CN115440970A - 用于制造层状阳极材料的被动离子交换 - Google Patents

用于制造层状阳极材料的被动离子交换 Download PDF

Info

Publication number
CN115440970A
CN115440970A CN202210569440.3A CN202210569440A CN115440970A CN 115440970 A CN115440970 A CN 115440970A CN 202210569440 A CN202210569440 A CN 202210569440A CN 115440970 A CN115440970 A CN 115440970A
Authority
CN
China
Prior art keywords
electrolyte
lithium
precursor material
equal
layered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210569440.3A
Other languages
English (en)
Inventor
J·D·凯茵
T·E·莫伊兰
P·T·于
M·W·费尔布鲁格
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GM Global Technology Operations LLC
Original Assignee
GM Global Technology Operations LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GM Global Technology Operations LLC filed Critical GM Global Technology Operations LLC
Publication of CN115440970A publication Critical patent/CN115440970A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/045Electrochemical coating; Electrochemical impregnation
    • H01M4/0452Electrochemical coating; Electrochemical impregnation from solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • H01M2300/0042Four or more solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)

Abstract

本发明公开了用于制造层状阳极材料的被动离子交换。本公开提供了一种用于形成预锂化的层状阳极材料的方法。该方法包括使前体材料与包含一种或多种锂盐和一种或多种溶剂的电解质接触。电解质的摩尔浓度可大于或等于约0.1M至小于或等于一种或多种锂盐在一种或多种溶剂中的溶解度极限。前体材料可以是三维层状材料,并且前体材料与电解质的接触导致阳离子从前体材料中去除,并将锂离子从电解质中引入到通过去除阳离子而产生的层间空间或空隙中,以形成预锂化的层状阳极材料。

Description

用于制造层状阳极材料的被动离子交换
技术领域
本发明涉及用于形成预锂化的层状阳极材料的方法、和形成预锂化的层状阳极材料的方法。
背景技术
本部分提供了与本公开相关的背景信息,其不一定是现有技术。
需要先进的能量存储装置和***来满足各种产品的能量和/或功率要求,所述产品包括汽车产品,例如启-停***(例如,12V启-停***)、电池组辅助***、混合动力电动车辆(“HEV”)和电动车辆(“EV”)。典型的锂离子电池组包括至少两个电极和电解质和/或隔离件。两个电极中的一个可用作正极或阴极,并且另一个电极可用作负极或阳极。填充有液体或固体电解质的隔离件可设置在负极和正极之间。电解质适于在电极之间传导锂离子,并且与两个电极一样,可以是固体和/或液体形式和/或其混合物。在包括固态电极和固态电解质(或固态隔离件)的固态电池组的情况下,固态电解质(或固态隔离件)可物理地分隔电极,使得不需要不同的隔离件。
传统的可再充电锂离子电池组通过在负极和正极之间可逆地来回传递锂离子来工作。例如,锂离子可在电池组充电期间从正极移动到负极,而在电池组放电时沿相反方向移动。这种锂离子电池组可以根据需要可逆地向相关联的负载装置供电。更具体地,可以通过锂离子电池组向负载装置供应电力,直到负极的锂含量被有效地耗尽。然后,通过在电极之间沿相反方向通入合适的直流电流,电池组可被再充电。
在放电期间,负极可含有相对高浓度的嵌入锂,其被氧化成锂离子和电子。锂离子可从负极移动到正极,例如,通过含有在***的多孔隔离件的孔内的离子导电电解质溶液。同时,电子从负极通过外部电路到达正极。这样的锂离子可通过电化学还原反应被吸收到正极的材料中。电池组可在其可用容量被外部电源部分或完全放电之后被再充电或再生,其逆转了放电期间发生的电化学反应。
许多不同的材料可用于制造锂离子电池组的组件。例如,用于锂电池组的正极材料通常包括可以用锂离子嵌入的电活性材料,例如锂过渡金属氧化物或混合氧化物,例如包括LiMn2O4、LiCoO2、LiNiO2、LiMn1.5Ni0.5O4、LiNi(1-x-y)CoxMyO2 (其中0<x<1,y<1,并且M可以是Al、Mn等),或者一种或多种磷酸盐化合物,例如包括磷酸铁锂或混合磷酸锰铁锂。负极通常包括锂***材料或合金主体材料。例如,用于形成阳极的典型电活性材料包括石墨和其它形式的碳、硅和氧化硅、锡和锡合金。
某些阳极材料具有特别的优点。尽管理论比容量为372 mAh·g-1的石墨最广泛地用于锂离子电池组,但具有高比容量,例如约900 mAh·g-1至约4,200 mAh·g-1的高比容量的阳极材料受到越来越多的关注。例如,硅具有最高的已知锂理论容量(例如,约4,200mAh·g-1),使得它是用于可再充电锂离子电池组的有吸引力的材料。然而,包含硅的阳极可经受缺点。例如,在连续的充电和放电循环期间过度的体积膨胀和收缩(例如,与石墨的约10%相比,硅的约400%)。这种体积变化可导致电活性材料的疲劳开裂和爆裂,以及材料颗粒的粉碎,其进而可引起含硅电活性材料与电池组电池的其余部分之间的电接触的损失,导致差的容量保持和过早的电池失效。在高能锂离子电池组中应用含硅电极(例如在运输应用中使用的那些)所需的电极负载水平下,这尤其是真实的。因此,期望开发可以解决这些挑战的高性能电极材料,特别地包含硅和在锂离子循环期间经历显著体积变化的其它电活性材料,以及用于制备此类高性能电极材料的方法,以用于高能量和高功率锂离子电池组。
发明内容
本部分提供了本公开的一般概述,并且不是其全部范围或其所有特征的全面公开。
本公开涉及层状阳极材料(例如,二维(“2D”)层状硅同素异形体)和其形成方法(例如,被动离子交换方法)。
在各个方面,本公开提供了一种用于形成预锂化的层状阳极材料的方法。该方法可包括使前体材料与包含一种或多种锂盐和一种或多种溶剂的电解质接触。电解质的摩尔浓度可大于或等于约0.1M至小于或等于一种或多种锂盐在一种或多种溶剂中的溶解度极限。前体材料可以是三维层状材料,并且使前体材料与电解质接触可造成阳离子从前体材料的去除以及锂离子从电解质引入到通过去除阳离子而产生的层间空间或空隙中,以形成预锂化的层状阳极材料。
在一个方面,前体材料可由MX2表示,其中M是钙(Ca)和镁(Mg)中的一种,并且X是硅(Si)、锗(Ge)和硼(B)中的一种,并且前体材料包括M和X的交替层。
在一个方面,一种或多种锂盐可选自:六氟磷酸锂(LiPF6)、四氟硼酸锂(LiBF4)、双(三氟甲烷磺酰)亚胺锂(LiTFSI)、双(氟磺酰)亚胺锂(LiFSI)、氯化锂(LiCl)、碳酸锂(LiCO3)、氢氧化锂(LiOH)及其组合。
在一个方面,一种或多种溶剂可选自:碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸二甲酯(DMC)、氟化碳酸乙烯酯(FEC)、碳酸二乙酯(DEC)、碳酸甲乙酯(EMC)及其组合。
在一个方面,使前体材料与电解质接触可包括将前体材料浸没在电解质中。
在一个方面,方法可进一步包括在前体材料和电解质接触期间搅拌电解质。
在一个方面,可使用流化床或电解质再循环床来搅拌电解质。
在一个方面,可通过同时移除用过部分的电解质和引入新部分的电解质来搅拌电解质。
在一个方面,移除用过部分的电解质和引入新部分的电解质连续地发生。
在一个方面,移除用过部分的电解质和引入新部分的电解质定期地发生。
在一个方面,方法可进一步包括将前体材料设置在电子导电的液体可渗透的笼中,并且使前体材料与电解质接触包括将电子导电的液体可渗透的笼设置在电解质中。
在一个方面,电子导电的液体可渗透的笼可设置在逆流反应器中,并且电解质连续地流过逆流反应器。
在一个方面,新部分的电解质可引入到逆流反应器的第一开口中,并且用过部分的电解质可同时从逆流反应器的第二开口中移除。
在一个方面,移除用过部分的电解质和引入新部分的电解质连续地发生。
在一个方面,移除用过部分的电解质和引入新部分的电解质定期地发生。
在一个方面,方法可进一步包括在前体材料和电解质接触期间加热电解质。可将电解质加热到大于或等于约20℃至小于或等于约200℃的温度。
在各个方面,本公开提供了一种用于形成预锂化的层状阳极材料的方法。该方法可包括使前体材料与包含一种或多种锂盐和一种或多种溶剂的电解质接触。电解质的摩尔浓度可大于或等于约0.1M至小于或等于一种或多种锂盐在一种或多种溶剂中的溶解度极限。前体材料可由MX2表示,其中M是钙(Ca)和镁(Mg)中的一种,并且X是硅(Si)、锗(Ge)和硼(B)中的一种。方法可进一步包括在前体材料和电解质接触期间搅拌电解质,使得阳离子从前体材料中去除,并且锂离子被引入到通过去除阳离子而产生的层间空间或空隙中,以形成预锂化的层状阳极材料。
在一个方面,方法可进一步包括将前体材料设置在电子导电的液体可渗透的笼中,并且使前体材料与电解质接触可包括将电子导电的液体可渗透的笼设置在电解质中。
在一个方面,方法可进一步包括在前体材料和电解质接触期间加热电解质。可将电解质加热到大于或等于约20℃至小于或等于约200℃的温度。
在各个方面,本公开提供了一种用于形成预锂化的层状阳极材料的方法。方法可基本上由使前体材料与包含一种或多种锂盐和一种或多种溶剂的电解质接触组成。电解质的摩尔浓度可大于或等于约0.1M至小于或等于一种或多种锂盐在一种或多种溶剂中的溶解度极限。前体材料可由MX2表示,其中M是钙(Ca)和镁(Mg)中的一种,并且X是硅(Si)、锗(Ge)和硼(B)中的一种。前体材料与电解质的接触可引起阳离子从前体材料中去除,并将锂离子从电解质引入到通过去除阳离子而产生的层间空间或空隙中,以形成预锂化的层状阳极材料。
本发明公开了以下实施方案:
1 一种用于形成预锂化的层状阳极材料的方法,所述方法包括:
使前体材料与包含一种或多种锂盐和一种或多种溶剂的电解质接触,其中所述电解质具有大于或等于约0.1M至小于或等于所述一种或多种锂盐在所述一种或多种溶剂中的溶解度极限的摩尔浓度,并且其中所述前体材料为三维层状材料,并且所述前体材料与所述电解质的接触导致阳离子从所述前体材料的去除,并将锂离子从所述电解质引入到通过去除阳离子而产生的层间空间或空隙中,以形成所述预锂化的层状阳极材料。
2 根据实施方案1所述的方法,其中所述前体材料由MX2表示,其中M为钙(Ca)和镁(Mg)中的一者,且X为硅(Si)、锗(Ge)和硼(B)中的一者,且所述前体材料包含M和X的交替层。
3 根据实施方案1所述的方法,其中所述一种或多种锂盐选自以下:六氟磷酸锂(LiPF6)、四氟硼酸锂(LiBF4)、双(三氟甲烷磺酰)亚胺锂(LiTFSI)、双(氟磺酰)亚胺锂(LiFSI)、氯化锂(LiCl)、碳酸锂(LiCO3)、氢氧化锂(LiOH)及其组合。
4 根据实施方案3所述的方法,其中所述一种或多种溶剂选自:碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸二甲酯(DMC)、氟化碳酸乙烯酯(FEC)、碳酸二乙酯(DEC)、碳酸甲乙酯(EMC)及其组合。
5 根据实施方案1所述的方法,其中使所述前体材料与所述电解质接触包括将所述前体材料浸没在所述电解质中。
6 根据实施方案1所述的方法,其中所述方法进一步包括:
在所述前体材料与所述电解质接触期间搅拌所述电解质。
7 根据实施方案6所述的方法,其中使用流化床或电解质再循环床搅拌所述电解质。
8 根据实施方案6所述的方法,其中通过同时移除用过部分的电解质和引入新部分的电解质来搅拌所述电解质。
9 根据实施方案8所述的方法,其中移除用过部分的电解质和引入新部分的电解质连续地发生。
10 根据实施方案8所述的方法,其中移除用过部分的电解质和引入新部分的电解质定期地发生。
11 根据实施方案6所述的方法,其中所述方法还包括将所述前体材料设置在电子导电的液体可渗透的笼中,并且使所述前体材料与所述电解质的接触包括将所述电子导电的液体可渗透的笼设置在所述电解质中。
12 根据实施方案11所述的方法,其中所述电子导电的液体可渗透的笼设置在逆流反应器中,并且所述电解质连续地流过所述逆流反应器。
13 根据实施方案12的方法,其中将新部分的电解质引入到逆流反应器的第一开口中,并同时从该逆流反应器的第二开口中移除用过的部分的电解质。
14 根据实施方案13所述的方法,其中移除用过部分的电解质和引入新部分的电解质连续地发生。
15 根据实施方案13所述的方法,其中移除用过部分的电解质和引入新部分的电解质定期地发生。
16 根据实施方案1所述的方法,其中所述方法进一步包括:
在前体材料与电解质接触期间加热电解质,其中将所述电解质加热到大于或等于约20℃至小于或等于约200℃的温度。
17 一种用于形成预锂化的层状阳极材料的方法,所述方法包括:
使前体材料与包含一种或多种锂盐和一种或多种溶剂的电解质接触,其中电解质具有大于或等于约0.1M至小于或等于一种或多种锂盐在一种或多种溶剂中的溶解度极限的摩尔浓度,并且其中前体材料由MX2表示,其中M为钙(Ca)和镁(Mg)中的一种,并且X为硅(Si)、锗(Ge)和硼(B)中的一种;以及
在前体材料与电解质接触期间搅拌电解质,使得阳离子从前体材料中去除,并且锂离子被引入到通过去除阳离子而产生的层间空间或空隙中,以形成预锂化的层状阳极材料。
18 根据实施方案17所述的方法,其中所述方法还包括将所述前体材料设置在电子导电的液体可渗透的笼中,并且使所述前体材料与所述电解质接触包括将所述电子导电的液体可渗透的笼设置在所述电解质中。
19 根据实施方案17所述的方法,其中所述方法进一步包括:
在所述前体材料与所述电解质接触期间加热所述电解质,其中将所述电解质加热到大于或等于约20℃至小于或等于约200℃的温度。
20 一种形成预锂化的层状阳极材料的方法,所述方法基本上由以下组成:
使前体材料与包含一种或多种锂盐和一种或多种溶剂的电解质接触,其中所述电解质具有大于或等于约0.1M至小于或等于所述一种或多种锂盐在所述一种或多种溶剂中的溶解度极限的摩尔浓度,并且其中所述前体材料由MX2表示,其中M为钙(Ca)和镁(Mg)中的一种,并且X为硅(Si)、锗(Ge)和硼(B)中的一种,并且所述前体材料与所述电解质的接触导致阳离子从所述前体材料的去除并将锂离子从所述电解质引入到通过去除所述阳离子而产生的层间空间或空隙中以形成预锂化的层状阳极材料。
从本文提供的描述中,进一步的应用领域将变得显而易见。本发明内容中的描述和具体示例仅用于说明的目的,而不是意在限制本公开的范围。
附图说明
本文描述的附图仅用于所选实施方案而非所有可能实施方式的说明性目的,并且不旨在限制本公开的范围
图1是根据本公开的各个方面的包括层状电活性材料的示例性电化学电池组电池的示意图;
图2是示出根据本公开的各方面的用于制造在电化学电池组电池(如图1中所示的示例性电化学电池组电池)中使用的层状电活性材料并使层状电活性材料预锂化的示例性方法的流程图;并且
图3示出了根据本公开的各个方面的使用逆流反应器的用于形成在电化学电池组电池(如图1中示出的示例性电化学电池组电池)中使用的层状电活性材料的示例性方法;
在附图的几个视图中,相应的附图标记表示相应的组件。
具体实施方式
提供示例性实施方案从而使得本公开将为完全的,并使本公开将向本领域技术人员充分传达范围。阐述了许多具体细节,例如具体组成、组件、装置和方法的实例,以提供对本公开的实施方案的充分理解。对本领域技术人员将显而易见的是,不需要采用具体细节,示例性实施方案可以以许多不同的形式表现,并且它们都不应被解释为限制本公开的范围。在一些示例性实施方案中,没有详细描述公知的方法、公知的装置结构和公知的技术。
本文中所用的术语仅为了描述特定的示例性实施方案,并且无意作为限制。除非上下文清楚地另行指明,如本文所用,单数形式“一”、“一个”和“该”可旨在也包括复数形式。术语“包含”、“包括”、“涵盖”和“具有”是可兼的,并且因此指定了所述特征、元件、组合物、步骤、整数、操作和/或组件的存在,但不排除一个或多个其它特征、整数、步骤、操作、元件、组件和/或其群组的存在或加入。尽管开放式术语“包括”应被理解为用于描述和要求保护本文中所述的各种实施方案的非限制性术语,但在某些方面,该术语或可被理解成替代性地为更具限制性和局限性的术语,如“由……组成”或“基本由……组成”。由此,对叙述组合物、材料、组件、元件、特征、整数、操作和/或方法步骤的任意给定实施方案,本公开还具体包括由或基本由此类所叙述组合物、材料、组件、元件、特征、整数、操作和/或方法步骤组成的实施方案。在“由……组成”的情况下,替代实施方案排除任何附加的组合物、材料、组件、元件、特征、整数、操作和/或方法步骤,而在“基本由……组成”的情况下,从此类实施方案中排除了实质上影响基本和新颖特性的任何附加的组合物、材料、组件、元件、特征、整数、操作和/或方法步骤,但是不在实质上影响基本和新颖特性的任何组合物、材料、组件、元件、特征、整数、操作和/或方法步骤可以包括在实施方案中。
本文中描述的任何方法步骤、工艺和操作不应解释为必定要求它们以所论述或举例说明的特定次序执行,除非明确确定以一履行次序的形式进行。还要理解的是,除非另行说明,可采用附加或替代的步骤。
当组件、元件或层被提到在另一元件或层“上”,“啮合”、“连接”或“耦合”到另一元件或层上时,其可直接在另一组件、元件或层上,啮合、连接或耦合到另一组件、元件或层上,或可存在居间元件或层。相较之下,当元件被提到“直接在另一元件或层上”,“直接啮合”、“直接连接”或“直接耦合”到另一元件或层上时,可不存在居间元件或层。用于描述元件之间关系的其它词语应以类似方式解释(例如“在…之间”相对“直接在…之间”,“相邻”相对“直接相邻”等)。如本文所用,术语“和/或”包括一个或多个相关罗列项的任何和所有组合。
尽管术语第一、第二、第三等在本文中可用于描述各种步骤、元件、组件、区域、层和/或区段,但除非另行说明,这些步骤、元件、组件、区域、层和/或区段不应受这些术语限制。这些术语可仅用于将一个步骤、元件、组件、区域、层或区段与另一步骤、元件、组件、区域、层或区段进行区分。除非上下文清楚表明,术语如“第一”、“第二”和其它数值术语在本文中使用时并不暗示次序或顺序。因此,下文论述的第一步骤、元件、组件、区域、层或区段可以被称作第二步骤、元件、组件、区域、层或区段而不背离示例性实施方案的教导。
为了易于描述,在本文中可使用空间或时间上相对的术语,如“之前”、“之后”、“内”、“外”、“下”、“下方”、“下部”、“上方”、“上部”等描述如附图中所示的一个元件或特征与其它(一个或多个)元件或(一个或多个)特征的关系。除了在附图中所示的取向之外,空间或时间上的相对术语可旨在涵盖装置或***在使用或操作中的不同取向。
在本公开通篇中,数值代表近似测量值或范围界限以涵盖与给定值的轻微偏差和大致具有所提及值的实施方案以及确切具有所提及值的实施方案。除了在详细描述最后提供的工作实例中之外,本说明书(包括所附权利要求)中的(例如量或条件)参数的所有数值应被理解为在所有情况中被术语“约”修饰,无论在该数值前是否实际出现“约”。“约”是指所述数值允许一定的轻微不精确(在一定程度上接近该值的精确值;大致或合理地近似该值;几乎是)。如果在本领域中不以这种普通含义另行理解由“约”提供的不精确性,那么本文所用的“约”是指可由测量和使用此类参数的普通方法造成的至少偏差。例如,“约”可包括小于或等于5%、任选小于或等于4%、任选小于或等于3%、任选小于或等于2%、任选小于或等于1%、任选小于或等于0.5%,和在某些方面任选小于或等于0.1%的偏差。
此外,范围的公开包括对在整个范围内的所有值和进一步细分范围的公开,包括对端点和对范围所给出的子范围的公开。
现在将参照附图更充分地描述示例性实施方案。
本公开涉及用于循环锂离子的电化学电池的层状阳极材料,以及形成其的方法。层状阳极材料可以是二维(“2D”)层状硅同素异形体,并且在某些变型中,层状阳极材料可以被预锂化。用于形成层状阳极材料的方法可包括使用被动离子交换方法从前体材料中去除阳离子。前体材料可以是离子化合物(例如,由MX2表示,其中M是钙(Ca)和镁(Mg)中的一种,并且X是硅(Si)、锗(Ge)和/或硼(B)中的一种),其包括交替层,使得阳离子(例如,Ca2+)易于电化学提取。例如,前体材料可包括CaSi2,其是包括硅和钙的交替层的化合物。当去除阳离子(例如Ca2+)时,留下二维层状晶体。在某些变型中,可通过使用电化学交换方法将锂离子(Li+)移动到通过去除阳离子产生的层间空间或空隙中来使层状阳极材料预锂化。
典型的锂离子电池组包括与第二电极(例如负极或阳极)相对的第一电极(例如正极或阴极)和设置在其间的隔离件和/或电解质。通常,在锂离子电池组包中,电池组或电池可以以堆叠或卷绕配置电连接以增加总输出。锂离子电池组通过在第一和第二电极之间可逆地传递锂离子来工作。例如,锂离子可在电池组充电期间从正极移动到负极,并且在电池组放电时沿相反方向移动。电解质适于传导锂离子(或在钠离子电池组的情况下为钠离子,等等),并且可以是液体、凝胶或固体形式。例如,图1中示出了电化学电池(也称为电池组)20的示例性和示意性说明。
这种电池用于车辆或汽车运输应用(例如,摩托车、船、拖拉机、公共汽车、摩托车、移动房屋、野营车和坦克)。然而,本技术可用于广泛种类的其它工业和应用,包括航空航天组件、消费品、设备、建筑物(例如,房屋、办公室、棚和仓库)、办公设备和家具、以及工业设备机械、农业或农场设备、或重型机械,作为非限制性实例。此外,尽管所示的实例包括单个正极阴极和单个阳极,但本领域技术人员将认识到,本教导扩展到各种其它构造,包括具有一个或多个阴极和一个或多个阳极的那些,以及具有设置在其一个或多个表面上或与其一个或多个表面相邻的电活性层的各种集流体。
电池组20包括负极22 (例如,阳极)、正极24 (例如,阴极)和设置在两个电极22、24之间的隔离件26。隔离件26在电极22、24之间提供电隔离,防止物理接触。隔离件26还在锂离子循环期间为锂离子(并且在某些情况下,相关阴离子)的内部通过提供最小化电阻路径。在各个方面,隔离件26包括电解质30,在某些方面,该电解质30也可存在于负极22和正极24中。在某些变型中,隔离件26可由固态电解质形成。例如,隔离件26可由多个固态电解质颗粒(未示出)限定。
负极集流体32可位于负极22处或附近。负极集流体32可以是包含铜或本领域技术人员已知的任何其它适当导电材料的金属箔、金属栅格或筛网、或多孔金属。正极集流体34可位于正极24处或附近。正极集流体34可以是包含铝或本领域技术人员已知的任何其它合适的导电材料的金属箔、金属格栅或筛网、或多孔金属。负极集流体32和正极集流体34分别将自由电子收集并移动到外部电路40和由外部电路40收集并移动自由电子。例如,可中断的外部电路40和负载装置42可连接负极22 (通过负极集流体32)和正极24 (通过正极集流体34)。
电池组20可以在放电期间通过可逆电化学反应产生电流,所述可逆电化学反应在外部电路40闭合(以连接负极22和正极24)并且负极22具有比正极低的电势时发生。正极24和负极22之间的化学电位差驱使负极22处的反应(例如嵌入锂的氧化)所产生的电子通过外部电路40前往正极24。也在负极22处产生的锂离子同时转移通过隔离件26中含有的电解质30前往正极24。电子流过外部电路40,并且锂离子迁移通过含有电解质30的隔离件26,在正极24处形成嵌入锂。如上所述,电解液30通常也存在于负极22和正极24中。流经外部电路40的电流可以被利用并被引导通过负载装置42,直到负极22中的锂被耗尽并且电池组20的容量减小。
通过将外部电源连接到锂离子电池组20以逆转在电池组放电期间发生的电化学反应,电池组20可以在任何时间被充电或重新赋能。将外部电源连接到电池组20促进了在正极24处的反应,例如嵌入锂的非自发氧化,从而产生电子和锂离子。锂离子通过电解质30穿过隔离件26前往负极22流回,来为负极22补充用于下一次电池组放电事件期间使用的锂(例如,嵌入的锂)。因此,完全放电事件之后完全充电事件被认为是一个循环,其中锂离子在正极24和负极22之间循环。可用于对电池组20充电的外部电源可根据电池组20的尺寸、构造和特定最终用途而变化。一些值得注意和示例性的外部电源包括但不限于通过壁装电源插座连接到AC电网的AC-DC转换器和机动车辆交流发电机。
在许多锂离子电池组配置中,负极集流体32、负极22、隔离件26、正极24和正极集流体34中的每一个被制备为相对薄的层(例如,厚度从几微米到几分之一毫米或更小)并且以电并联布置连接的层安装,以提供合适的电能和功率封装。在各个方面,电池组20还可包括各种其它组件,虽然这里未示出,但对于本领域技术人员而言是已知的。例如,电池组20可包括壳体、垫圈、端子盖、极耳、电池组端子和可位于电池组20内,包括在负极22、正极24和/或隔离件26之间或周围,的任何其它常规组件或材料。图1中所示的电池组20包括液体电解质30并且显示了电池组操作的代表性概念。然而,本技术也适用于包括固态电解质和/或固态电活性颗粒的固态电池组,所述固态电活性颗粒可具有本领域技术人员已知的不同设计。
如上所述,电池组20的尺寸和形状可根据其所设计用于的特定应用而变化。电池组供电的车辆和手持消费电子设备例如是两个实例,其中电池组20将很可能被设计成不同的尺寸、容量和功率输出规格。如果负载装置42需要,电池组20也可与其它类似的锂离子电池或电池组串联或并联,以产生更大的电压输出、能量和功率。因此,电池组20可以产生电流到(外部电路40的一部分的)负载装置42。当电池组20放电时,负载装置42可由通过外部电路40的电流供电。虽然电负载装置42可以是任何数量的已知电动装置,但是一些具体实例包括用于电动车辆的电动机、膝上型计算机、平板计算机、蜂窝电话以及无绳电动工具或器具。负载装置42还可以是发电设备,其为了存储电能的目的而对电池组20充电。
再次参照图1,正极24、负极22和隔离件26可各自包括在其孔内的电解质溶液或体系30,其能够在负极22和正极24之间传导锂离子。能够在负极22和正极24之间传导锂离子的任何合适的电解质30,无论是固体、液体或凝胶形式,可用于锂离子电池组20中。在某些方面,电解质30可为非水性液体电解质溶液,其包含溶解在有机溶剂或有机溶剂混合物中的锂盐。在锂离子电池组20中可采用许多常规的非水液体电解质30溶液。
在某些方面,电解质30可以是非水性液体电解质溶液,其包括溶解在有机溶剂或有机溶剂的混合物中的一种或多种锂盐。例如,可溶解在有机溶剂中以形成非水性液体电解质溶液的锂盐的非限制性列举包括六氟磷酸锂(LiPF6)、高氯酸锂(LiClO4)、四氯铝酸锂(LiAlCl4)、碘化锂(LiI)、溴化锂(LiBr)、硫氰酸锂(LiSCN)、四氟硼酸锂(LiBF4)、四苯基硼酸锂(LiB(C6H5)4)、双(草酸根合)硼酸锂(LiB(C2O4)2) (LiBOB)、二氟草酸根合硼酸锂(LiBF2(C2O4))、六氟砷酸锂(LiAsF6)、三氟甲烷磺酸锂(LiCF3SO3)、双(三氟甲烷)磺酰亚胺锂(LiN(CF3SO2)2)、双(氟磺酰)亚胺锂(LiN(FSO2)2) (LiSFI)及其组合。
这些和其它类似的锂盐可溶解于各种非水性非质子有机溶剂中,包括但不限于各种碳酸烷基酯,例如环状碳酸酯(例如碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸丁烯酯(BC)、碳酸氟代乙烯酯(FEC))、直链碳酸酯(例如碳酸二甲酯(DMC)、碳酸二乙酯(DEC)、碳酸乙基甲基酯(EMC))、脂族羧酸酯(例如甲酸甲酯、乙酸甲酯、丙酸甲酯)、γ-内酯(例如γ-丁内酯、γ-戊内酯)、链结构醚(例如1,2-二甲氧基乙烷、1-2-二乙氧基乙烷、乙氧基甲氧基乙烷)、环醚(例如四氢呋喃、2-甲基四氢呋喃)、1,3-二氧戊环)、含硫化合物(例如环丁砜)及其组合。
在某些情况下,多孔隔离件26可包括包含聚烯烃的微孔聚合物隔离件。聚烯烃可以是均聚物(衍生自单一单体组分)或杂聚物(衍生自多于一种单体组分),其可以是线性的或支化的。如果杂聚物衍生自两种单体组分,则聚烯烃可采取任何共聚物链排列,包括嵌段共聚物或无规共聚物的那些。类似地,如果聚烯烃是由多于两种单体组分衍生的杂聚物,则它同样可以是嵌段共聚物或无规共聚物。在某些方面,聚烯烃可以是聚乙烯(PE)、聚丙烯(PP)、或PE和PP的共混物、或PE和/或PP的多层结构化多孔膜。市售的聚烯烃多孔隔离件膜26包括CELGARD®2500 (单层聚丙烯隔离件膜)和CELGARD®2320 (三层聚丙烯/聚乙烯/聚丙烯隔离件膜),可从Celgard LLC获得。
在某些方面,隔离件26还可包括陶瓷涂层和耐热材料涂层中的一者或多者。陶瓷涂层和/或耐热材料涂层可设置在隔离件26的一侧或多侧上。形成陶瓷层的材料可选自:氧化铝(Al2O3)、二氧化硅(SiO2)及其组合。耐热材料可选自:诺梅克斯、芳族聚酰胺(Aramid)及其组合。
当隔离件26为微孔聚合物隔离件时,其可为单层或多层层合体,其可由干法或湿法制造。例如,在某些情况下,单层聚烯烃可形成整个隔离件26。在其它方面,隔离件26可以是具有在相对表面之间延伸的大量孔隙的纤维膜,并且可具有例如小于毫米的平均厚度。然而,作为另一实例,可组装相似或不相似的聚烯烃的多个离散层以形成微孔聚合物隔离件26。隔离件26还可包括除了聚烯烃之外的其它聚合物,例如但不限于聚对苯二甲酸乙二醇酯(PET)、聚偏二氟乙烯(PVdF)、聚酰胺、聚酰亚胺、聚(酰胺-酰亚胺)共聚物、聚醚酰亚胺和/或纤维素,或适于产生所需多孔结构的任何其它材料。聚烯烃层和任何其它任选的聚合物层可进一步作为纤维层包括在隔离件26中,以帮助为隔离件26提供合适的结构和孔隙率特性。在某些方面,隔离件26也可与陶瓷材料混合,或者其表面可涂覆有陶瓷材料。例如,陶瓷涂层可包括氧化铝(Al2O3)、二氧化硅(SiO2)、二氧化钛(TiO2)或其组合。考虑了用于形成隔离件26的各种常规可获得的聚合物和商业产品,以及可用于生产这种微孔聚合物隔离件26的许多制造方法。
在各个方面,图1中的多孔隔离件26和电解质30可用用作电解质和隔离件二者的固态电解质(“SSE”)(未示出)来代替。固态电解质可设置在正极24和负极22之间。固态电解质促进锂离子的转移,同时机械地分离并提供负极22和正极24之间的电绝缘。作为非限制性实例,固态电解质可包括LiTi2(PO4)3、LiGe2(PO4)3、Li7La3Zr2O12、Li3xLa2/3-xTiO3、Li3PO4、Li3N、Li4GeS4、Li10GeP2S12、Li2S-P2S5、Li6PS5Cl、Li6PS5Br、Li6PS5I、Li3OCl、Li2.99Ba0.005ClO或其组合。
正极24可由基于锂的活性材料(或在钠离子电池组的情况下为基于钠的活性材料)形成,所述基于锂的活性材料能够进行锂嵌入和脱嵌、合金化和脱合金化、或镀覆和剥离,同时用作电池组20的正极端子。正极24可以由设置在一层或多层中的多个电活性材料颗粒(未示出)限定,以限定正极24的三维结构。电解质30可例如在电池组装之后并入,并含有在正极24的孔(未示出)内。例如,正极24可包括多个电解质颗粒(未示出)。
可以用于形成正极24的已知材料的一个示例性常见类别是层状锂过渡金属氧化物。例如,在某些方面,正极24可包含一种或多种具有尖晶石结构的材料,例如锂锰氧化物(Li(1+x)Mn2O4,其中0.1≤x≤1)、锂锰镍氧化物(LiMn(2-x)NixO4,其中0≤x≤0.5)(例如LiMn1.5Ni0.5O4);一种或多种具有层状结构的材料,例如锂钴氧化物(LiCoO2)、锂镍锰钴氧化物(Li(NixMnyCoz)O2,其中0≤x≤1,0≤y≤1,0≤z≤1,且x+y+z=1)(例如LiMn0.33Ni0.33Co0.33O2)或锂镍钴金属氧化物(LiNi(1-x-y)CoxMyO2,其中0<x<0.2,y<0.2,且M可为Al、Mg、Ti等);或具有橄榄石结构的锂铁聚阴离子氧化物,例如磷酸铁锂(LiFePO4)、磷酸锰铁锂(LiMn2-xFexPO4,其中0<x<0.3)或氟磷酸锂铁(Li2FePO4F)。
在某些变型中,正电活性材料可任选地与提供电子传导路径的电子导电材料和/或改善电极的结构完整性的至少一种聚合物粘合剂材料混合。例如,正电活性材料和电子导电或导电材料可用这样的粘合剂(如聚偏二氟乙烯(PVdF)、聚四氟乙烯(PTFE)、三元乙丙橡胶(EPDM)或羧甲基纤维素(CMC)、丁腈橡胶(NBR)、丁苯橡胶(SBR)、聚丙烯酸锂(LiPAA)、聚丙烯酸钠(NaPAA)、藻酸钠或藻酸锂)浆料浇铸。导电材料可包括基于碳的材料、粉末镍或其它金属颗粒、或导电聚合物。基于碳的材料可包括例如石墨、乙炔黑(例如KETJENTM黑或DENKATM黑)、碳纤维和纳米管、石墨烯等的颗粒。导电聚合物的实例包括聚苯胺、聚噻吩、聚乙炔、聚吡咯等。在某些方面,可使用导电材料的混合物。
正极24可包含大于或等于约80重量%至小于或等于约99重量%的正电活性材料、大于或等于约0重量%至小于或等于约15重量%的电子导电材料和大于或等于约0重量%至小于或等于约15重量%,并且在某些方面中,任选地大于或等于约0重量%至小于或等于约15重量%的至少一种聚合物粘合剂。
负极22包含能够用作锂离子电池组的负极端子的锂主体材料。例如,负极22可包含能够用作电池组20的负极端子的锂主体材料(例如,负电活性材料)。在各个方面,负极22可由多个负电活性材料颗粒(未示出)限定。这种负电活性材料颗粒可设置在一层或多层中,以限定负极22的三维结构。电解质30可例如在电池组装之后并入,并且容纳在负极22的孔(未示出)内。例如,负极22可包括多个电解质颗粒(未示出)。
负极22包括作为能够用作锂离子电池组的负极端子的锂主体材料的电活性材料。电活性材料包括原子级层状阳极材料,其中每个结晶平面被认为是层状的。原子级层状阳极材料可包括硅(Si)、锗(Ge)和/或硼(B)。例如,电活性材料可包括硅(Si)、锗(Ge)和/或硼(B)的二维层状同素异形体,其包括在埃尺度下在平面内强键合并且在平面外弱耦合(即,层之间的键合很少至没有键合)的原子的平面,类似于石墨。换句话说,原子级层状阳极材料可包括硅烯、多层硅烯、锗烯、多层锗烯、硼烯、多层硼烯或其任意组合。原子级层状阳极材料可形成微米/纳米级电活性颗粒,例如平均直径大于或等于约100 nm至小于或等于约50μm的电活性材料颗粒。
这种电活性材料表现出改善的可循环性,例如,电活性材料在约100 mA/g电流下可具有约2,000 mAh/g的固有容量(intrinsic capacity)。层状结构用于释放锂化过程中产生的内应力,并增强负极22内的离子扩散。例如,如下所述,二维结构可允许锂通过假范德华间隙(pseudo van der Waals gap)嵌入层之间,以在不破坏晶格结构的情况下储存锂,从而避免结构的粉碎或爆裂(类似于锂在石墨中的嵌入)。另外,在层之间形成的二维通道可以更好地促进离子扩散以允许更快的充电速率。
在各个方面,负电活性材料可以是包括(例如第一多个电活性材料颗粒形式的)层状阳极材料(例如,硅烯、锗烯和/或硼烯)与(例如第二多个电活性材料颗粒形式的)另一负电活性材料(例如,石墨、石墨烯、碳纳米管、碳纳米纤维、炭黑或其任意组合)的组合的复合材料。例如,复合材料可包含大于或等于约5重量%至小于或等于约95重量%的层状阳极材料,以及大于或等于约5重量%至小于或等于约95重量%的其它负电活性材料。
在再进一步的变型中,负电活性材料可以是包括二维层状同素异形体(例如,例如以第一多个电活性材料颗粒的形式的,二维层状硅同素异形体)和三维同素异形体(例如,三维层状硅同素异形体,诸如SiOx和LixSiOx)的组合的复合材料,所述三维同素异形体例如以第二多个电活性材料颗粒的形式。例如,复合材料可包含大于或等于约5重量%至小于或等于约95重量%的二维层状硅同素异形体,和大于或等于约5重量%至小于或等于约95重量%的三维硅同素异形体。
在每种情况下,负电活性材料可在并入负极22和/或电池组20之前(即,非原位)或之后(即,原位)预锂化,以补偿循环期间的锂损失,例如所述锂损失可在第一循环期间在转换反应和/或在负极22上形成LixSi和/或固体电解质界面(SEI)层(未示出)期间导致,以及由于例如连续固体电解质界面(SEI)形成而导致的持续的锂损失。
在某些变型中,层状阳极材料可任选地与一种或多种提供电子传导路径的导电材料和/或至少一种改进负极22的结构完整性的聚合物粘合剂材料混合。例如,负极22中的负电活性材料可任选地与粘合剂混合,所述粘合剂如聚酰亚胺、聚酰胺酸、聚酰胺、聚砜、聚偏二氟乙烯(PVdF)、聚四氟乙烯(PTFE)、三元乙丙橡胶(EPDM)橡胶或羧甲基纤维素(CMC)、丁腈橡胶(NBR)、丁苯橡胶(SBR)、聚丙烯酸锂(LiPAA)、聚丙烯酸钠(NaPAA)、藻酸钠或藻酸锂。导电材料可包括基于碳的材料、粉末镍或其它金属颗粒、或导电聚合物。基于碳的材料可包括例如石墨、乙炔黑(例如KETJENTM黑或DENKATM黑)、碳纤维和纳米管、石墨烯等的颗粒。导电聚合物的实例包括聚苯胺、聚噻吩、聚乙炔、聚吡咯等。在某些方面,可使用导电材料的混合物。
负极22可包含大于或等于约10 wt.%至小于或等于约99 wt.%的层状阳极材料,大于或等于约0 wt.%至小于或等于约20 wt.%的电子导电材料,以及大于或等于约0 wt.%至小于或等于约20 wt.%,并且在某些方面中,任选地大于或等于约1 wt.%至小于或等于约20wt.%的至少一种聚合物粘合剂。
在各个方面,本公开提供了制备用于负极(例如图1中所示的负极22)的预锂化层状阳极材料(例如,二维层状硅同素异形体)的方法。例如本公开考虑使用被动离子交换方法制备预锂化的层状阳极材料的方法。方法通常可包括使前体材料与高度浓缩锂电解质接触。在每种情况下,方法可使用间歇方法或连续方法进行。
图2示出了用于形成预锂化的层状阳极材料的示例性方法200。方法200包括使前体材料与高度浓缩锂电解质接触220。所述高度浓缩锂电解质可在溶剂体系中包含一种或多种锂盐。仅举例,一种或多种锂盐可包括六氟磷酸锂(LiPF6)、四氟硼酸锂(LiBF4)、双(三氟甲烷磺酰)亚胺锂(LiTFSI)、双(氟磺酰)亚胺锂(LiFSI)、氯化锂(LiCl)、碳酸锂(LiCO3)、氢氧化锂(LiOH)及其组合。一种或多种溶剂可包括,仅举例,碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸二甲酯(DMC)、氟化碳酸乙烯酯(FEC)、碳酸二乙酯(DEC)、碳酸甲乙酯(EMC)及其组合。高度浓缩锂电解质的摩尔浓度可大于或等于约0.1M至小于或等于一种或多种锂盐在溶剂体系中的溶解度极限。在某些变型中,使前体材料与高度浓缩锂电解质接触220可包括将前体材料设置或浸没在高度浓缩锂电解质中。
在每种情况下,前体材料可以是由MX2表示的离子化合物,其中M是钙(Ca)和镁(Mg)中的一种,并且X是硅(Si)、锗(Ge)和/或硼(B)中的一种。在每种情况下,前体材料包括交替层,使得阳离子(例如Ca2+)易于离子交换。例如,使前体材料和高度浓缩锂电解质接触220可促进阳离子从前体材料去除,产生二维层状材料(例如,范德华晶体)。这个过程通常被称为离子交换相互扩散。当阳离子被去除时,锂离子(Li+)可从高度浓缩锂电解质移动到通过去除阳离子产生的层间空间或空隙中,以形成预锂化的层状阳极材料。阳离子可从前体材料中去除,并且锂离子(Li+)可移动到层间空间或空隙中,所述层间空间或空隙是通过以由强制对流辅助的自然离子扩散的方式去除阳离子而产生的,所述强制对流是在前体材料颗粒和高度浓缩锂电解质之间的界面处的离子浓度梯度的结果。因此,方法200提供了用于去除阳离子和预锂化二维层状材料的一步同时方法,消除或减少了与随后锂化步骤相关的成本和时间。在某些变型中,基本上所有的,或在某些变型中,任选地大于或等于约85%,任选地大于或等于约90%,任选地大于或等于约95%,任选地大于或等于约96%,任选地大于或等于约97%,任选地大于或等于约98%,任选地大于或等于约99%,或任选地大于或等于约99.5%的阳离子可从前体材料中去除并被锂离子(Li+)置换。
在各个方面,如图所示,方法200可包括获得或制备210前体材料。例如,制备210前体材料可包括研磨前体材料以减小粒度(例如,至大于或等于约100 nm至小于或等于约50μm的平均粒度直径)并增加表面积,从而减少阳离子交换时间并增加产生均匀的二维层状材料的可能性。
在再其它变型中,方法200可包括搅拌230高度浓缩锂电解质(例如,当将前体材料添加到高度浓缩锂电解质中时和/或当前体材料移动通过高度浓缩锂电解质时)以确保均匀性,例如以确保对基本上所有粒子进行相同或相似程度的离子交换。在某些变型中,可通过以下来搅拌230高度浓缩锂电解质:随着阳离子浓度增加和锂离子浓度降低而连续引入或更换新鲜的高度浓缩锂电解质(例如图3所示)以便更新梯度(即,保持浓度差)并恢复驱动力,和/或使用流化床或电解质再循环床来打破固液界面处的边界层。
在各个方面,如图所示,方法200可包括加热240(即,升高温度)高度浓缩的锂电解质以增强扩散。例如,当将前体材料被加入到高度浓缩锂电解质中时和/或在预定时间段之后,例如在搅拌230前体材料期间,可升高高度浓缩锂电解质的温度。在每种情况下,可将高度浓缩的锂电解质加热至大于或等于约20℃至小于或等于约250℃的温度。
重新参考图2,在某些变型中,如图所示,方法200可包括将二维层状阳极材料(和任选地,第一集流体)和/或预锂化的层状阳极材料(和任选地,第一集流体)并入250电池中以用作负电活性材料(和负集流体)。尽管未示出,但在各个方面,方法200还可包括在并入电池中之前的附加的涂覆步骤和/或其它后处理步骤,例如以增强预锂化的层状阳极材料的空气稳定性,和/或将预锂化的层状阳极材料与其它负电活性材料,如三维硅同素异形体和/或石墨/石墨烯混合。
在各个方面,用于负极(例如图1中所示的负极22)的层状阳极材料(例如预锂化的二维层状硅同素异形体)可使用连续方法制备。例如,如图3所示,可使用逆流式反应器300,其中高度浓缩的锂电解质330被连续引入和移出(例如图3中的箭头所示)并移动通过包括前体材料(未示出)的电子导电的液体可渗透的笼320。如上所述,高度浓缩锂电解质330的摩尔浓度可大于或等于约0.1M至小于或等于一种或多种锂盐在溶剂体系中的溶解度极限。前体材料可以是由MX2表示的离子化合物,其中M是钙(Ca)和镁(Mg)中的一种,并且X是硅(Si)、锗(Ge)和/或硼(B)中的一种。
如图所示,当引入(例如,在第一开口302处)时,高度浓缩锂电解质330具有高浓度的锂离子340。当高度浓缩锂电解质330移动通过电子导电的液体可渗透笼320时,锂离子340可交换阳离子350,形成如上详述的预锂化的层状阳极材料,当高度浓缩锂电解质330前往第二开口或出口304移动时,该预锂化的层状阳极材料保留在电子导电的液体可渗透笼320中。一段时间后,可从电子导电的液体可渗透的笼320中提取预锂化的层状阳极材料
为了说明和描述的目的,已经提供了对实施方案的上述描述。其不意在穷举的或限制本公开。特定实施方案的各个元件或特征通常不限于该特定实施方案,而是在适用的情况下是可互换的,并且可以在所选实施方案中使用,即使没有具体示出或描述。同样的也可以以许多方式变化。这样的变化不应被认为是脱离本公开,并且所有这样的修改旨在被包括在本公开的范围内。

Claims (10)

1.一种用于形成预锂化的层状阳极材料的方法,所述方法包括:
使前体材料与包含一种或多种锂盐和一种或多种溶剂的电解质接触,其中所述电解质具有大于或等于约0.1M至小于或等于所述一种或多种锂盐在所述一种或多种溶剂中的溶解度极限的摩尔浓度,并且其中所述前体材料为三维层状材料,并且所述前体材料与所述电解质的接触导致阳离子从所述前体材料的去除,并将锂离子从所述电解质引入到通过去除阳离子而产生的层间空间或空隙中,以形成所述预锂化的层状阳极材料。
2.根据权利要求1所述的方法,其中所述前体材料由MX2表示,其中M为钙(Ca)和镁(Mg)中的一者,且X为硅(Si)、锗(Ge)和硼(B)中的一者,且所述前体材料包含M和X的交替层。
3.根据权利要求1所述的方法,其中所述一种或多种锂盐选自以下:六氟磷酸锂(LiPF6)、四氟硼酸锂(LiBF4)、双(三氟甲烷磺酰)亚胺锂(LiTFSI)、双(氟磺酰)亚胺锂(LiFSI)、氯化锂(LiCl)、碳酸锂(LiCO3)、氢氧化锂(LiOH)及其组合。
4.根据权利要求3所述的方法,其中所述一种或多种溶剂选自:碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸二甲酯(DMC)、氟化碳酸乙烯酯(FEC)、碳酸二乙酯(DEC)、碳酸甲乙酯(EMC)及其组合。
5.根据权利要求1所述的方法,其中使所述前体材料与所述电解质接触包括将所述前体材料浸没在所述电解质中。
6.根据权利要求1所述的方法,其中所述方法进一步包括:
在所述前体材料与所述电解质接触期间搅拌所述电解质。
7.根据权利要求6所述的方法,其中使用流化床或电解质再循环床搅拌所述电解质。
8.根据权利要求6所述的方法,其中通过同时移除用过部分的电解质和引入新部分的电解质来搅拌所述电解质。
9. 一种用于形成预锂化的层状阳极材料的方法,所述方法包括:
使前体材料与包含一种或多种锂盐和一种或多种溶剂的电解质接触,其中电解质具有大于或等于约0.1M至小于或等于一种或多种锂盐在一种或多种溶剂中的溶解度极限的摩尔浓度,并且其中前体材料由MX2表示,其中M为钙(Ca)和镁(Mg)中的一种,并且X为硅(Si)、锗(Ge)和硼(B)中的一种;以及
在前体材料与电解质接触期间搅拌电解质,使得阳离子从前体材料中去除,并且锂离子被引入到通过去除阳离子而产生的层间空间或空隙中,以形成预锂化的层状阳极材料。
10.一种形成预锂化的层状阳极材料的方法,所述方法基本上由以下组成:
使前体材料与包含一种或多种锂盐和一种或多种溶剂的电解质接触,其中所述电解质具有大于或等于约0.1M至小于或等于所述一种或多种锂盐在所述一种或多种溶剂中的溶解度极限的摩尔浓度,并且其中所述前体材料由MX2表示,其中M为钙(Ca)和镁(Mg)中的一种,并且X为硅(Si)、锗(Ge)和硼(B)中的一种,并且所述前体材料与所述电解质的接触导致阳离子从所述前体材料的去除并将锂离子从所述电解质引入到通过去除所述阳离子而产生的层间空间或空隙中以形成预锂化的层状阳极材料。
CN202210569440.3A 2021-06-01 2022-05-24 用于制造层状阳极材料的被动离子交换 Pending CN115440970A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/335,987 US20220384774A1 (en) 2021-06-01 2021-06-01 Passive Ion Exchange For The Fabrication Of A Layered Anode Material
US17/335987 2021-06-01

Publications (1)

Publication Number Publication Date
CN115440970A true CN115440970A (zh) 2022-12-06

Family

ID=83997095

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210569440.3A Pending CN115440970A (zh) 2021-06-01 2022-05-24 用于制造层状阳极材料的被动离子交换

Country Status (3)

Country Link
US (1) US20220384774A1 (zh)
CN (1) CN115440970A (zh)
DE (1) DE102022108412A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11978880B2 (en) 2021-06-01 2024-05-07 GM Global Technology Operations LLC Electrochemical exchange for the fabrication of a layered anode material

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3633077A1 (en) * 2011-12-01 2020-04-08 Nanoscale Components, Inc. Method for lithiating anodes
JP6148472B2 (ja) * 2013-01-18 2017-06-14 日立造船株式会社 金属空気二次電池および電極製造方法
KR102038620B1 (ko) * 2013-03-26 2019-10-30 삼성전자주식회사 음극, 이를 포함하는 리튬전지, 및 이의 제조 방법
US10673063B2 (en) * 2017-09-21 2020-06-02 Global Graphene Group, Inc. Process for prelithiating an anode active material for a lithium battery
KR102439128B1 (ko) * 2018-07-06 2022-09-02 주식회사 엘지에너지솔루션 리튬 이차전지용 음극, 이의 전리튬화 방법 및 이를 포함하는 리튬 이차전지
US11715832B2 (en) * 2019-08-12 2023-08-01 Global Graphene Group, Inc. Electrochemically stable anode active material for lithium-ion batteries and production method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11978880B2 (en) 2021-06-01 2024-05-07 GM Global Technology Operations LLC Electrochemical exchange for the fabrication of a layered anode material

Also Published As

Publication number Publication date
DE102022108412A1 (de) 2022-12-01
US20220384774A1 (en) 2022-12-01

Similar Documents

Publication Publication Date Title
US20220173377A1 (en) Thick electrodes for electrochemical cells
CN115241456A (zh) 具有用于控制固体电解质界面层的形成的表面结构的集流体
CN115440970A (zh) 用于制造层状阳极材料的被动离子交换
US11978880B2 (en) Electrochemical exchange for the fabrication of a layered anode material
US20230101215A1 (en) Solid-state synthesis for the fabrication of a layered anode material
US20220384776A1 (en) Layered anode materials
US20230060634A1 (en) Methods for fabricating two-dimensional anode materials
US20220181629A1 (en) Elastic binding polymers for electrochemical cells
US20230006201A1 (en) Over-lithiated cathode materials and methods of forming the same
CN117174496A (zh) 用于电容器辅助电池组的电解质添加剂
US20230411610A1 (en) Methods for fabricating pre-lithiated, two-dimensional anode materials
US20240055593A1 (en) Hybrid battery having improved thermal stability and power performance
US11799083B2 (en) Lithiation additive for a positive electrode
US20240136507A1 (en) Layered electroactive material and methods of forming the same
US20230246242A1 (en) Electroactive materials for high-performance batteries
US20230387398A1 (en) Carbon additives for silicon-containing electrodes
US20240038962A1 (en) Pre-lithiating porous layer for electrochemical cell and methods of forming the same
US20220367848A1 (en) Double-sided electrodes and electrochemical cells including the same
US20240047653A1 (en) Protective particle coatings for electroactive material particles and methods of forming the same
US20230102190A1 (en) Negative electroactive materials and methods of forming the same
CN116504924A (zh) 用于锂金属电极的保护涂层及其形成方法
CN115621570A (zh) 用于循环锂离子的电化学电池的锂合金储库
CN117239232A (zh) 用于富镍阴极和含硅阳极的电解质添加剂
CN117239213A (zh) 包括无阳极电池的锂离子电池组
CN117917786A (zh) 层状电活性材料及其形成方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination