CN115404075A - 一种磁性石墨烯量子点及其制备方法与应用 - Google Patents

一种磁性石墨烯量子点及其制备方法与应用 Download PDF

Info

Publication number
CN115404075A
CN115404075A CN202211098776.2A CN202211098776A CN115404075A CN 115404075 A CN115404075 A CN 115404075A CN 202211098776 A CN202211098776 A CN 202211098776A CN 115404075 A CN115404075 A CN 115404075A
Authority
CN
China
Prior art keywords
graphene quantum
magnetic graphene
quantum dot
magnetic
quantum dots
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211098776.2A
Other languages
English (en)
Inventor
李永强
杨思维
董慧
丁古巧
谢晓明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Microsystem and Information Technology of CAS
Original Assignee
Shanghai Institute of Microsystem and Information Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Microsystem and Information Technology of CAS filed Critical Shanghai Institute of Microsystem and Information Technology of CAS
Priority to CN202211098776.2A priority Critical patent/CN115404075A/zh
Publication of CN115404075A publication Critical patent/CN115404075A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/65Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing carbon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/0019Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0063Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres
    • A61K49/0065Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres the luminescent/fluorescent agent having itself a special physical form, e.g. gold nanoparticle
    • A61K49/0067Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres the luminescent/fluorescent agent having itself a special physical form, e.g. gold nanoparticle quantum dots, fluorescent nanocrystals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/08Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • C01B32/196Purification
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pathology (AREA)
  • Manufacturing & Machinery (AREA)
  • Analytical Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

本发明公开了一种磁性石墨烯量子点及其制备方法与应用。制备方法包括以下步骤:将抗坏血酸亚铁水溶液进行水热反应,得到磁性石墨烯量子点。通过本发明提供的磁性石墨烯量子点制备方法能够便捷、快速获得磁性石墨烯量子点,所得磁性石墨烯量子点尺寸为3~10nm,碳和铁的质量比为3~6:1~2,可用于制备增强成像造影剂,缩短成像时间、提高成像对比度、提高影像学诊断的准确度,或者体外制备诊断探针,提高体外诊断技术的准确度。

Description

一种磁性石墨烯量子点及其制备方法与应用
技术领域
本发明涉及石墨烯制备技术领域,尤其涉及一种磁性石墨烯量子点及其制备方法与应用。
背景技术
石墨烯量子点作为一种新型的石墨烯纳米材料,其尺寸为纳米级,具有带隙可调、分散性优良、生物相容性佳、高荧光量子产率等优点,可用作荧光成像造影剂与荧光体外诊断技术的检测探针。石墨烯量子点因其优异的荧光性能而被用作荧光成像的造影剂或探针,而磁性石墨烯量子点可以在实现荧光增强成像的基础上,实现核磁共振增强成像,提高组织间对比度,即磁性石墨烯量子点可结合荧光成像与核磁共振成像,为临床影像学诊断等提供更为准确的参考。除此之外,磁性石墨烯量子点还可用于双模式体外诊断领域,用于同时检测待测标志物对磁信号与荧光信号的影响,提高检测准确率。
目前磁性石墨烯量子点的获取主要依赖于至少两步反应:第一步为石墨烯量子点的获取,包括“自下而上”法与“自上而下”法两类,即分别聚合碳化小分子前驱体与使用氧化切割石墨烯获得石墨烯量子点;第二步为磁性修饰,在石墨烯量子点的界面中,其边缘原子常被含氧(–COOH、–OH、–CHO等)与含氮(–NH2、–NH–等)官能团所饱和,可与磁性基团通过形成酯键、醚键、酰胺键或产生配位结构等实现磁性修饰。上述磁性石墨烯量子点的获取方法需使用多种原料与多步反应实现,步骤繁琐,反应产物可控性低。
因此,如何设计一种更便捷、快速的磁性石墨烯量子点制备方法是本领域技术人员需要解决的问题。
发明内容
本发明的目的在于克服上述现有技术的不足之处而提供一种便捷、快速的磁性石墨烯量子点制备方法。
本发明另一目的在于提供通过上述制备方法制备得到的磁性石墨烯量子点。
本发明再一目的在于提供上述磁性石墨烯量子点的应用。
为了解决上述技术问题,本发明采取的技术方案为:一种磁性石墨烯量子点的制备方法,包括以下步骤:将抗坏血酸亚铁水溶液进行水热反应,得到磁性石墨烯量子点。
作为优选方案,所述抗坏血酸亚铁水溶液浓度为1~10mg/mL。
作为优选方案,水热反应温度为120~180℃,水热反应时间为3~24h。
一种磁性石墨烯量子点,通过上述制备方法制备得到,其尺寸为3~10nm,碳和铁的质量比为3~6:1~2。上述磁性石墨烯量子点的弛豫率为200~500L/(mmol·s),荧光发射波长为300~600nm,不仅具有铁氧化物的磁性,还具有石墨烯量子点的荧光特性。
本发明还提供了上述磁性石墨烯量子点在制备增强成像造影剂中的应用。
作为优选方案,所述增强成像造影剂为核磁共振-荧光双模式增强成像造影剂。
本发明还提供了上述磁性石墨烯量子点在制备体外诊断探针中的应用。
作为优选方案,所述体外诊断探针为核磁共振弛豫-荧光双模式体外诊断探针。
作为优选方案,上述磁性石墨烯量子点在应用于增强成像或体外诊断之前,先将磁性石墨烯量子点洗涤,分散成磁性石墨烯量子点分散液。相比于现有技术,本发明实施例具有如下有益效果:
1、本发明提供了一种便捷、快速的磁性石墨烯量子点制备方法,制备过程仅需一步,原料(即前驱体)仅需一种,反应条件简易可控,产物提纯简易。前驱体抗坏血酸亚铁中既包含了合成石墨烯量子点所需的碳源,也包含了合成磁性铁氧化物的铁源。
2、本发明获得的磁性石墨烯量子点的弛豫率为200~500L/(mmol·s),荧光发射波长为300~600nm,不仅具有铁氧化物的磁性,还具有石墨烯量子点的荧光特性,不仅可作为核磁共振-荧光双模式增强成像造影剂使用,以提高成像对比度、提高影像学诊断的准确度;还可作为核磁共振弛豫-荧光双模式体外诊断技术的探针使用,以提高体外诊断技术的准确度和灵敏度。
附图说明
图1为是实施例1获取的磁性石墨烯量子点分散液的透射电子显微镜照片。
图2为实施例1获取的磁性石墨烯量子点分散液在极低场磁共振***中测得的弛豫率拟合曲线,T2表示为核磁共振横向弛豫时间。
图3为实施例1获取的磁性石墨烯量子点分散液的荧光发射谱。
图4为实施例1获取的磁性石墨烯量子点分散液用于荷瘤小鼠核磁共振增强成像的核磁共振图像。
图5为实施例1获取的磁性石墨烯量子点分散液用于荷瘤小鼠荧光增强成像的荧光照片。
图6为实施例2获取的磁性石墨烯量子点分散液用作核磁共振弛豫传感技术探针时弛豫时间的变化曲线,T2表示为核磁共振横向弛豫时间。
图7为实施例2获取的磁性石墨烯量子点分散液用作荧光探针时荧光强度比值的变化曲线,F值为荧光探针与链球菌蛋白G不同混合时间的荧光强度,F0为空白样的荧光强度。
图8为实施例3获取的磁性石墨烯量子点分散液用作核磁共振弛豫传感技术探针时检测不同浓度标志物的弛豫时间对比,T2表示为核磁共振横向弛豫时间。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
实施例1提供了一种磁性石墨烯量子点分散液,制备方法包括以下步骤:
S1、将5mg/mL的抗坏血酸亚铁水溶液进行180℃水热反应3h,得到磁性石墨烯量子点。
S2、将磁性石墨烯量子点离心洗涤,离心条件为转速8000rpm/min时间10min,重悬于水中,得到磁性石墨烯量子点分散液。
使用X射线光电子能谱能谱分析对上述制备方法所得磁性石墨烯量子点分散液中的磁性石墨烯量子点进行表征,得知其中碳含量为30%,铁含量为20%。
实施例2
实施例2提供了一种磁性石墨烯量子点分散液,与实施例1的制备方法基本相同,不同之处有:
抗坏血酸亚铁水溶液浓度为1mg/mL;
水热反应温度为120℃,时间为24h;
离心条件为10000rpm/min,时间为2min。
根据上述方法所得磁性石墨烯量子点分散液中的磁性石墨烯量子点碳含量为60%,铁含量为10%。
实施例3
实施例3提供了一种磁性石墨烯量子点分散液,与实施例1的制备方法基本相同,不同之处有:
抗坏血酸亚铁水溶液浓度为10mg/mL;
水热反应温度为150℃,时间为12h;
离心条件为3000rpm/min,时间为4min。
根据上述方法所得磁性石墨烯量子点分散液中的磁性石墨烯量子点碳含量为40%,铁含量为15%。
实施例4磁性石墨烯量子点的性能测试
将实施例1~3获得的磁性石墨烯量子点分散液通过透射电子显微镜观察其中磁性石墨烯量子点尺寸,通过极低场磁共振***测定弛豫率,并测定其荧光发射波长。
如图1所示,在透射电子显微镜下测得实施例1获得的磁性石墨烯量子点的尺寸为5nm;如图2所示,在极低场磁共振***中测得的弛豫率拟合曲线测得实施例1获得的磁性石墨烯量子点分散液中磁性石墨烯量子点横向弛豫率为230L/(mmol·s);如图3所示,通过荧光发射谱证明实施例1获得的磁性石墨烯量子点分散液的最大荧光发射波长为427nm。
实施例2获得的磁性石墨烯量子点分散液中磁性石墨烯量子点的尺寸为3nm,横向弛豫率为200L/(mmol·s),最大荧光发射波长为600nm。
实施例3获得的磁性石墨烯量子点分散液中磁性石墨烯量子点的尺寸为10nm,横向弛豫率为500L/(mmol·s),最大荧光发射波长为300nm。
实施例5磁性石墨烯量子点在核磁共振-荧光双模式增强成像领域的应用
将实施例1获得的磁性石墨烯量子点作为核磁共振-荧光双模式增强成像造影剂。通过观察荷瘤小鼠核磁共振图像(图4)以及荷瘤小鼠荧光图像(图5)可得:采用实施例1所得的磁性石墨烯量子点作为增强成像造影剂显著提高了荷瘤小鼠肿瘤组织与正常组织间的对比度。
实施例6磁性石墨烯量子点在核磁共振弛豫-荧光双模体外诊断领域的应用
利用EDC/NHS点击化学反应,将实施例2获得的磁性石墨烯量子点与免疫球蛋白G通过酰胺键偶联(偶联方法参见Sens.Actuators B Chem.:2021,337:129786.),获得特异性磁性石墨烯量子点,记为磁性探针或荧光探针,可与链球菌蛋白G特异性结合。
如图6所示,在极低场磁共振***(测试方法可参见Biosens.Bioelectron.:2016,80:661–665.)中,随着实施例2中磁性石墨烯量子点所得的磁性探针与链球菌蛋白G间混合时间增加,T2值逐渐增大,并在混合30min时稳定在470ms左右,表明当混合时间为30min时磁性探针与链球菌蛋白G已充分结合。与空白样的T2相比,实施例2所得的磁性探针与链球菌蛋白G结合后T2变化值为371ms。因此,可根据空白样与待测样品之间的T2差异来判断待测样品中是否含有链球菌蛋白G。如图7所示,通过实施例2的磁性石墨烯量子点所得的荧光探针与链球菌蛋白G随着混合时间增加,F/F0值逐渐减小,当混合时间达到30min时,F/F0值趋于稳定,表明当混合时间为30min时荧光探针与链球菌蛋白G已充分结合,与前述特异性磁性石墨烯量子点作为磁性探针时与链球菌蛋白G的结合时间一致。
如图8所示,将实施例3的磁性石墨烯量子点所得的磁性探针与不同浓度的链球菌蛋白G混合,并在二者充分结合后测试其T2值,通过评估T2值与空白样之间的差异,可知特异性磁性石墨烯量子点检测免疫球蛋白G的检测灵敏度为0.1ng/mL,具有较高的检测灵敏度。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步的详细说明,应当理解,以上所述仅为本发明的具体实施例而已,并不用于限定本发明的保护范围。特别指出,对于本领域技术人员来说,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种磁性石墨烯量子点的制备方法,其特征在于,包括以下步骤:将抗坏血酸亚铁水溶液进行水热反应,得到磁性石墨烯量子点。
2.如权利要求1所述的磁性石墨烯量子点的制备方法,其特征在于,包含以下各项中至少一项:
所述抗坏血酸亚铁浓度为1~10mg/mL;
所述水热反应温度为120~180℃,水热反应时间为3~24h。
3.一种磁性石墨烯量子点,其特征在于,通过权利要求1或2所述制备方法制备得到,磁性石墨烯量子点尺寸为3~10nm,碳和铁的质量比为3~6:1~2。
4.如权利要求4所述磁性石墨烯量子点在制备增强成像造影剂中的应用。
5.如权利要求1所述磁性石墨烯量子点在制备体外诊断探针中的应用。
6.如权利要求4所述的应用,其特征在于,所述增强成像造影剂为核磁共振-荧光双模式增强成像造影剂。
7.如权利要求5所述的应用,其特征在于,所述体外诊断探针为核磁共振弛豫-荧光双模式体外诊断探针。
8.如权利要求4或5所述的应用,其特征在于,应用前,将所述磁性石墨烯量子点洗涤,分散成磁性石墨烯量子点分散液。
CN202211098776.2A 2022-09-07 2022-09-07 一种磁性石墨烯量子点及其制备方法与应用 Pending CN115404075A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211098776.2A CN115404075A (zh) 2022-09-07 2022-09-07 一种磁性石墨烯量子点及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211098776.2A CN115404075A (zh) 2022-09-07 2022-09-07 一种磁性石墨烯量子点及其制备方法与应用

Publications (1)

Publication Number Publication Date
CN115404075A true CN115404075A (zh) 2022-11-29

Family

ID=84166385

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211098776.2A Pending CN115404075A (zh) 2022-09-07 2022-09-07 一种磁性石墨烯量子点及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN115404075A (zh)

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102343240A (zh) * 2011-06-27 2012-02-08 苏州科技学院 荧光磁性双功能树状分子微球及其制备方法
CN103480353A (zh) * 2013-10-01 2014-01-01 大连理工大学 一种用水热法合成碳量子点溶液制备复合纳米光催化剂的方法
CN103787319A (zh) * 2014-01-17 2014-05-14 深圳粤网节能技术服务有限公司 一种石墨烯量子点的大规模制备方法
CN104267013A (zh) * 2014-06-26 2015-01-07 广西师范学院 一种利用石墨烯量子点荧光探针检测重铬酸钾和抗坏血酸的方法
CN105241860A (zh) * 2015-11-20 2016-01-13 济南大学 一种磁性荧光石墨烯复合纳米离子探针的制备方法
CN105267980A (zh) * 2015-11-20 2016-01-27 济南大学 一种磁性荧光石墨烯复合纳米药物载体的制备方法
CN105987893A (zh) * 2016-08-18 2016-10-05 上海大学 一种利用石墨烯量子点荧光检测血红素的方法
US20160325999A1 (en) * 2014-01-17 2016-11-10 Shenzhen Cantonnet Energy Services Co., Ltd Large-scale preparation method for graphene quantum dots
CN106938842A (zh) * 2016-01-04 2017-07-11 天津工业大学 一种热解柠檬酸制备石墨烯量子点的方法
CN107500274A (zh) * 2017-10-11 2017-12-22 江苏安纳泰环保科技有限公司 一种三原色荧光的石墨烯量子点的制备方法
US10018623B1 (en) * 2017-03-08 2018-07-10 The University Of Hong Kong Molecular probes for ascorbate detection and methods of use
CN108929672A (zh) * 2018-05-29 2018-12-04 安徽师范大学 一种以虾壳为碳源的碳量子点及其制备方法和在检测抗坏血酸中的应用
CN109174150A (zh) * 2018-08-14 2019-01-11 江苏大学 一种CQDs/CdIn2S4/N-rGO多维光催化剂的制备方法及应用
US20190330066A1 (en) * 2018-04-25 2019-10-31 Chien-Te Hsieh Method of synthesizing n-doped graphitic carbon nanoparticles, method of detecting mercury ions in aqueous solution, cell imaging method, electrically conductive material and infrared emitting device
US10493170B1 (en) * 2014-06-24 2019-12-03 University Of South Florida Targeted graphene quantum dot-based theranostics
CN112520724A (zh) * 2020-10-30 2021-03-19 蚌埠学院 一种磁性碳量子点的制备方法

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102343240A (zh) * 2011-06-27 2012-02-08 苏州科技学院 荧光磁性双功能树状分子微球及其制备方法
CN103480353A (zh) * 2013-10-01 2014-01-01 大连理工大学 一种用水热法合成碳量子点溶液制备复合纳米光催化剂的方法
CN103787319A (zh) * 2014-01-17 2014-05-14 深圳粤网节能技术服务有限公司 一种石墨烯量子点的大规模制备方法
US20160325999A1 (en) * 2014-01-17 2016-11-10 Shenzhen Cantonnet Energy Services Co., Ltd Large-scale preparation method for graphene quantum dots
US10493170B1 (en) * 2014-06-24 2019-12-03 University Of South Florida Targeted graphene quantum dot-based theranostics
CN104267013A (zh) * 2014-06-26 2015-01-07 广西师范学院 一种利用石墨烯量子点荧光探针检测重铬酸钾和抗坏血酸的方法
CN105241860A (zh) * 2015-11-20 2016-01-13 济南大学 一种磁性荧光石墨烯复合纳米离子探针的制备方法
CN105267980A (zh) * 2015-11-20 2016-01-27 济南大学 一种磁性荧光石墨烯复合纳米药物载体的制备方法
CN106938842A (zh) * 2016-01-04 2017-07-11 天津工业大学 一种热解柠檬酸制备石墨烯量子点的方法
CN105987893A (zh) * 2016-08-18 2016-10-05 上海大学 一种利用石墨烯量子点荧光检测血红素的方法
US10018623B1 (en) * 2017-03-08 2018-07-10 The University Of Hong Kong Molecular probes for ascorbate detection and methods of use
CN107500274A (zh) * 2017-10-11 2017-12-22 江苏安纳泰环保科技有限公司 一种三原色荧光的石墨烯量子点的制备方法
US20190330066A1 (en) * 2018-04-25 2019-10-31 Chien-Te Hsieh Method of synthesizing n-doped graphitic carbon nanoparticles, method of detecting mercury ions in aqueous solution, cell imaging method, electrically conductive material and infrared emitting device
CN110398478A (zh) * 2018-04-25 2019-11-01 厦门量研新材料科技有限公司 Ndgcn合成方法、水溶液汞含量检测方法、细胞显影方法、导电材料与红外线发射装置
CN108929672A (zh) * 2018-05-29 2018-12-04 安徽师范大学 一种以虾壳为碳源的碳量子点及其制备方法和在检测抗坏血酸中的应用
CN109174150A (zh) * 2018-08-14 2019-01-11 江苏大学 一种CQDs/CdIn2S4/N-rGO多维光催化剂的制备方法及应用
CN112520724A (zh) * 2020-10-30 2021-03-19 蚌埠学院 一种磁性碳量子点的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LI, YQ: "Selective coordination and localized polarization in graphene quantum dots: Detection of fluoride anions using ultra-low-field NMR relaxometry", 《CHINESE CHEMICAL LETTERS》, vol. 32, no. 12, pages 3921 - 3926, XP086945938, DOI: 10.1016/j.cclet.2021.05.014 *
NAWAZ, F: "Ascorbic Acid Assisted Green Route for Synthesis of Water Dispersible Carbon Dots", 《CHEMICAL RESEARCH IN CHINESE UNIVERSITIES》, vol. 29, no. 3, pages 401 - 403 *

Similar Documents

Publication Publication Date Title
Li et al. A novel ECL biosensor for the detection of concanavalin A based on glucose functionalized NiCo2S4 nanoparticles-grown on carboxylic graphene as quenching probe
Zhang et al. Detection of α-fetoprotein with an ultrasensitive electrochemiluminescence paper device based on green-luminescent nitrogen-doped graphene quantum dots
Wei et al. Fe3O4 nanoparticles-loaded PEG–PLA polymeric vesicles as labels for ultrasensitive immunosensors
Wang et al. An ultrasensitive electrochemical immunosensor based on the catalytical activity of MoS2-Au composite using Ag nanospheres as labels
Emami et al. An electrochemical immunosensor for detection of a breast cancer biomarker based on antiHER2–iron oxide nanoparticle bioconjugates
Huang et al. Amperometric immunobiosensor for α-fetoprotein using Au nanoparticles/chitosan/TiO2–graphene composite based platform
Liang et al. An advanced molecularly imprinted electrochemical sensor for the highly sensitive and selective detection and determination of Human IgG
Dong et al. Magnetic assisted fluorescence immunoassay for sensitive chloramphenicol detection using carbon dots@ CaCO3 nanocomposites
Li et al. Sensitive origami dual-analyte electrochemical immunodevice based on polyaniline/Au-paper electrode and multi-labeled 3D graphene sheets
Lin et al. Nanogold/mesoporous carbon foam-mediated silver enhancement for graphene-enhanced electrochemical immunosensing of carcinoembryonic antigen
Feng et al. Dual signal amplification of horseradish peroxidase functionalized nanocomposite as trace label for the electrochemical detection of carcinoembryonic antigen
Fang et al. Ultrasensitive electrochemical immunosensor for procalcitonin with signal enhancement based on zinc nanoparticles functionalized ordered mesoporous carbon-silica nanocomposites
Huang et al. Highly sensitive luminol electrochemiluminescence immunosensor based on platinum-gold alloy hybrid functionalized zinc oxide nanocomposites for catalytic amplification
Sun et al. Highly sensitive glutathione assay and intracellular imaging with functionalized semiconductor quantum dots
Hahm Biomedical detection via macro-and nano-sensors fabricated with metallic and semiconducting oxides
Qin et al. Boron nitride quantum dots as electrochemiluminescence coreactants of rGO@ Au@ Ru–SiO2 for label-free detection of AFP in human serum
Wei et al. Multifunctional mesoporous silica nanoparticles as sensitive labels for immunoassay of human chorionic gonadotropin
Wang et al. Multiple signal amplification electrochemiluminescent immunoassay for Sudan I using gold nanorods functionalized graphene oxide and palladium/aurum core-shell nanocrystallines as labels
Cao et al. A novel nitrogen and sulfur co-doped carbon dots-H2O2 chemiluminescence system for carcinoembryonic antigen detection using functional HRP-Au@ Ag for signal amplification
Chen et al. A glucose-activatable trimodal glucometer self-assembled from glucose oxidase and MnO 2 nanosheets for diabetes monitoring
Fan et al. A sensitive amperometric immunosensor for the detection of carcinoembryonic antigen using ZnMn2O4@ reduced graphene oxide composites as signal amplifier
Li et al. Desmin detection by facile prepared carbon quantum dots for early screening of colorectal cancer
Chen et al. Fluorescence resonance energy transfer from NaYF4: Yb, Er to nano gold and its application for glucose determination
Zhang et al. A facile aptamer-based sensing strategy for dopamine detection through the fluorescence energy transfer between dye and single-wall carbon nanohorns
Liu et al. Rapid determination of SARS-CoV-2 nucleocapsid proteins based on 2D/2D MXene/P–BiOCl/Ru (bpy) 32+ heterojunction composites to enhance electrochemiluminescence performance

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20221129

WD01 Invention patent application deemed withdrawn after publication