1、3、5天后,所测得细胞增殖CCK-8值柱状图,*表示存在显著性差异;
图7为以本发明实施例1、2为实验组,喷砂酸蚀(SLA)钛表面为对照组,将MC3T3-E1成骨细胞系接种于其表面培养7天后,所测得的Runx2、OPN、OCN的蛋白表达水平。
具体实施方式
下面的实施例可使本专业技术人员更全面地理解本发明,但不以任何方式限制本发明。
实施例1
一种在喷砂酸蚀钛表面构建PLL/CPP-ACP自组装多层膜的制备方法,包括以下步骤:
步骤A)将纯钛打磨抛光(纯钛试样抛光使用标号依次为600#,800#,1200#,1500#的砂纸由粗砂到细砂将纯钛逐级打磨抛光),喷砂(纯钛试样喷砂使用80目Al2O3砂,压力0.4MPa,距离1.5cm,喷砂15s),超声清洗并干燥待用;
步骤B)将步骤A)处理的纯钛材料用氢氟酸/硝酸混合液(氢氟酸/硝酸混合液中双蒸水:氢氟酸溶液:硝酸溶液的体积比为1000:2:4;氢氟酸溶液的体积浓度为0.22%,硝酸溶液的体积浓度为0.57%)常温酸蚀10min,双蒸水超声清洗干燥,再经浓盐酸/浓硫酸混合酸液(浓盐酸/浓硫酸混合酸中双蒸水:盐酸溶液:硫酸溶液体积比为6:1:1,盐酸溶液的体积浓度为37%,硫酸溶液的体积浓度为98%)80℃水浴温度下酸蚀30min,双蒸水超声清洗并干燥;
步骤C)将步骤B)喷砂酸蚀处理的钛材料加入氢氧化钠溶液(氢氧化钠溶液的浓度为2mol/L)中,70℃水浴条件下碱化反应12h后再清洗;
步骤D)将步骤C)碱化后的钛片置于PLL(poly(L-lysine),多聚左旋赖氨酸,浓度为2.5mg/mL)溶液中,5℃孵育11h。
步骤E)将步骤D)PLL处理过的钛材料交替浸入质量浓度为0.5%的CPP-ACP和PLL(浓度为2.5mg/mL)溶液,循环次数为10次,每次浸泡15min,浸泡后双蒸水荡洗2min,室温干燥备用。
实施例2
一种在喷砂酸蚀钛表面构建PLL/CPP-ACP自组装多层膜的制备方法,包括以下步骤:
步骤A)将纯钛打磨抛光(纯钛试样抛光使用标号依次为600#,800#,1200#,1500#的砂纸由粗砂到细砂将纯钛逐级打磨抛光),喷砂(喷砂使用80目Al2O3砂,压力0.4MPa,距离1.5cm,喷砂15s),超声清洗并干燥待用;
步骤B)将步骤A)处理的纯钛材料用氢氟酸/硝酸混合液(氢氟酸/硝酸混合液中双蒸水:氢氟酸溶液:硝酸溶液的体积比为1000:2:4;氢氟酸溶液的体积浓度为0.22%,硝酸溶液的体积浓度为0.57%)常温酸蚀10min,双蒸水超声清洗干燥,再经浓盐酸/浓硫酸混合酸液(浓盐酸/浓硫酸混合酸中双蒸水:盐酸溶液:硫酸溶液体积比为6:1:1,盐酸溶液的体积浓度为37%,硫酸溶液的体积浓度为98%)80℃水浴温度下酸蚀30min,双蒸水超声清洗并干燥;
步骤C)将步骤B)喷砂酸蚀处理的钛材料加入氢氧化钠溶液氢氧化钠溶液的浓度为2mol/L)中,70℃水浴条件下碱化反应12h后再清洗;
步骤D)将步骤C)碱化后的钛片置于PLL(poly(L-lysine),多聚左旋赖氨酸,浓度为2.5mg/mL)溶液中,5℃孵育11h。
步骤E)将步骤D)PLL处理过的钛材料交替浸入质量浓度为3.0%的CPP-ACP和PLL浓度为2.5mg/mL)溶液,循环次数为10次,每次浸泡15min,浸泡后双蒸水荡洗2min,室温干燥备用。
用扫描电子显微镜观察实施例1、2制得扫描电镜图片如图1、2(40000倍)。结果表明实施例1、2均具有纳米结构,其表面微观结构呈纳米丛状,其中实例2纳米结构更致密,并且有一层薄膜覆盖于纳米结构表面。
实施例1、2为实验组,喷砂酸蚀(SLA)钛表面为对照组,用X射线能谱仪测定三组所含主要元素,制得XPS图谱如图3。结果表明实施例1、2均含有钙元素,其中实施例2的含量更高。实施例1、2相比对照组Ti元素含量减少、P元素和C元素含量增加。
实施例1、2为实验组,喷砂酸蚀(SLA)钛表面为对照组,检测3组钛片的水接触角及表面能,图4结果显示实施例1、2的水接触角小于对照组,表明实施例1、2较对照组具有更好的表面亲水性,且实例2亲水性最佳。
实施例1、2为实验组,喷砂酸蚀(SLA)钛表面为对照组,将MC3T3-E1成骨细胞系在其表面培养8h后,激光共聚焦显微镜观察显示(图5),对照组黏附细胞较少,形态较为缩窄,实施例1、2组黏附细胞数量最多,铺展充分,细胞伪足多而长。结果表明实施例1、2组具有促进MC3T3-E1细胞黏附的作用,且实例2效果更佳。
实施例1、2为实验组,喷砂酸蚀(SLA)钛表面为对照组,将MC3T3-E1成骨细胞系在其表面培养1、3、5天后,采用CCK-8试剂盒检测细胞增殖。图6结果表明,实施例2的表面较对照组具有更好的促进细胞增殖的作用,实施例1的效果不明显。
实施例1、2为实验组,喷砂酸蚀(SLA)钛表面为对照组,将MC3T3-E1成骨细胞系接种于其表面培养7天后,使用RIPA裂解液于裂解细胞,提取细胞总蛋白,通过蛋白印迹法(Western Blot)检测细胞中Runx2、OPN、OCN的蛋白表达水平,以GAPDH为内参。图7结果表明实施例1、2、3的表面较对照组表面均能明显提高细胞成骨分化相关蛋白表达量,且实例2效果更明显。

Claims (7)

1.一种在喷砂酸蚀钛表面构建PLL/CPP-ACP自组装多层膜的制备方法,其特征在于包括如下步骤:
步骤A):将纯钛打磨抛光,喷砂,超声清洗并干燥;
步骤B):将步骤A)干燥后的纯钛采用氢氟酸/硝酸混合液常温酸蚀5~15min,之后超声清洗干燥,干燥后再经浓盐酸/浓硫酸混合酸75~85℃水浴温度下酸蚀25~35min,超声清洗并干燥,使钛表面形成微米结构,得到酸蚀钛材料;
步骤C):将酸蚀钛材料加入氢氧化钠溶液中,60-80℃水浴条件下碱化反应10-14h后再清洗;
步骤D):将步骤C)碱化后的钛片置于PLL溶液中,4-6℃孵育10-12h,得到PLL预处理后的钛片;
步骤E):将PLL预处理后的钛片交替、反复浸入CPP-ACP溶液和PLL溶液中,循环10次,每次浸泡10-20min,浸泡后荡洗,室温干燥,得到目标产品。
2.根据权利要求1所述在喷砂酸蚀钛表面构建PLL/CPP-ACP自组装多层膜的制备方法,其特征在于:步骤A)中纯钛试样抛光使用标号依次为600#,800#,1200#,1500#的砂纸由粗砂到细砂将纯钛逐级打磨抛光。
3.根据权利要求1所述在喷砂酸蚀钛表面构建PLL/CPP-ACP自组装多层膜的制备方法,其特征在于:步骤A)中纯钛试样喷砂使用80目Al2O3砂,压力0.4MPa,距离1.5cm,喷砂15s。
4.根据权利要求1所述喷砂酸蚀钛表面构建PLL/CPP-ACP自组装多层膜的制备方法,其特征在于:步骤B)中氢氟酸/硝酸混合液中水:氢氟酸溶液:硝酸溶液的体积比为1000:1~3:3~5;氢氟酸溶液的体积浓度为0.22%,硝酸溶液的体积浓度为0.57%。
5.根据权利要求1所述喷砂酸蚀钛表面构建PLL/CPP-ACP自组装多层膜的制备方法,其特征在于:步骤B)中浓盐酸/浓硫酸混合酸中水:浓盐酸溶液:浓硫酸溶液体积比为4~7:0.5~1.5:0.5~1.5,盐酸溶液的体积浓度为37%,硫酸溶液的体积浓度为98%。
6.根据权利要求1所述喷砂酸蚀钛表面构建PLL/CPP-ACP自组装多层膜的制备方法,其特征在于步骤C)中氢氧化钠溶液的浓度为1~3mol/L。
7.根据权利要求1所述喷砂酸蚀钛表面构建PLL/CPP-ACP自组装多层膜的制备方法,其特征在于步骤D)和步骤E)中所述的PLL溶液的浓度为2.5mg/mL,步骤E)中CPP-ACP溶液的质量浓度为0.5-3.0%。
CN202211054932.5A 2022-08-30 2022-08-30 一种在喷砂酸蚀钛表面构建pll/cpp-acp自组装多层膜的制备方法 Active CN115522207B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211054932.5A CN115522207B (zh) 2022-08-30 2022-08-30 一种在喷砂酸蚀钛表面构建pll/cpp-acp自组装多层膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211054932.5A CN115522207B (zh) 2022-08-30 2022-08-30 一种在喷砂酸蚀钛表面构建pll/cpp-acp自组装多层膜的制备方法

Publications (2)

Publication Number Publication Date
CN115522207A true CN115522207A (zh) 2022-12-27
CN115522207B CN115522207B (zh) 2024-06-04

Family

ID=84698534

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211054932.5A Active CN115522207B (zh) 2022-08-30 2022-08-30 一种在喷砂酸蚀钛表面构建pll/cpp-acp自组装多层膜的制备方法

Country Status (1)

Country Link
CN (1) CN115522207B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2006325030A1 (en) * 2005-12-16 2007-06-21 Cellectis Cell penetrating peptide conjugates for delivering nucleic acids into cells
KR100775537B1 (ko) * 2007-07-19 2007-11-28 (주)오스테오필 표면이 개질된 임플란트 제조 방법 및 그에 의해 제조된임플란트
WO2008005509A2 (en) * 2006-07-06 2008-01-10 Massachusetts Institute Of Technology Methods and compositions for altering biological surfaces
CN102677032A (zh) * 2012-05-24 2012-09-19 西南交通大学 一种在Ti表面固定载VEGF的肝素/多聚赖氨酸纳米颗粒的方法
CN104028434A (zh) * 2014-05-28 2014-09-10 西南交通大学 一种在钛表面构建层粘连蛋白/肝素/SDF-1α抗凝及诱导内皮化多功能层的方法
KR20140118319A (ko) * 2013-03-28 2014-10-08 인텔렉추얼디스커버리 주식회사 그래핀 기반의 인체세포 증식용 스캐폴드 및 그 제조 방법
CN105696054A (zh) * 2016-01-18 2016-06-22 南京医科大学附属口腔医院 一种喷砂酸蚀钛表面形成含钙纳米薄片膜层的制备方法
CN106823015A (zh) * 2017-02-20 2017-06-13 淮安市第二人民医院(淮安仁慈医院) 新型钛支架及该新型钛支架表面同载纳米颗粒组合物涂层
CN114652632A (zh) * 2022-02-25 2022-06-24 华南农业大学 一种酪蛋白磷酸肽-无定形磷酸钙的制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2006325030A1 (en) * 2005-12-16 2007-06-21 Cellectis Cell penetrating peptide conjugates for delivering nucleic acids into cells
WO2008005509A2 (en) * 2006-07-06 2008-01-10 Massachusetts Institute Of Technology Methods and compositions for altering biological surfaces
KR100775537B1 (ko) * 2007-07-19 2007-11-28 (주)오스테오필 표면이 개질된 임플란트 제조 방법 및 그에 의해 제조된임플란트
CN102677032A (zh) * 2012-05-24 2012-09-19 西南交通大学 一种在Ti表面固定载VEGF的肝素/多聚赖氨酸纳米颗粒的方法
KR20140118319A (ko) * 2013-03-28 2014-10-08 인텔렉추얼디스커버리 주식회사 그래핀 기반의 인체세포 증식용 스캐폴드 및 그 제조 방법
CN104028434A (zh) * 2014-05-28 2014-09-10 西南交通大学 一种在钛表面构建层粘连蛋白/肝素/SDF-1α抗凝及诱导内皮化多功能层的方法
CN105696054A (zh) * 2016-01-18 2016-06-22 南京医科大学附属口腔医院 一种喷砂酸蚀钛表面形成含钙纳米薄片膜层的制备方法
CN106823015A (zh) * 2017-02-20 2017-06-13 淮安市第二人民医院(淮安仁慈医院) 新型钛支架及该新型钛支架表面同载纳米颗粒组合物涂层
CN114652632A (zh) * 2022-02-25 2022-06-24 华南农业大学 一种酪蛋白磷酸肽-无定形磷酸钙的制备方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
ELENA GABUSI ET AL.: "Extracellular Calcium Chronically Induced Human Osteoblasts Effects: Specific Modulation of Osteocalcin and Collagen Type XV", 《JOURNAL OF CELLULAR PHYSIOLOGY》, vol. 227, no. 8 *
FANG-XING XIAO ET AL.: "Layer-by-layer assembly of versatile nanoarchitectures with diverse dimensionality: a new perspective for rational construction of multilayer assemblies", 《CHEMICAL SOCIETY REVIEWS》, vol. 45, no. 11 *
N LAILA HUQ ET AL.: "Molecular modelling of the multiphosphorylated casein phosphopeptide aS1-casein(59-79) based on NMR constraints", 《JOURNAL OF DAIRY RESEARCH》, vol. 71, no. 1 *
唐成芳;窦祈;刘瑞瑞;沈丽娟;柴治国;方明;陈吉华;: "酪蛋白磷酸肽-无定形磷酸钙再矿化脱矿牙本质的效能", 第三军医大学学报, no. 02 *
喻明玲;林居红;胡;: "酪蛋白磷酸肽-无定形磷酸钙对酸蚀牙釉质显微硬度的影响", 第三军医大学学报, no. 02 *
李淑慧;吴佩玲;: "酪蛋白磷酸多肽-无定形磷酸钙在口腔治疗中的研究应用", 牙体牙髓牙周病学杂志, no. 10, pages 4 - 6 *
王伟萍;何庆银;张恒俊;: "酪蛋白磷酸肽钙磷复合物促进早期牙酸蚀症再矿化的体外研究", 佛山科学技术学院学报(自然科学版), no. 03, pages 209 *

Also Published As

Publication number Publication date
CN115522207B (zh) 2024-06-04

Similar Documents

Publication Publication Date Title
Amaravathy et al. Novel sol gel coating of Nb2O5 on magnesium alloy for biomedical applications
Peng et al. Thin calcium phosphate coatings on titanium by electrochemical deposition in modified simulated body fluid
Fan et al. A composite coating by electrolysis-induced collagen self-assembly and calcium phosphate mineralization
Wang et al. Characterization of fluoridated hydroxyapatite/zirconia nano-composite coating deposited by a modified electrocodeposition technique
CN110152056B (zh) 一种在钛合金表面快速引入功能离子的方法
CN110448728B (zh) 医用锌基材料表面的镁-磷生物相容性涂层及制备和用途
Xuhui et al. Hydroxyapatite coatings on titanium prepared by electrodeposition in a modified simulated body fluid
Huang et al. Construction of TiO 2/silane nanofilm on AZ31 magnesium alloy for controlled degradability and enhanced biocompatibility
Raj et al. Fabrication of biopolymers reinforced TNT/HA coatings on Ti: Evaluation of its Corrosion resistance and Biocompatibility
CN112402693A (zh) 一种表面具有促成骨涂层的骨科植入器械及制备方法
CN114272436B (zh) 一种与牙槽骨结合的牙种植体表面化学改性方法和应用
Wang et al. Preparation of phytic acid/silane hybrid coating on magnesium alloy and its corrosion resistance in simulated body fluid
Sharifahmadian et al. Mechanically robust nitrogen-rich plasma polymers: Biofunctional interfaces for surface engineering of biomedical implants
Cheng et al. Effect of surface chemical modifications on the bioactivity of carbon fibers reinforced epoxy composites
Hamdaoui et al. An efficient and inexpensive method for functionalizing metallic biomaterials used in orthopedic applications
Desante et al. Graphene oxide nanofilm to functionalize bioinert high strength ceramics
CN113398329B (zh) 一种聚醚醚酮人工骨骼的表面改性方法
Ogwu et al. Endothelial cell growth on silicon modified hydrogenated amorphous carbon thin films
Lin et al. In vitro study of electrodeposited fluoridated hydroxyapatite coating on G-II titanium with a nanostructured TiO2 interlayer
CN115522207A (zh) 一种在喷砂酸蚀钛表面构建pll/cpp-acp自组装多层膜的制备方法
CN106086842A (zh) 一种金属表面高度生物兼容性涂层及制备方法
Yang et al. Silk-fibroin-assisted cathodic electrolytic deposition of calcium phosphate for biomedical applications
CN112126926B (zh) 钛表面修饰纳米结构同步加载生物活性锌离子的制备方法
Wei et al. Preparation, biomimetic apatite induction and osteoblast proliferation test of TiO2-based coatings containing P with a graded structure
WO2004062705A1 (ja) 生体骨誘導性の人工骨とその製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant