CN115451594A - 一种宽光谱太阳能吸收增强器件及其制备方法 - Google Patents

一种宽光谱太阳能吸收增强器件及其制备方法 Download PDF

Info

Publication number
CN115451594A
CN115451594A CN202211118412.6A CN202211118412A CN115451594A CN 115451594 A CN115451594 A CN 115451594A CN 202211118412 A CN202211118412 A CN 202211118412A CN 115451594 A CN115451594 A CN 115451594A
Authority
CN
China
Prior art keywords
film
film layer
refractive index
layer
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211118412.6A
Other languages
English (en)
Other versions
CN115451594B (zh
Inventor
蔡清元
杨雨婷
郑玉祥
刘定权
陈良尧
高凌山
胡二涛
张荣君
刘保剑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yiwu Research Institute Of Fudan University
Fudan University
Original Assignee
Yiwu Research Institute Of Fudan University
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yiwu Research Institute Of Fudan University, Fudan University filed Critical Yiwu Research Institute Of Fudan University
Priority to CN202211118412.6A priority Critical patent/CN115451594B/zh
Publication of CN115451594A publication Critical patent/CN115451594A/zh
Application granted granted Critical
Publication of CN115451594B publication Critical patent/CN115451594B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/20Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3429Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3429Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating
    • C03C17/3435Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising a nitride, oxynitride, boronitride or carbonitride
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3429Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating
    • C03C17/3464Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising a chalcogenide
    • C03C17/3476Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising a chalcogenide comprising a selenide or telluride
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/20Optical components
    • H02S40/22Light-reflecting or light-concentrating means

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Optical Filters (AREA)

Abstract

本发明公开了一种宽光谱太阳能吸收增强器件及其制备方法;所述太阳能吸收增强器件包括吸光基体、致密干涉多层膜层、渐变折射率膜层以及保护膜层;其中,致密干涉多层膜用于调控宽光谱的干涉效应以增强光谱吸收率;渐变折射率膜与致密干涉多层膜协同作用,最小化反射率;制备方法为:以吸光功能器件或基材作为基底,以薄膜材料色散曲线为基础进行光学薄膜设计;采用薄膜沉积设备在吸光基体上依次制作出致密干涉多层膜、渐变折射率膜和保护膜。本发明的薄膜结构可使器件及空气折射率相匹配从而消除基底表面引起的反射,实现宽光谱高效吸收,制备工艺简单,工业兼容性强,制作成本低,易于实现批量生产,在太阳能吸收利用领域有较高应用潜力。

Description

一种宽光谱太阳能吸收增强器件及其制备方法
技术领域
本发明属于太阳能利用技术领域,具体涉及一种宽光谱太阳能吸收增强器件及其制备方法。
背景技术
太阳能是利用比较广泛的一种绿色能源,具有很重要的发展前景,与之相关的太阳能产业近年得到了迅速发展,如何最大限度地利用太阳能成为人们关注的焦点。目前,对太阳能的利用,主要包括光热利用、太阳能发电、光化利用和光生物利用,其中太阳能发电产业的发展更加迅速。太阳能发电通常有两种实现方式:一是光-热-电转换;二是光-电转换。现今采用的太阳能电池板多为玻璃封装,玻璃片的透过率约为90%左右,造成光能量的大量损失。为了提高太阳能的利用效率,当前太阳能吸收器件采用表面微加工的方法,在器件表面制备出周期性微结构,减小表面反射。但这种方法工艺复杂,成本较高,限制了其大规模应用。
发明内容
为了解决材料表面反射率导致太阳能利用率低的技术难题,本发明的目的是提供一种包含折射率渐变分布的草状氧化铝的宽光谱太阳能吸收增强器件,其通过多层膜干涉原理消除基底与空气折射率不匹配的缺陷,从而实现宽光谱太阳能高效吸收利用,使得太阳能利用效率提升。
为实现上述目的,本发明采用如下技术方案。
本发明提供一种宽光谱太阳能吸收增强器件,其包括吸光基体、致密干涉多层膜层、渐变折射率膜层以及保护膜层,通过在吸光基体上依次沉积致密干涉多层膜、渐变折射率膜、保护膜获得;其中:
所述吸光基体为太阳能光谱区内不透明材料,用于将吸收的太阳能转化为电能、荧光或热能;
所述致密干涉多层膜层为多层膜结构,由高折射率膜H和低折射率膜L以HL方式交替沉积组成;高折射率膜选自氧化钛、氧化铪、氧化钽、氧化铌、氧化锆、氧化锌、硫化锌、硒化锌、硅、锗或氮化硅中的一种或几种,低折射率膜选自二氧化硅、氟化镁、氧化铝、氟化钇、氟化镱、一氧化硅、氮化铝或氟化铝中的一种或几种;
所述渐变折射率膜层为在基底和空气之间实现折射率渐变的草状氧化铝薄膜;
所述保护膜层为采用原子层沉积技术制备的表面复形纳米超薄膜层,其包裹住渐变折射率膜层以提高渐变折射率膜层与致密干涉多层膜的结合力以及渐变折射率膜层的抗磨擦损伤抗腐蚀能力。
本发明中,吸光基体为太阳能电池、光电二极管、黑玻璃或荧光基体。
本发明中,渐变折射率膜层的厚度为50~1000 nm。
本发明中,保护膜层采用的材料选自氧化铝、氧化锆、氧化硅、氧化钛、氮化硅、氧化铪或氧化锌中的一种或几种;保护膜层的厚度为0.1~50 nm。
本发明还提供一种上述宽光谱太阳能增强器件的制备方法,包括以下步骤:
1)采用原子层沉积方法制备出单层氧化铝薄膜,利用加热去离子水对氧化铝薄膜进行浸泡,使其形成草状氧化铝结构;再利用光谱、椭偏方法对草状氧化铝的等效折射率及厚度进行建模,形成材料参数,即等效多层膜的每层厚度及折射率分布;
2) 以草状氧化铝和吸光基体的材料参数为基础,以材料吸收光谱范围内的反射率最低为优化目标,选择合适的高折射率膜H、低折射率膜L进行致密干涉多层膜层的优化设计;
3) 在吸光基体上交替沉积由高折射率膜H和低折射率膜L组成的优化设计的致密干涉多层膜层,并采用原子层沉积方法在致密干涉多层膜层上镀制氧化铝薄膜;
4) 将步骤3)中镀制氧化铝薄膜后的样品放入加热去离子水中进行浸泡,使最表面的氧化铝层变成折射率渐变的草状氧化铝,获得渐变折射率膜层;
5) 采用原子层沉积方法在渐变折射率膜层上镀制保护膜,形成有效保护。
本发明中,步骤1)和步骤4)中,浸泡温度为95-99℃,浸泡时间为20-50 min。
以上,本发明中的吸光基体吸收宽光谱的太阳光并转化为电能或热能,致密干涉多层膜用于调控宽光谱的干涉效应,以增强光谱吸收率;渐变折射率膜与致密干涉多层膜协同作用,最小化反射率;保护膜用于保护渐变折射率膜以提高环境适应性和可靠性。与现有技术相比,本发明具有如下优点:
1) 不需要进行微纳结构加工,制备工艺简单,制备效率高;
2) 表面与空气无明显界面,膜层折射率连续渐变,表面反射率低;
3) 实现太阳能利用波段的宽光谱高效吸收,提高了能量利用率;
4) 与现有太阳能器件的工业制备工艺相匹配,适合批量生产。
附图说明
图1是本发明的宽光谱太阳能吸收增强器件的结构示意图,其中,1为吸光基体,2为致密干涉多层膜,3为渐变折射率膜,4为保护膜。
图2 是草状氧化铝的SEM图。
图3是本发明实施例1中镀膜前后吸光玻璃表面实际反射光谱。
图4本发明实施例2中常规减反膜和使用折射率渐变的草状氧化铝作为顶层的减反膜在30度和60度入射条件下的理论反射光谱对比图。
图5是本发明实施例2中常规减反膜和使用折射率渐变的草状氧化铝作为顶层的减反膜在550 nm波长反射率随着入射角度变化的曲线的对比图。
图6是本发明实施例3中镀膜后理论反射光谱。
具体实施方式
下面结合实例和附图对本发明作进一步说明,但不应以此限制本发明的保护范围。
本发明采用的宽光谱太阳能吸收增强器件结构如图1所示,在吸光基体1上依次镀制致密干涉多层膜2、渐变折射率膜3以及保护膜4。
吸光基体1为太阳能光谱区内不透明材料,能将太阳能吸收转化为电能、荧光或热能,可为太阳能电池、光电二极管、黑玻璃、荧光基体等。
致密干涉多层膜2由高低折射率多层膜堆组成,高折射率膜可为氧化钛、氧化铪、氧化钽、氧化铌、氧化锆、氧化锌、硫化锌、硒化锌、硅、锗、氮化硅等,低折射率膜可为二氧化硅、氟化镁、氧化铝、氟化钇、氟化镱、一氧化硅、氮化铝、氟化铝等。
渐变折射率膜3为草状结构氧化铝薄膜,厚度为50~1000 nm。
保护膜4为致密耐腐蚀高硬度薄膜,为采用原子层沉积制备的表面复形纳米超薄膜层,材料可为氧化铝、氧化锆、氧化硅、氧化钛、氮化硅、氧化铪、氧化锌等化合物及其组合,厚度为0.1~50 nm。
实施例1
本实施例中采用与400-1100 nm波段硅基探测器的光谱范围匹配的可见近红外宽光谱吸收增强器件为例。太阳能电池表面封装的玻璃将引起10%的反射,导致光利用率下降。此外,在光电探测的光学***中,光路杂光控制是微弱信号探测的关键,杂光控制需要光筒具有很好的吸收杂光的功能,而传统吸光薄膜是在光筒表面涂敷一层吸光材料,如黑镍、烤漆黑等,这些材料类似于黑玻璃,存在表面5-6%的漫反射,如果在上面继续镀制400-1100 nm的吸光增强薄膜,可以将杂光进一步抑制。因此本实例既可以用于太阳能光吸收增强利用也可以用于光路的杂光抑制。本实例目标是实现400-1100 nm高效吸收,即将该波段的反射率降到最低。器件所选的结构如图1所示,结构的各个部件的详细信息如下:
吸光基体1采用吸光玻璃,在400-1100 nm不透光,以模拟太阳能电池表面的玻璃封装。
致密干涉多层膜2采用HfO2和SiO2构成的多层薄膜结构,具体膜系结构为10.31Hp62.04Lp 29.05Hp 42.43Lp 43.14Hp 40.81Lp 27.57Hp 112.95Lp,其中H为HfO2,L为SiO2,数值表示薄膜厚度,下标p表示物理厚度,单位为nm。
渐变折射率膜3是厚度为160 nm的草状结构氧化铝膜,薄膜折射率从体材料折射率(~1.65)渐变到接近空气折射率(~1.00)。
保护膜4为原子层沉积的2 nm 厚的SiO2膜,具有很好的表面复形性,充分包裹住草状结构氧化铝膜,提高其与致密干涉多层膜2的结合力以及抗磨擦损伤抗腐蚀能力。
可见近红外宽光谱吸收增强器件的具体制备步骤如下:
1) 采用热原子层沉积在硅片上制备出单层氧化铝薄膜,原子层沉积周期为150,生长厚度约为15 nm,反应温度为300 ℃,反应腔体压强为100 Pa,前驱体为三甲基铝和水。将制备获得的硅基氧化铝薄膜放入98 ℃去离子水,浸泡30 min,取出,烘干,获得草状氧化铝薄膜。采用椭圆偏振光谱方法测量及拟合获得该工艺下的草状氧化铝薄膜的材料参数,具体为:经椭偏测量及分析建模,等效成80+80 nm的两层膜,对应在550 nm的折射率分别为1.18和1.08。
2)以草状氧化铝的材料参数和吸光基体1的材料参数为基础,即材料折射率与等效膜层厚度,以材料吸收光谱范围内的反射率最低为优化目标,选择HfO2和SiO2进行多层膜优化设计,获得优化结构为8层膜结构,具体为10.31Hp 62.04Lp 29.05Hp 42.43Lp43.14Hp 40.81Lp 27.57Hp 112.95Lp。
3)采用300 ℃热原子层沉积在吸光基体1上镀制优化设计的致密多层膜2,接着继续生长150周期氧化铝薄膜。
4) 将镀膜后的样品放入加热的去离子水中进行水浴,工艺参数和时间如步骤1)所描述,使最表面的氧化铝层变成折射率渐变的草状氧化铝膜层。
5)采用原子层沉积在草状氧化铝上镀制2 nm厚的SiO2膜,形成有效保护。
采用上述步骤获得的可见近红外宽光谱吸收增强器件的反射光谱如图3所示。
实施例2
硅基太阳能电池板是目前技术较为成熟的光伏器件,是太阳能吸收利用的主要形式之一。随着白天太阳方位角的变化,光在太阳能电池表面的入射角也在变化,而角度变化会引起光线反射率的变化,进而影响光能利用率。因此在大角度光入射情况下降低太阳能电池的反射率以增强吸收具有重要的应用价值。本实例针对硅基太阳能电池在大入射角度范围内的光能吸收增强进行演示,目标是实现370-1100 nm波长范围正负80度入射光线的高效吸收增强。
在本实施例中,吸光基体1采用硅基底,致密干涉多层膜2采用TiO2和AL2O3构成的多层薄膜结构,具体膜系结构为46.15Hp 20.69Lp 13.67Hp 87.32Lp 2Hp,其中H为TiO2,L为AL2O3,其中最后的一层的2Hp是为了保护致密氧化铝膜层不被水解形成草状结构。在这个实施例中,渐变折射率膜3为230 nm的草状结构氧化铝膜,由25 nm原子层沉积氧化铝热水浴后获得,保护膜4为1 nm厚度的TiO2。作为对比,同样采用选用TiO2和AL2O3在不进行草状氧化铝镀膜的情况下进行优化,以获得反射率最低值,得到的膜系结构为48.58Hp 18.73Lp15.29Hp 83.8Lp,其中H为TiO2,L为AL2O3。将两种膜系实施方案进行比较,对于光从30度和60度入射的情况,反射光谱如图4所示,从图中可以看到本实施例中,具有渐变折射率草状氧化铝的膜系明显具有更低的反射。选取550 nm波长反射率随着入射角度变化的曲线进行对比分析,如图5所示,从中可以看到本发明的结构在所有入射角度均具有更低的反射率,且在大角度情况下优势更加显著。
实施例3
光热转换是太阳能利用的另一个主要形式,相较于光电转换,可吸收的太阳光谱范围更宽,几乎能覆盖全部太阳光谱范围。经过大气吸收散射后,太阳光能量90%以上集中在400-2500 nm波段。本实施例将演示400-2500 nm超宽光谱的吸收增强膜系结构,在具体膜系设计上,吸光基体1采用的是黑玻璃,致密干涉多层膜2采用TiO2和SiO2构成的多层薄膜结构,经优化后的具体结构为:6.9Hp 49.53Lp 16.68Hp 64.46Lp 16.2Hp 78.2Lp 10.15Hp89.88Lp 3.27Hp 178.49Lp,渐变折射率膜3为300 nm厚的草状结构氧化铝膜,保护膜4为原子层沉积的10 nm厚的SiO2膜。经过本实施方案膜系镀膜前后的黑玻璃反射率理论光谱如图5所示,可以看到,镀膜后反射率从6%左右降低到1%以下。

Claims (6)

1.一种宽光谱太阳能吸收增强器件,其特征在于:其包括吸光基体、致密干涉多层膜层、
渐变折射率膜层以及保护膜层,通过在吸光基体上依次沉积致密干涉多层膜、渐变折射率膜、保护膜获得;其中:
所述吸光基体为太阳能光谱区内的光能转换材料,用于将吸收的太阳能转化为电能、荧光或热能;
所述致密干涉多层膜层为多层膜结构,由高折射率膜H和低折射率膜L以HL方式交替沉积组成;高折射率膜选自氧化钛、氧化铪、氧化钽、氧化铌、氧化锆、氧化锌、硫化锌、硒化锌、硅、锗或氮化硅中的一种或几种,低折射率膜选自二氧化硅、氟化镁、氧化铝、氟化钇、氟化镱、一氧化硅、氮化铝或氟化铝中的一种或几种;
所述渐变折射率膜层为在基底和空气之间实现折射率渐变的草状氧化铝薄膜;
所述保护膜层为采用原子层沉积技术制备的表面复形纳米超薄膜层,其包裹住渐变折射率膜层以提高渐变折射率膜层与致密干涉多层膜的结合力以及渐变折射率膜层的抗磨擦损伤抗腐蚀能力。
2.根据权利要求1所述的宽光谱太阳能增强器件,其特征在于,太阳能光谱区的波长在200-2500 nm之间,吸光基体为太阳能电池、光电二极管、黑玻璃或荧光基体。
3.根据权利要求1所述的宽光谱太阳能增强器件,其特征在于,渐变折射率膜层的厚度为50~1000 nm。
4.根据权利要求1所述的宽光谱太阳能增强器件,其特征在于,保护膜层采用的材料选自氧化铝、氧化锆、氧化硅、氧化钛、氮化硅、氧化铪或氧化锌中的一种或几种;保护膜层的厚度为0.1~50 nm。
5.一种根据权利要求1所述的宽光谱太阳能增强器件的制备方法,其特征在于,包括以下步骤:
1)采用原子层沉积方法制备出单层氧化铝薄膜,利用加热去离子水对氧化铝薄膜进行浸泡,使其形成草状氧化铝结构,利用光谱、椭偏方法对草状氧化铝的等效折射率及厚度进行建模,形成材料参数,即等效多层膜的每层厚度及折射率分布;
2)以草状氧化铝和吸光基体的材料参数为基础,以材料吸收光谱范围内的反射率最低为优化目标,选择合适的高折射率膜H、低折射率膜L进行致密干涉多层膜层的优化设计;
3)在吸光基体上交替沉积由高折射率膜H和低折射率膜L组成的优化设计的致密干涉多层膜层,并采用原子层沉积方法在致密干涉多层膜层上镀制氧化铝薄膜;
4)将步骤3)中镀制氧化铝薄膜后的样品放入加热去离子水中进行浸泡,使最表面的氧化铝层变成折射率渐变的草状氧化铝,获得渐变折射率膜层;
5)采用原子层沉积方法在渐变折射率膜层上镀制保护膜,形成有效保护。
6.根据权利要求5所述的制备方法,其特征在于,步骤1)和步骤4)中,浸泡温度为95-99℃,浸泡时间为20-50 min。
CN202211118412.6A 2022-09-13 2022-09-13 一种宽光谱太阳能吸收增强器件及其制备方法 Active CN115451594B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211118412.6A CN115451594B (zh) 2022-09-13 2022-09-13 一种宽光谱太阳能吸收增强器件及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211118412.6A CN115451594B (zh) 2022-09-13 2022-09-13 一种宽光谱太阳能吸收增强器件及其制备方法

Publications (2)

Publication Number Publication Date
CN115451594A true CN115451594A (zh) 2022-12-09
CN115451594B CN115451594B (zh) 2024-05-28

Family

ID=84302874

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211118412.6A Active CN115451594B (zh) 2022-09-13 2022-09-13 一种宽光谱太阳能吸收增强器件及其制备方法

Country Status (1)

Country Link
CN (1) CN115451594B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117410388A (zh) * 2023-12-15 2024-01-16 无锡松煜科技有限公司 用于晶硅电池的低反射率叠层钝化结构的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103017383A (zh) * 2012-11-30 2013-04-03 中国科学院上海技术物理研究所 一种颜色可调的太阳能选择性吸收膜系及其制备方法
CN103411335A (zh) * 2013-07-30 2013-11-27 中国科学院上海技术物理研究所 辐射吸收层基于混合物的选择性吸收膜系
CN103884122A (zh) * 2012-12-21 2014-06-25 中国建筑材料科学研究总院 一种太阳能光热转换集热器透明热镜及其制备方法
US20150316289A1 (en) * 2014-04-11 2015-11-05 Tahoe Technologies, Ltd. Solar spectrum selective absorption coating and its manufacturing method
CN113721310A (zh) * 2021-08-17 2021-11-30 浙江大学 一种大角度宽波段减反射膜及其制作方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103017383A (zh) * 2012-11-30 2013-04-03 中国科学院上海技术物理研究所 一种颜色可调的太阳能选择性吸收膜系及其制备方法
CN103884122A (zh) * 2012-12-21 2014-06-25 中国建筑材料科学研究总院 一种太阳能光热转换集热器透明热镜及其制备方法
CN103411335A (zh) * 2013-07-30 2013-11-27 中国科学院上海技术物理研究所 辐射吸收层基于混合物的选择性吸收膜系
US20150316289A1 (en) * 2014-04-11 2015-11-05 Tahoe Technologies, Ltd. Solar spectrum selective absorption coating and its manufacturing method
CN113721310A (zh) * 2021-08-17 2021-11-30 浙江大学 一种大角度宽波段减反射膜及其制作方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117410388A (zh) * 2023-12-15 2024-01-16 无锡松煜科技有限公司 用于晶硅电池的低反射率叠层钝化结构的制备方法
CN117410388B (zh) * 2023-12-15 2024-03-19 无锡松煜科技有限公司 用于晶硅电池的低反射率叠层钝化结构的制备方法

Also Published As

Publication number Publication date
CN115451594B (zh) 2024-05-28

Similar Documents

Publication Publication Date Title
KR101194257B1 (ko) 광대역 반사방지 다층코팅을 갖는 태양전지용 투명 기판 및 그 제조방법
AU2009277894B2 (en) Broadband reflecting mirror
KR101788369B1 (ko) 저방사 코팅막, 이의 제조방법 및 이를 포함하는 창호용 기능성 건축 자재
KR101788368B1 (ko) 저방사 코팅막, 이의 제조방법 및 이를 포함하는 창호용 기능성 건축 자재
JP2002254550A (ja) 複合材料
KR20080089351A (ko) 반사방지 코팅을 구비한 투명한 기판
CN103884122B (zh) 一种太阳能光热转换集热器透明热镜及其制备方法
CN115451594B (zh) 一种宽光谱太阳能吸收增强器件及其制备方法
CN101913780A (zh) 具有双层减反射涂层的太阳能电池组件封装玻璃
Law et al. The performance and durability of Anti-reflection coatings for solar module cover glass–a review
KR101194258B1 (ko) 광대역 반사방지 다층코팅을 갖는 태양전지용 투명 기판 및 그 제조방법
KR101456220B1 (ko) 반사방지 코팅층을 가지는 투명기판 및 그 제조방법
CN103066161B (zh) 一种太阳电池复合减反射膜的制备工艺
CN108515743B (zh) 一种金属/介质超宽带吸收薄膜及其制备方法
CN103592712A (zh) 高性能全介质干涉多层膜-tco串联型滤光器及其制备方法
CN109065732A (zh) 一种兼具宽光谱减反射和紫外滤光功能的钙钛矿电池及其玻璃盖板
CN106584975B (zh) 一种红外增强的宽带光热转换薄膜器件
Khmissi et al. Investigation of an Antireflective Coating System for Solar Cells based on Thin Film Multilayers
CN112799159B (zh) 一种紫外-可见-红外全波段吸收器及其制备方法
KR102261133B1 (ko) 반사방지 코팅층을 가지는 투명기판 및 그 제조방법
KR101688408B1 (ko) 태양전지 모듈의 후면 반사용으로 유용한 고반사성 및 고내구성 다층코팅 기판 및 그 제조방법
Rajan et al. Optical enhancement of ultra-thin CIGS solar cells using multi-layered antireflection coatings
KR20150002517A (ko) 반사방지 코팅층을 가지는 투명기판 및 그 제조방법
Rajan et al. Multi layered anti-reflective coatings for ultra-thin CIGS solar cells
CN218827156U (zh) 一种太阳能电池增透膜及太阳能电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant