CN115414051A - 一种脑电信号自适应窗口的情绪分类识别方法 - Google Patents

一种脑电信号自适应窗口的情绪分类识别方法 Download PDF

Info

Publication number
CN115414051A
CN115414051A CN202110519615.5A CN202110519615A CN115414051A CN 115414051 A CN115414051 A CN 115414051A CN 202110519615 A CN202110519615 A CN 202110519615A CN 115414051 A CN115414051 A CN 115414051A
Authority
CN
China
Prior art keywords
window
electroencephalogram
emotion
signal
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110519615.5A
Other languages
English (en)
Inventor
梁琛
***
王菲
王文浪
范琳
衡霞
贺炎
张�荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Posts and Telecommunications
Original Assignee
Xian University of Posts and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Posts and Telecommunications filed Critical Xian University of Posts and Telecommunications
Priority to CN202110519615.5A priority Critical patent/CN115414051A/zh
Publication of CN115414051A publication Critical patent/CN115414051A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • A61B5/165Evaluating the state of mind, e.g. depression, anxiety
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • G06F3/015Input arrangements based on nervous system activity detection, e.g. brain waves [EEG] detection, electromyograms [EMG] detection, electrodermal response detection

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Psychiatry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Signal Processing (AREA)
  • Artificial Intelligence (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Physiology (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • General Physics & Mathematics (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Mathematical Physics (AREA)
  • Fuzzy Systems (AREA)
  • Evolutionary Computation (AREA)
  • Dermatology (AREA)
  • Child & Adolescent Psychology (AREA)
  • Developmental Disabilities (AREA)
  • Educational Technology (AREA)
  • Hospice & Palliative Care (AREA)
  • Psychology (AREA)
  • Social Psychology (AREA)
  • Human Computer Interaction (AREA)

Abstract

本发明属于信号处理技术领域,具体涉及一种脑电信号自适应窗口的情绪分类识别方法,具体的方法是:对采集到的不同情绪状态下的脑电数据进行预处理后,使用广义正交部分定向相干方法,迭代比较不同时间点、不同长度的脑电信号,选取出最能代表情绪的关键脑电信号;根据所选取的关键脑电信号提取分形维数、差分熵、功率谱密度等特征;使用reliefF算法对所提取的特征进行权重计算,以获取高质量的特征;最后,根据所选择的高质量特征利用支持向量机算法和K近邻算法在效价和唤醒二维情绪模型上进行情绪分类识别。通过这种方法,不仅可以提高情绪识别率,而且可以在减少数据量的同时,降低处理时间以及计算成本,从而提高情绪分类识别性能。

Description

一种脑电信号自适应窗口的情绪分类识别方法
技术领域
本发明属于信号处理技术领域,更具体涉及一种脑电信号自适应窗口的情绪分类识别方法。
背景技术
在众多的生理电信号中,由于脑电信号是根据大脑活动采集的,可以直接反映大脑的活动状态,并且具有采集方便,时间分辨率高以及低成本等优点,所以被用于进行情绪识别研究。目前有关脑电信号的情绪识别研究不仅包含人工智能和计算机科学,还涉及到神经科学以及精神病学等众多跨学科领域。研究情绪相关的脑认知活动对于人们理解自己的情绪、计算机辅助功能的优化、便携式个人身体保健与监护***的开发以及推进心理科学的发展都有很重要的意义。
情绪脑电数据是通过视频诱发采集的,由于在数据采集初期以及实验任务将要结束阶段,被试的功能脑网络的连接模式难以保持相对稳定,并且在采集过程中,被试可能由于自身原因,如困倦、疲乏等,造成伪迹干扰,或是由于计算时间过长而难以反映出被试本身的人脑情绪加工效应等方面的影响,所以如果使用完整的脑电信号进行情绪分类识别无法达到更好的实验效果。
另外,由于脑电信号为高维数据信号,在进行实验时计算量大、成本高以及数据信噪比低,所以使用完整的脑电信号也会使实验过程更复杂。此外,由于个体差异,不同被试对于不同的视频刺激反应时间也不同。为了解决这些问题,本发明提出了一种脑电信号自适应窗口的情绪分类识别方法。
发明内容
针对上述情况,本发明提出一种脑电信号自适应窗口的情绪分类识别方法,对采集到的不同情绪状态的脑电信号进行预处理后,通过广义正交部分定向相干法,选出最能代表情绪的关键脑电信号,在此基础上进行特征优选,利用优选出的特征进行情绪分类识别,从而提高情绪分类识别性能。
本发明提出一种脑电信号自适应窗口的情绪分类识别方法,其特征在于,包括以下步骤:
步骤一、采集不同情绪状态的脑电信号,包括但不限于高兴、悲伤等情绪状态;
步骤二、脑电数据预处理:原始脑电信号中会包含一些伪迹干扰成分,需要去除信号中的伪迹;
步骤三、计算自适应窗口中所有可能的信号组合:利用预处理之后的脑电数据进行自适应窗口的数据缩减处理,记最小窗口、最大窗口和变化常数分别为Wmin、Wmax和C,首先将窗口大小设置为Wmin,并找到大小为Wmin的所有信号组合,接下来,窗口大小以变化常数C为增量,同样,找到大小增加C之后的所有信号组合,重复上一步,直到窗口大小大于或等于Wmax,迭代此过程确保考虑所有可能的信号时间位置;
步骤四、选取具有最大情绪强度的信号窗口:计算所有信号组合在时间维度上的广义正交部分定向相干值(generalized orthogonalized partial directed coherence,gOPDC),在所有窗口数据矩阵中,选取广义正交部分定向相干值最高的窗口数据,并表示为WgOPDC
步骤五、根据所选取的窗口数据,提取分形维数、差分熵特征以及功率谱密度等脑电信号(EEG) 特征;
步骤六、利用reliefF算法进行特征选择:利用reliefF算法选取一个实例特征并找到K个对应于同一类别的特征和K个不同类别的特征,计算这些特征所对应的权重向量,根据权重向量选择质量最高的特征,使得所选特征的个数小于样本个数;
步骤七、使用分类器进行情绪分类识别:根据所选取的特征,利用支持向量机(SVM)和K近邻 (KNN)算法在效价和唤醒维度对预处理之后的全部脑电数据和进行数据缩减后的关键脑电数据进行情绪分类识别。
本发明提供的技术方案,对比现有的技术,其有益效果在于:
(1)通过自适应窗口来选择更能代表情绪的脑电信号部分,不仅可以缩减数据,减少计算量和降低成本,同时也可以提高情绪分类识别的准确率,使情绪的表达更准确;
(2)该方法在利用广义正交部分定向相干方法选取关键脑电信号时,考虑到了脑电通道与通道之间的关系,还原了数据本身在空间和功能上的联系,能提供更具辨别力的情绪信息;
(3)由于可用于脑电情绪分类识别的数据集中数据点数量有限,如果特征点数量明显高于数据点数量,会导致模型过度拟合,为了克服过度拟合问题,特征选择可以减少训练模型所需的特征点数量,所以通过reliefF算法进行特征选择来选择一组新的情绪信息量最大的特征。
附图说明
附图图1为一种脑电信号自适应窗口的情绪分类识别方法的实施流程图
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图,对本发明的具体实施方式作进一步详细说明。
步骤1:脑电信号的采集,以视频诱发为刺激,采集被试在观看不同视频时的情绪状态的脑电数据,包括但不限于高兴、悲伤等情绪状态;
步骤2:脑电数据预处理,考虑到原始脑电信号中包括一些伪迹干扰成分,使用Matlab自动伪迹去除工具箱去除信号中的伪迹。首先,使用盲源分离(BSS)将原始脑电信号X分解为空间分量,目的是分离脑活动引起的伪迹;其次,检测伪迹成分;最后,使用非伪迹成分重构脑电数据。数据被降采样以获得 128Hz的采样频率,减少来自大部分电极信号中与噪声相关的成分;
步骤3:计算自适应窗口中所有可能的信号组合,使用所有可用的脑电数据在计算上往往很昂贵,而且无法得到较高的情绪分类识别效果。此外,唤起情绪的刺激是冗长的,在这段时间里,被试可以体验到多种不同强度的情绪,所以需要选取一个短的时间窗来提取可以更好的表征情绪的信号;
利用预处理之后的脑电数据进行自适应窗口的数据缩减处理。记最小窗口、最大窗口和变化常数分别为Wmin、Wmax和C,首先将窗口大小设置为Wmin,并找到大小为Wmin的所有信号组合。接下来,窗口大小以变化常数C为增量,同样,找到大小增加C之后的所有信号组合。重复上一步,直到窗口大小大于或等于Wmax,迭代此过程确保考虑所有可能的信号时间位置;
步骤4:选取具有最大情绪强度的信号,假设一个数据集有S个被试,每个被试有M个样本,每个样本时长t秒,样本通道数为N。计算每个样本所有信号组合在时间维度上两两通道之间的广义正交部分定向相干值gOPDC,将所选窗口数据通道之间的gOPDC矩阵进行相加,在所有窗口数据矩阵中,选取广义正交部分定向相干值最高的窗口数据,并表示为WgOPDC
步骤5:根据所选取的窗口数据,分别提取分形维数、差分熵特征以及功率谱密度等EEG特征;
步骤6:利用reliefF算法进行特征选择,利用reliefF算法选取一个实例特征并找到K个对应于同一类别的特征和K个不同类别的特征,计算这些特征所对应的权重向量,根据权重向量选择质量最高的特征,使得所选特征的个数小于样本个数。由于可用脑电情绪识别的数据集中数据点数量有限,特征点数量明显高于数据点数量,导致模型过度拟合,为了克服过拟合问题,在进行特征选择时,可以减少训练模型所需的特征点数量,利用reliefF算法选取一组新的情绪信息量最大的特征,该算法具有抗噪性和对特征交互的鲁棒性;
步骤7:使用分类器进行情绪分类识别,根据所选取的特征,利用支持向量机和K近邻算法在效价和唤醒维度对预处理之后的全部脑电数据和进行数据缩减后的关键脑电数据进行情绪分类识别。
上述虽然结合附图对本发明的具体实施方式进行了描述,但并非对本发明保护范围的限制,所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。

Claims (3)

1.一种脑电信号自适应窗口的情绪分类识别方法,其特征在于,包括以下步骤:
步骤一、采集不同情绪状态的脑电信号,包括但不限于高兴、悲伤等情绪状态;
步骤二、脑电数据预处理:原始脑电信号中会包含一些伪迹干扰成分,需要去除信号中的伪迹;
步骤三、计算自适应窗口中所有可能的信号组合:利用预处理之后的脑电数据进行自适应窗口的数据缩减处理,记最小窗口、最大窗口和变化常数分别为Wmin、Wmax和C,首先将窗口大小设置为Wmin,并找到大小为Wmin的所有信号组合,接下来,窗口大小以变化常数C为增量,同样,找到大小增加C之后的所有信号组合,重复上一步,直到窗口大小大于或等于Wmax,迭代此过程确保考虑所有可能的信号时间位置;
步骤四、选取具有最大情绪强度的信号窗口:计算所有信号组合在时间维度上的广义正交部分定向相干值(generalized orthogonalized partial directed coherence,gOPDC),在所有窗口数据矩阵中,选取广义正交部分定向相干值最高的窗口数据,并表示为WgOPDC
步骤五、根据所选取的窗口数据,提取分形维数、差分熵特征以及功率谱密度等脑电信号(EEG)特征;
步骤六、利用reliefF算法进行特征选择:利用reliefF算法选取一个实例特征并找到K个对应于同一类别的特征和K个不同类别的特征,计算这些特征所对应的权重向量,根据权重向量选择质量最高的特征,使得所选特征的个数小于样本个数;
步骤七、使用分类器进行情绪分类识别:根据所选取的特征,利用支持向量机(SVM)和K近邻(KNN)算法在效价和唤醒维度对预处理之后的全部脑电数据和进行数据缩减后的关键脑电数据进行情绪分类识别。
2.根据权利要求1所述的一种脑电信号自适应窗口的情绪分类识别方法,其特征在于,步骤四中的选取最大情绪强度的信号:鉴于在进行时频刺激采集脑电数据时,受试者会因为个体差异以及自身生理心理因素的原因,而体验到多种不同强度的情绪,即使刺激是为了唤起一种情绪而制定的,也需要寻找一个短的时间窗口来提取更好地代表情绪的信号,本发明通过计算所有信号组合在时间维度上的广义正交部分定向相干值,从而能够选取到值最高的窗口数据作为最能代表情绪的信号窗口。
3.根据权利要求1所述的一种脑电信息自适应窗口的情感识别方法,其特征在于,步骤四中的计算广义正交部分定向相干方法是基于多变量自回归模型,阶数为p的多变量自回归模型可以表示为:
Figure FSA0000241715620000011
其中,m表示通道数,X(n)=(xi(n),...,xm(n))T为给定的时间序列,U(n)=(ui(n),...,um(n))T为正态分布的白噪声向量,Ar为预测系数矩阵,由式(2)给出:
Figure FSA0000241715620000012
建立了多变量自回归模型之后,通过使用双扩展卡尔曼滤波算法得到多变量自回归模型的系数矩阵Ar,对Ar做拉普拉斯变换转换到频域上:
Figure FSA0000241715620000021
式(3)中,I为单位矩阵,r为模型阶数,p为多变量自回归模型的最大预测阶数,f为频率,根据式(1)在时域中对多通道EEG信号建立的多变量自回归模型,将其转换到频域上:
Figure FSA0000241715620000022
通道i到通道j的部分定向相干值可以表示为:
Figure FSA0000241715620000023
其中,aj(n,f)为A(n,f)的第j列,Aij(n,f)是A(n,f)的第ij个元素,
Figure FSA0000241715620000024
为aj的共轭转置向量,Pij(n,f)取0到1之间的值,Aij(n,f)是系数矩阵A(n,f)里对应第i行第j列的系数,
Figure FSA0000241715620000025
广义正交部分定向相干的值可以表示为:
Figure FSA0000241715620000026
其中,n是时间序列长度,f是频率,
Figure FSA0000241715620000027
ω是对角协方差矩阵的零均值白噪声向量。
CN202110519615.5A 2021-05-12 2021-05-12 一种脑电信号自适应窗口的情绪分类识别方法 Pending CN115414051A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110519615.5A CN115414051A (zh) 2021-05-12 2021-05-12 一种脑电信号自适应窗口的情绪分类识别方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110519615.5A CN115414051A (zh) 2021-05-12 2021-05-12 一种脑电信号自适应窗口的情绪分类识别方法

Publications (1)

Publication Number Publication Date
CN115414051A true CN115414051A (zh) 2022-12-02

Family

ID=84195463

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110519615.5A Pending CN115414051A (zh) 2021-05-12 2021-05-12 一种脑电信号自适应窗口的情绪分类识别方法

Country Status (1)

Country Link
CN (1) CN115414051A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116250837A (zh) * 2023-02-14 2023-06-13 天津大学 一种基于动态因效性脑网络的抑郁症检测装置
CN116400800A (zh) * 2023-03-13 2023-07-07 中国医学科学院北京协和医院 一种基于脑机接口和人工智能算法的als患者人机交互***及方法
CN117708682A (zh) * 2024-02-06 2024-03-15 吉林大学 脑电波智能采集分析***及方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116250837A (zh) * 2023-02-14 2023-06-13 天津大学 一种基于动态因效性脑网络的抑郁症检测装置
CN116250837B (zh) * 2023-02-14 2024-02-13 天津大学 一种基于动态因效性脑网络的抑郁症检测装置
CN116400800A (zh) * 2023-03-13 2023-07-07 中国医学科学院北京协和医院 一种基于脑机接口和人工智能算法的als患者人机交互***及方法
CN116400800B (zh) * 2023-03-13 2024-01-02 中国医学科学院北京协和医院 一种基于脑机接口和人工智能算法的als患者人机交互***及方法
CN117708682A (zh) * 2024-02-06 2024-03-15 吉林大学 脑电波智能采集分析***及方法
CN117708682B (zh) * 2024-02-06 2024-04-19 吉林大学 脑电波智能采集分析***及方法

Similar Documents

Publication Publication Date Title
Kumar et al. Envisioned speech recognition using EEG sensors
CN111329474B (zh) 基于深度学习的脑电身份识别方法、***及信息更新方法
Ince et al. Adapting subject specific motor imagery EEG patterns in space–time–frequency for a brain computer interface
CN115414051A (zh) 一种脑电信号自适应窗口的情绪分类识别方法
CN111310570B (zh) 一种基于vmd和wpd的脑电信号情感识别方法及***
CN112656427A (zh) 一种基于维度模型的脑电信号情绪识别方法
CN112244873A (zh) 一种基于混合神经网络的脑电时空特征学习与情感分类方法
CN114533086B (zh) 一种基于空域特征时频变换的运动想象脑电解码方法
CN111184509A (zh) 一种基于传递熵的情绪诱导脑电信号分类方法
EP2416703A2 (en) A method for the real-time identification of seizures in an electroencephalogram (eeg) signal
Carrión-Ojeda et al. Analysis of factors that influence the performance of biometric systems based on EEG signals
Agarwal et al. Classification of alcoholic and non-alcoholic EEG signals based on sliding-SSA and independent component analysis
CN115770044B (zh) 基于脑电相位幅值耦合网络的情绪识别方法及装置
CN115804602A (zh) 基于注意力机制的多通道特征融合的脑电情绪信号检测方法、设备和介质
CN110543831A (zh) 一种基于卷积神经网络的脑纹识别方法
Kauppi et al. Decoding magnetoencephalographic rhythmic activity using spectrospatial information
Carrión-Ojeda et al. A method for studying how much time of EEG recording is needed to have a good user identification
Samal et al. Ensemble median empirical mode decomposition for emotion recognition using EEG signal
Nakra et al. Feature Extraction and Dimensionality Reduction Techniques with Their Advantages and Disadvantages for EEG-Based BCI System: A Review.
CN117883082A (zh) 一种异常情绪识别方法、***、设备及介质
Wankhade et al. IKKN predictor: An EEG signal based emotion recognition for HCI
Anderson et al. EEG subspace representations and feature selection for brain-computer interfaces
Saha et al. Automatic emotion recognition from multi-band EEG data based on a deep learning scheme with effective channel attention
CN109117790B (zh) 一种基于频空指标的脑纹识别方法
Akhavan et al. Detection of concealed information using multichannel discriminative dictionary and spatial filter learning

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination