CN115339329A - 一种动力总成、控制方法及混合动力汽车 - Google Patents

一种动力总成、控制方法及混合动力汽车 Download PDF

Info

Publication number
CN115339329A
CN115339329A CN202210989253.0A CN202210989253A CN115339329A CN 115339329 A CN115339329 A CN 115339329A CN 202210989253 A CN202210989253 A CN 202210989253A CN 115339329 A CN115339329 A CN 115339329A
Authority
CN
China
Prior art keywords
motor
bus
voltage
power battery
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210989253.0A
Other languages
English (en)
Inventor
许延坤
封宁波
章雪亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Digital Power Technologies Co Ltd
Original Assignee
Huawei Digital Power Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Digital Power Technologies Co Ltd filed Critical Huawei Digital Power Technologies Co Ltd
Priority to CN202210989253.0A priority Critical patent/CN115339329A/zh
Publication of CN115339329A publication Critical patent/CN115339329A/zh
Priority to EP23187182.3A priority patent/EP4331894A1/en
Priority to US18/364,666 priority patent/US20240128914A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • H02P5/74Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors controlling two or more ac dynamo-electric motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/007Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/13Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines using AC generators and AC motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/15Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with additional electric power supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2201/00Indexing scheme relating to controlling arrangements characterised by the converter used
    • H02P2201/07DC-DC step-up or step-down converter inserted between the power supply and the inverter supplying the motor, e.g. to control voltage source fluctuations, to vary the motor speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2209/00Indexing scheme relating to controlling arrangements characterised by the waveform of the supplied voltage or current
    • H02P2209/01Motors with neutral point connected to the power supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本申请提供了一种动力总成、控制方法及混合动力汽车,该动力总成包括电动机控制单元以及电动机,其中,该电动机控制单元包括N个桥臂,电动机包括与N个桥臂对应的N个电动机绕组,N大于或等于2;N个桥臂中的每个桥臂包括第一端和第二端,每个桥臂的第一端连接正母线,每个桥臂的第二端连接负母线,每个桥臂的中点连接一个电动机绕组的一端;N个电动机绕组中的每个电动机绕组的另一端连接动力电池的一端,动力电池的另一端连接正母线或负母线。实施本申请,可以降低动力总成的生产成本。

Description

一种动力总成、控制方法及混合动力汽车
技术领域
本申请涉及新能源汽车技术领域,尤其是一种动力总成、控制方法及混合动力汽车。
背景技术
目前,混合动力汽车的动力总成如图1所示,即即动力总成包括发电机M1、与发电机M1连接的发电机控制单元100、DC/DC双向变换器101、电动机M2以及与电动机M2连接的电动机控制单元102。
其中,发电机M1由发动机(也可以称为内燃机)驱动,发电机M1在输出扭矩的过程中可以将机械能转换为电能,并且将产生的电能向电动机M2提供,以及将产生的电能经过DC/DC双向变换器101向电池BAT1提供。或者,电池BAT1也可以经过DC/DC双向变换器101向电动机M2供电。可以看出,动力电池BAT1既可以充电也可以放电,但动力电池BAT1的充放电都需要经过DC/DC双向变换器101。因此,现有混合动力汽车的动力总成除了包括发电机控制单元100和电动机控制单元102之外,还包括DC/DC双向变换器101,导致动力总成的生产成本高。
发明内容
本申请提供了一种动力总成、控制方法及混合动力汽车,可以降低动力总成的生产成本。
第一方面,本申请实施例提供了一种动力总成,该动力总成包括电动机控制单元(Motor Controller Unit,MCU)以及电动机,其中,该MCU包括N个桥臂,电动机包括与该N个桥臂对应的N个电动机绕组。需要解释的是,电动机与传动***(例如传动轴等)机械接触,电动机在输出扭矩的过程中可以通过传动***驱动混合动力汽车。
其中,该动力总成的具体连接关系为:N个桥臂中的每个桥臂包括第一端和第二端;每个桥臂的第一端连接正母线,每个桥臂的第二端连接负母线,每个桥臂的中点连接一个电动机绕组的一端;N个电动机绕组中的每个电动机绕组的另一端连接动力电池的一端,动力电池的另一端连接正母线或负母线。区别于现有技术中动力电池连接专门的DC/DC双向变换器,本申请实施例中的动力电池连接的是电动机绕组,通过复用电动机绕组以及桥臂来实现对动力电池的充放电。即本申请实施例提供了一种新的动力总成的结构,可以节省给动力电池充放电的DC/DC双向变换器,降低了动力总成的生产成本。
结合第一方面,在第一种可能的实现方式中,动力总成还包括连接在正母线与负母线之间的母线电容单元,MCU还包括控制器,上述N个桥臂包括至少一个第一桥臂;该第一桥臂可以根据第一脉冲宽度调制(Pulse Width Modulation,PWM)信号导通或关断。其中,该第一PWM信号可以使母线电容单元经第一桥臂连接的电动机绕组向动力电池充电;或者该第一PWM信号可以使动力电池经第一桥臂连接的电动机绕组放电。
结合第一方面第一种可能的实现方式,在第二种可能的实现方式中,该第一PWM信号为控制器根据电动机的工作参数、母线电压以及动力电池的电压确定。其中,该母线电压是正母线与负母线之间的电压;该电动机的工作参数包括电动机的输入电压、输入电流和转速中的至少一个。需要说明的是,电动机的输入电压可以具体为母线电压。
结合第一方面第二种可能的实现方式,在第三种可能的实现方式中,上述第一PWM信号为控制器根据电动机的工作参数、母线电压以及动力电池的电压确定,可以具体实现为:
上述第一PWM信号为控制器根据第一调制信号与预设参考信号比较得到。其中,第一调制信号为控制器根据第二调制信号与预设目标值得到;该第二调制信号为控制器根据电动机的工作参数以及母线电压确定;该预设目标值是控制器根据动力电池的电压以及母线电压确定。
结合第一方面第三种可能的实现方式,在第四种可能的实现方式中,上述第一PWM信号使母线电容单元经第一桥臂连接的电动机绕组向动力电池充电时,第一调制信号为第二调制信号与预设目标值之和。
结合第一方面第三种可能的实现方式,在第五种可能的实现方式中,上述第一PWM信号使动力电池经第一桥臂连接的电动机绕组放电时,第一调制信号为第二调制信号与预设目标值之差。
结合第一方面,在第六种可能的实现方式中,动力总成还包括连接在正母线与负母线之间的母线电容单元;MCU还包括控制器,上述N个桥臂包括至少一个第二桥臂;该第二桥臂可以根据第二PWM信号导通或关断。
其中,该第二PWM信号可以使母线电容单元经第二桥臂连接的电动机绕组向动力电池充电。此时,第二桥臂和该第二桥臂连接的电动机绕组可以实现DC/DC变换器的功能,具体实现的是DC/DC变换器中的降压功能,即BUCK变换器。
或者,该第二PWM信号可以使动力电池经第二桥臂连接的电动机绕组放电。此时,第二桥臂和该第二桥臂连接的电动机绕组可以实现DC/DC变换器的功能,具体实现的是DC/DC变换器中的升压功能,即BOOST变换器。
结合第一方面第六种可能的实现方式,在第七种可能的实现方式中,上述第二PWM信号为控制器根据母线电压以及动力电池的电压确定;其中,该母线电压为正母线与负母线之间的电压。
结合第一方面第一种可能的实现方式至结合第一方面第七种可能的实现方式,在第八种可能的实现方式中,上述动力总成还包括发电机控制单元(Generator ControlUnit,GCU)以及发电机,其中,该GCU的输入端连接发电机,GCU的输出端连接在正母线与负母线之间。需要解释的是,区别于电动机,发电机与内燃机直接机械接触,可以由内燃机驱动,发电机可以将机械能转换为电能,并将该电能向电动机传输。
第一方面第八种可能的实现方式,在第九种可能的实现方式中,第一PWM信号使母线电容单元经第一桥臂连接的电动机绕组向动力电池充电时,GCU将发电机输出的电压变换得到第一电压;MCU根据该第一电压驱动电动机输出扭矩且向动力电池充电。此时,第一PWM信号使母线电容单元可以通过第一桥臂连接的电动机绕组向动力电池充电,以及母线电容单元可以向电动机提供驱动电压。即电动机输出扭矩,且动力电池处于充电状态。此时,母线电容单元中存储的能量可以是由发电机提供的,第一桥臂和该第一桥臂连接的电动机绕组可以保证电动机的驱动***的功能,即可以实现DC/AC变换器的功能。并且,该第一桥臂和该第一桥臂连接的电动机绕组还可以实现DC/DC变换器的功能,具体实现的是DC/DC变换器中的降压功能,即BUCK变换器。即发电机驱动电动机,且发电机向动力电池充电。
第一方面第八种可能的实现方式,在第十种可能的实现方式中,第一PWM信号使动力电池经第一桥臂连接的电动机绕组放电时,GCU用于将发电机输出的电压变换得到第二电压;MCU根据该第二电压和动力电池的电压驱动电动机输出扭矩。此时,第一PWM信号可以使动力电池和发电机通过第一桥臂连接的电动机绕组向电动机提供驱动电压。即电动机输出扭矩,且动力电池放电。此时,第一桥臂和该第一桥臂连接的电动机绕组可以保证电动机的驱动***的功能,即可以实现DC/AC变换器的功能。并且,该第一桥臂和该第一桥臂连接的电动机绕组可以实现DC/DC变换器的功能,具体实现的是DC/DC变换器中的升压功能,即BOOST变换器。即发电机与动力电池共同驱动电动机。
结合第一方面第六种可能的实现方式或结合第一方面第七种可能的实现方式,在第十一种可能的实现方式中,上述动力总成还包括GCU以及发电机;其中,GCU的输入端连接发电机,GCU的输出端连接在正母线与负母线之间。第二PWM信号使母线电容单元经第二桥臂连接的电动机绕组向动力电池充电时,GCU将发电机输出的电压变换得到第三电压;MCU根据该第三电压向动力电池充电。此时,第二桥臂和该第二桥臂连接的电动机绕组可以实现DC/DC变换器的功能,具体实现的是DC/DC变换器中的降压功能,即BUCK变换器。即发电机向动力电池充电。
结合第一方面第六种可能的实现方式或结合第一方面第七种可能的实现方式,在第十二种可能的实现方式中,上述动力总成还包括GCU以及发电机;其中,GCU的输入端连接发电机,GCU的输出端连接在正母线与负母线之间。第二PWM信号使动力电池经第二桥臂连接的电动机绕组放电时,MCU将动力电池的电压变换得到第四电压;GCU根据第四电压驱动发电机。此时,第二桥臂和该第二桥臂连接的电动机绕组可以实现DC/DC变换器的功能,具体实现的是DC/DC变换器中的升压功能,即BOOST变换器。即动力电池放电,以驱动发电机。
结合第一方面或结合第一方面上述任意一种可能的实现方式,在第十三种可能的实现方式中,上述每个桥臂包括第三端,每个桥臂的第三端连接正母线与负母线的中性点,该中性点的电压为正母线与负母线之间的电压的一半。
第二方面,本申请实施例提供了一种动力总成的控制方法,该动力总成包括电动机控制单元(Motor Controller Unit,MCU)、电动机以及连接在正母线与负母线之间的母线电容单元。该MCU包括N个桥臂,该N个桥臂包括至少一个第一桥臂;该电动机包括与N个桥臂对应的N个电动机绕组;其中,N大于或等于2。
该控制方法具体实现为:根据第一脉冲宽度调制(Pulse Width Modulation,PWM)信号导通或关断第一桥臂;使得母线电容单元经第一桥臂连接的电动机绕组向动力电池充电;或者使得动力电池经第一桥臂连接的电动机绕组放电。
结合第二方面,在第一种可能的实现方式中,上述N个桥臂中的每个桥臂包括第一端和第二端;每个桥臂的第一端连接正母线,每个桥臂中的第二端连接负母线;在根据第一PWM信号导通或关断第一桥臂之前,上述控制方法还包括:根据电动机的工作参数、母线电压以及动力电池的电压确定上述第一PWM信号;该母线电压为正母线与负母线之间的电压。
结合第二方面第一种可能的实现方式,在第二种可能的实现方式中,上述根据电动机的工作参数、母线电压以及动力电池的电压确定上述第一PWM信号,具体实现为:
根据第二调制信号与预设目标值得到第一调制信号;并根据该第一调制信号与预设参考信号比较得到上述第一PWM信号。其中,该第二调制信号为根据电动机的工作参数以及母线电压确定;该预设目标值为根据动力电池的电压以及母线电压确定。
结合第二方面第二种可能的实现方式,在第三种可能的实现方式中,上述第一调制信号为第二调制信号与预设目标值之和;此时,第一PWM信号使母线电容单元经第一桥臂连接的电动机绕组向动力电池充电。
结合第二方面第二种可能的实现方式,在第四种可能的实现方式中,上述第一调制信号为第二调制信号与预设目标值之差;此时,第一PWM信号使动力电池经第一桥臂连接的电动机绕组放电。
结合第二方面,在第五种可能的实现方式中,动力总成还包括连接在正母线与负母线之间的母线电容单元;上述N个桥臂包括至少一个第二桥臂;
上述控制方法还可以具体实现为:根据第二PWM信号导通或关断第二桥臂,使得母线电容单元经第二桥臂连接的电动机绕组向动力电池充电;或者使得动力电池经第二桥臂连接的电动机绕组放电。
结合第二方面第五种可能的实现方式,在第六种可能的实现方式中,在根据第二PWM信号导通或关断第二桥臂之前,根据母线电压以及动力电池的电压确定上述第二PWM信号;该母线电压为正母线与负母线之间的电压。
第三方面,本申请实施例提供了一种混合动力汽车,该混合动力汽车包括动力电池以及结合第一方面或结合第一方面上述任意一种可能的实现方式中的动力总成。其中,该动力总成中的电动机与动力电池连接。
应理解的是,本申请上述多个方面的实现和有益效果可互相参考。
附图说明
图1为现有动力总成的结构示意图;
图2为本申请实施例提供的混合动力汽车的一结构示意图;
图3为本申请实施例提供的动力总成的一结构示意图;
图4为本申请实施例提供的动力总成的又一结构示意图;
图5为本申请实施例提供的动力总成的又一结构示意图;
图6为本申请实施例提供的动力总成的又一结构示意图;
图7为本申请实施例提供的动力总成的又一结构示意图;
图8为本申请实施例提供的动力总成的又一结构示意图;
图9为本申请实施例提供的一波形示意图;
图10为本申请实施例提供的一电路状态示意图;
图11A和图11B为本申请实施例提供的又一电路状态示意图;
图12为本申请实施例提供的又一波形示意图;
图13A和图13B为本申请实施例提供的又一电路状态示意图;
图14为本申请实施例提供的又一波形示意图;
图15A和图15B为本申请实施例提供的又一电路状态示意图;
图16为本申请实施例提供的又一波形示意图;
图17A和图17B为本申请实施例提供的又一电路状态示意图;
图18为本申请实施例提供的动力总成的又一结构示意图;
图19为本申请实施例提供的动力总成的又一结构示意图;
图20为本申请实施例提供的又一电路状态示意图;
图21A和图21B为本申请实施例提供的又一电路状态示意图;
图22A和图22B为本申请实施例提供的又一电路状态示意图;
图23A和图23B为本申请实施例提供的又一电路状态示意图;
图24A和图24B为本申请实施例提供的又一电路状态示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
下面结合附图来对本申请的技术方案的实施作进一步的详细描述。
参见图2,图2为本申请实施例提供的混合动力汽车的一结构示意图。如图2所示,混合动力汽车2包括动力总成20和动力电池21。
其中,混合动力汽车2是介于纯电动汽车与燃油汽车两者之间的一种新能源汽车。在本申请实施例中,混合动力汽车2中的动力总成20既包括发电机201,还包括电动机202。示例性的,混合动力汽车2可以具体理解为插电式混合动力汽车(Plug-in hybridelectric vehicle,PHEV)。
具体实现中,发电机201与内燃机直接机械接触,由内燃机驱动。发电机201在转动(即输出扭矩)的过程中可以将机械能转换为电能。其中,发电机201可以将电能向电动机202传输,即发电机201向电动机202提供驱动电压,使电动机202输出扭矩。
电动机202与动力电池21连接,则动力电池21也可以向电动机202提供驱动电压,即动力电池21放电,使电动机202输出扭矩。或者,发电机201以及动力电池21同时向电动机202传输电能,即发电机201与动力电池21同时向电动机202提供驱动电压,使电动机202输出扭矩。
电动机202与传动***(例如传动轴等)机械接触,则电动机202在输出扭矩的过程中可以通过传动***驱动混合动力汽车2。
区别于现有技术中的动力总成的结构,本申请实施例中的动力电池与电动机之间具有连接关系,动力电池可以通过电动机来进行充放电。即本申请实施例提供了一种新的动力总成的结构。
在一些可行的实施方式中,参见图3,图3为本申请实施例提供的动力总成的一结构示意图。如图3所示,本申请实施例提供的动力总成包括电动机控制单元(MotorController Unit,MCU)300以及电动机M3。
具体实现中,MCU 300包括三个桥臂,电动机M3包括与三个桥臂对应的三个电动机绕组(例如电动机绕组NU3、NV3和NW3)。
需要说明的是,每个桥臂可以包括两个串联的开关单元,该开关单元可以包括至少一个串联或并联的开关。在具体实践中,开关单元可以根据MCU中的电压和电流选择多个开关串联或并联。其中,该开关可以具体实现为绝缘栅双极型晶体管(Insulated GateBipolar Transistor,IGBT)及其反并联二极管,或者金属氧化物半导体场效应管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET)等。总的来说,本申请实施例不对开关单元中的开关类型以及开关数量进行限制。
本申请实施例以桥臂中包括的开关具体实现为IGBT及其反并联二极管为例。三个桥臂中的每个桥臂的第一端连接正母线BUS3+,即开关管Q31的集电极、开关管Q33的集电极以及开关管Q35的集电极连接正母线BUS3+。每个桥臂的第二端连接负母线BUS3-,即开关管Q32的发射极、开关管Q34的发射极以及开关管Q36的发射极连接负母线BUS3-。每个桥臂的中点连接一个电动机绕组的一端,即开关管Q31的发射极与开关管Q32的集电极连接电动机绕组NU3的一端,开关管Q33的发射极与开关管Q34的集电极连接电动机绕组NV3的一端,开关管Q35的发射极与开关管Q36的集电极连接电动机绕组NW3的一端。
电动机绕组NU3的另一端、电动机绕组NV3的另一端以及电动机绕组NW3的另一端连接动力电池BAT3的一端,动力电池BAT3的另一端连接负母线BUS3-。
可选的,动力总成还包括连接在正母线BUS3+与负母线BUS3-之间的母线电容单元。需要解释的是,本申请实施例以母线电容单元包括一个电容C31为例,在一些可行的实施方式中,该母线电容单元可以是包括至少两个串联或并联的电容。即本申请实施例不对母线电容单元的电容数量以及电容之间的连接方式进行限制。
区别于现有技术中动力电池连接专门的DC/DC双向变换器,本申请实施例中的动力电池连接的是电动机中的三个电动机绕组,通过复用电动机绕组以及桥臂来实现对动力电池的充放电。即本申请实施例提供了一种新的动力总成的结构,可以节省给动力电池充放电的DC/DC双向变换器,降低了动力总成的生产成本。
并且,现有动力总成中的DC/DC双向变换器需要配备散热装置,本申请实施例在节省DC/DC双向变换器的情况下,自然可以节省DC/DC双向变换器的散热装置。再加上DC/DC双向变换器中包括有多个开关管,DC/DC双向变换器中的开关管也需要控制芯片来控制,本申请实施例在节省DC/DC双向变换器的情况下,自然也可以节省控制DC/DC双向变换器的控制芯片。即动力总成降低的生产成本的总额除了包括DC/DC双向变换器直接带来的生产成本,还包括由于使用DC/DC双向变换器所需的其他配置(例如散热装置和控制芯片等)带来的成本。并且,本申请实施例可以减少对控制芯片的供电以及对DC/DC双向变换器的供电,降低了动力总成的配电的复杂程度,也降低了动力总成的结构的复杂程度。
可选的,在一些可行的实施方式中,动力总成的结构还可以具体实现为图4中示出的动力总成的结构。如图4所示,本申请实施例提供的动力总成包括MCU 400以及电动机M4。
具体实现中,MCU 400包括两个桥臂,电动机M4包括与两个桥臂对应的两个电动机绕组(例如电动机绕组NU4、NV4)。此时,开关管Q41的集电极和开关管Q43的集电极连接正母线BUS4+;开关管Q42的发射极和开关管Q44的发射极连接负母线BUS4-;开关管Q41的发射极与开关管Q42的集电极连接电动机绕组NU4的一端;开关管Q43的发射极与开关管Q44的集电极连接电动机绕组NV4的一端;电动机绕组NU4的另一端以及电动机绕组NV4的另一端连接动力电池BAT4的一端,动力电池BAT4的另一端连接负母线BUS4-。
可选的,动力总成还包括连接在正母线BUS4+与负母线BUS4-之间的母线电容单元(例如电容C41)。
区别于图3中示出的动力总成,本申请实施例提供的动力总成中包括的电动机是两相交流电动机,而图3中的动力总成包括的是三相交流电动机。因此,本申请实施例提供的MCU对应设置的是两个桥臂。
可以看出,本申请实施例中的动力电池连接的也是电动机绕组,也可以通过复用电动机绕组以及桥臂来实现对动力电池的充放电,节省给动力电池充放电的DC/DC双向变换器,降低动力总成的生产成本。
可选的,在一些可行的实施方式中,动力总成的结构还可以具体实现为图5中示出的动力总成的结构。如图5所示,本申请实施例提供的动力总成包括MCU 500以及电动机M5。
具体实现中,MCU 500包括四个桥臂,电动机M5包括与四个桥臂对应的四个电动机绕组(例如电动机绕组NU5、NV5、NW5、NX5)。此时,开关管Q51的集电极、开关管Q53的集电极、开关管Q55的集电极以及开关管Q57的集电极连接正母线BUS5+;开关管Q52的发射极、开关管Q54的发射极、开关管Q56的发射极以及开关管Q58的发射极连接负母线BUS5-;开关管Q51的发射极与开关管Q52的集电极连接电动机绕组NU5的一端,开关管Q53的发射极与开关管Q54的集电极连接电动机绕组NV5的一端,开关管Q55的发射极与开关管Q56的集电极连接电动机绕组NW5的一端,开关管Q57的发射极与开关管Q58的集电极连接电动机绕组NX5的一端;电动机绕组NU5的另一端、电动机绕组NB5的另一端、电动机绕组NW5的另一端以及电动机绕组NX5的另一端连接动力电池BAT5的一端,动力电池BAT5的另一端连接负母线BUS5-。
可选的,动力总成还包括连接在正母线BUS5+与负母线BUS5-之间的母线电容单元(例如电容C51)。
本申请实施例提供的动力总成中包括的电动机是四相交流电动机,MCU对应设置的是四个桥臂。
可以看出,本申请实施例中的动力电池连接的也是电动机绕组,也可以通过复用电动机绕组以及桥臂来实现对动力电池的充放电,节省给动力电池充放电的DC/DC双向变换器,降低动力总成的生产成本。
结合图3至图5中示出的动力总成的结构,可以看出动力总成中的电动机可以是两相交流电动机、三相交流电动机或者四相交流电动机等等,即本申请不对电动机的具体实现类型进行限制。那么,动力总成的结构也可以根据不同的电动机类型进行适应性的改变,例如改变桥臂的数量,即本申请提供的动力总成还可以具体包括五个桥臂或六个桥臂等等。
图3至图5中示出的MCU包括的桥臂是输出两电平的桥臂,在一些可行的实施方式中,也可以对桥臂的类型进行变化,得到多个电平输出的桥臂,从而得到不同的动力总成的结构。
在一些可行的实施方式中,参见图6,图6为本申请实施例提供的动力总成的又一结构示意图。如图6所示,本申请实施例提供的动力总成包括MCU 600以及电动机M6。
具体实现中,以电动机M6具体实现为三相交流电动机为例,MCU 600包括三个桥臂A,电动机M6包括与三个桥臂A对应的三个电动机绕组(例如电动机绕组NU6、NV6、NW6)。可以看出,MCU 600中包括的三个桥臂A的类型与图3至图5中包括的桥臂类型不同。
在本申请实施例中,桥臂A包括第一端、第二端和第三端。桥臂A可以输出三电平。每个桥臂A包括串联的两个开关单元以及分别与两个开关单元连接的两个二极管。其中,两个开关单元串联之后的两端分别为桥臂A的第一端和第二端,桥臂A的第一端连接正母线BUS6+,桥臂A的第二端连接负母线BUS6-。桥臂A的中点是两个开关单元的串联连接点,连接对应的电动机绕组。桥臂A中的两个二极管的连接点是桥臂A的第三端,桥臂A的第三端连接正母线BUS6+与负母线BUS6-的中性点O。可以理解的是,该中性点O的电压为正母线BUS6+与负母线BUS6-之间的电压的一半。
图6以一个开关单元包括两个串联的开关为例。比如在一个桥臂A中,一个开关单元包括开关管Q61以及开关管Q62;另一开关单元包括开关管Q63和开关管Q64。则有桥臂A的第一端是开关管Q61的集电极,此时开关管Q61的集电极连接正母线BUS6+;开关管Q61的发射极连接开关管Q62的集电极;开关管Q62的发射极与开关管Q63的集电极之间的连接点是桥臂A的中点,此时开关管Q62的发射极与开关管Q63的集电极连接电动机绕组NU6的一端;开关管Q63的发射极连接开关管Q64的集电极;桥臂A的第二端是开关管Q64的发射极,此时开关管Q64的发射极连接负母线母线BUS6-。并且,二极管D61的阴极连接开关管Q61的发射极以及开关管Q62的集电极;二极管D61的阳极与二极管D62的阴极之间的连接点是桥臂A的第三端,此时,二极管D61的阳极与二极管D62的阴极连接正母线BUS6+与负母线BUS6-的中性点O,二极管D62的阳极连接开关管Q63的发射极与开关管Q64的集电极。
同理的,在另一桥臂A中,开关管Q65的集电极连接正母线BUS6+,开关管Q65的发射极连接开关管Q66的集电极,开关管Q66的发射极与开关管Q67的集电极连接电动机绕组NV6的一端,开关管Q67的发射极连接开关管Q68的集电极,开关管Q68的发射极连接负母线母线BUS6-。并且,二极管D63的阴极连接开关管Q65的发射极以及开关管Q66的集电极,二极管D63的阳极与二极管D64的阴极连接正母线BUS6+与负母线BUS6-的中性点O,二极管D64的阳极连接开关管Q67的发射极以及开关管Q68的集电极。
在又一桥臂A中,开关管Q69的集电极连接正母线BUS6+,开关管Q69的发射极连接开关管Q610的集电极,开关管Q610的发射极与开关管Q611的集电极连接电动机绕组NW6的一端,开关管Q611的发射极连接开关管Q612的集电极,开关管Q612的发射极连接负母线母线BUS6-。并且,二极管D65的阴极连接开关管Q69的发射极以及开关管Q610的集电极,二极管D65的阳极与二极管D66的阴极连接正母线BUS6+与负母线BUS6-的中性点O,二极管D66的阳极连接开关管Q611的发射极以及开关管Q612的集电极。
电动机绕组NU6的另一端、电动机绕组NV6的另一端以及电动机绕组NW6的另一端连接动力电池BAT6的一端,动力电池BAT6的另一端连接负母线BUS6-。
可选的,动力总成还包括连接在正母线BUS6+与负母线BUS6-之间的母线电容单元(例如电容C61、C62、C63)。此时,电容C62和电容C63串联连接在正母线BUS6+与负母线BUS6-之间,电容C62与电容C63的串联连接点为中性点O。
区别于图3中示出的MCU包括的三个桥臂输出两电平,本申请实施例中提供的MCU包括的三个桥臂A输出三电平。此时,动力总成也可以通过复用电动机绕组以及桥臂来实现对动力电池的充放电,节省给动力电池充放电的DC/DC双向变换器,降低动力总成的生产成本。
可选的,在一些可行的实施方式中,参见图7,图7为本申请实施例提供的动力总成的又一结构示意图。如图7所示,本申请实施例提供的动力总成包括MCU 700以及电动机M7。
具体实现中,以电动机M7具体实现为三相交流电动机为例,MCU 700包括三个桥臂B,电动机M7包括与三个桥臂B对应的三个电动机绕组(例如电动机绕组NU7、NV7、NW7)。
在本申请实施例中,桥臂B包括第一端、第二端和第三端,桥臂B也可以输出三电平。每个桥臂B包括竖桥臂和横桥臂,横桥臂和竖桥臂包括串联的两个开关单元。其中,竖桥臂的中点是桥臂B的中点,在竖桥臂中串联的两个开关单元的两端分别为桥臂B的第一端和第二端;在横桥臂中串联的两个开关单元的一端连接桥臂B的中点,另一端为桥臂B的第三端。
图7以一个开关单元包括一个开关为例。比如在一个桥臂B中,竖桥臂包括开关管Q71和开关管Q72,横桥臂包括开关管Q73和开关管Q74。则有桥臂B的第一端是开关管Q71的集电极,此时开关管Q71的集电极连接正母线BUS7+;开关管Q71的发射极与开关管Q72的集电极之间的连接点是桥臂B的中点,此时开关管Q71的发射极与开关管Q72的集电极连接电动机绕组NU7的一端以及开关管Q74的集电极;开关管Q74的发射极连接开关管Q73的发射极;桥臂B的第三端是开关管Q73的集电极,此时开关管Q73的集电极连接正母线BUS7+与负母线BUS7-的中性点O1。
同理的,在另一桥臂B中,开关管Q75的集电极连接正母线BUS7+,开关管Q75的发射极与开关管Q76的集电极连接电动机绕组NV7的一端以及开关管Q78的集电极,开关管Q78的发射极连接开关管Q77的发射极,开关管Q77的集电极连接正母线BUS7+与负母线BUS7-的中性点O1。
在又一桥臂B中,开关管Q79的集电极连接正母线BUS7+,开关管Q79的发射极与开关管Q710的集电极连接电动机绕组NW7的一端以及开关管Q712的集电极,开关管Q712的发射极连接开关管Q711的发射极,开关管Q711的集电极连接正母线BUS7+与负母线BUS7-的中性点O1。
电动机绕组NU7的另一端、电动机绕组NV7的另一端以及电动机绕组NW7的另一端连接动力电池BAT7的一端,动力电池BAT7的另一端连接负母线BUS7-。
可选的,动力总成还包括连接在正母线BUS7+与负母线BUS7-之间的母线电容单元(例如电容C71、C72)。此时,电容C71和电容C72串联连接在正母线BUS7+与负母线BUS7-之间,电容C71和电容C72的串联连接点为中性点O1。
区别于图6中可以输出三电平的桥臂A,本申请实施例提供了另一种可以输出三电平的桥臂B。此时,动力总成也可以通过复用电动机绕组以及桥臂来实现对动力电池的充放电,节省给动力电池充放电的DC/DC双向变换器,降低动力总成的生产成本。
需要说明的是,图6和图7中MCU包括的桥臂类型应当理解为示例,不应当理解为限制。比如说,在一些可行的实施方式中,桥臂还可以具体实现为除了输出两电平和三电平的桥臂之外的其他多电平桥臂,例如四电平桥臂、五电平桥臂等多电平桥臂,即只要桥臂与电动机绕组既可以实现DC/AC变换器的功能,还可以实现DC/DC变换器的功能即可。
综上所述,本申请实施例不对MCU中的桥臂数量以及桥臂类型进行限制。
可选的,在一些可行的实施方式中,以MCU中包括三个桥臂以及每个桥臂输出的是两电平为例,即以图3中示出的动力总成的结构为例。在图3中示出的动力总成中增加集成发电模块,可以得到图8中示出的动力总成。此时,本申请实施例提供的动力总成除了包括前文结合图3所描述的MCU 300以及电动机M3之外,还包括发电模块。其中,该发电模块包括发电机控制单元(Generator Control Unit,GCU)801和发电机M8。
需要解释的是,MCU 300、电动机M3、GCU 801和发电机M8可以一起集成在动力总成内。或者,MCU 300和电动机M3可以集成在动力总成内,GCU 801和发电机M8可以单独设置,
具体实现中,GCU 801的输入端连接发电机M8,GCU 801的输出端连接在正母线BUS3+与负母线BUS3-之间。该GCU 801可以将发电机M8输出的交流电转换为直流电,并将该直流电在正母线BUS3+与负母线BUS3-之间输出。
可选的,在一些可行的实施方式中,发电机M8产生的电能可以向动力电池BAT3和电动机M3提供;或者,发电机M8产生的电能和动力电池BAT3放电产生的电能共同向电动机M3提供。
相对于图3中示出的动力总成的结构,图8中示出的动力总成还包括GCU和发电机,依然可以实现如图3所描述实施例的技术效果,即可以节省给动力电池充放电的DC/DC双向变换器,降低动力总成的生产成本,且动力总成的结构简单,配电结构简单。
下面结合附图对如何具体控制本申请提供的动力总成进行示例性说明。
在一些可行的实施方式中,参见图9,图9为本申请实施例提供的一波形示意图。如图9所示,控制器可以根据电动机的工作参数以及母线电压确定每个桥臂的第二调制信号,例如第二调制信号VU32、第二调制信号VV32以及第二调制信号VW32。此时,母线电压具体是正母线BUS3+与负母线BUS3-之间的电压。
其中,电动机的工作参数可以是预先设置的,该电动机的工作参数包括电动机的输入电压、输入电流和电动机转速中的至少一个。需要说明的是,电动机的输入电压可以具体实现为母线电压,可以通过发电机的工作参数和AC/DC变换器来确定该母线电压。
控制器根据电动机的工作参数以及母线电压确定第二调制信号的具体实现方式可以参考现有驱动电动机的控制方式,此处不作赘述。
可以理解的是,MCU包括控制器和N个桥臂,N大于或等于2。具体实现中,控制器例如可以是中央处理单元(central processing unit,CPU)、其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integratedcircuit,ASIC)、现成可编程门阵列(field-programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。
控制器将第二调制信号VU32与预设参考信号进行比较,如图9所示,预设参考信号为三角波,该预设参考信号的幅度与频率是预先设置的。
具体实现中,当第二调制信号VU32大于预设参考信号,控制器生成高电平;当第二调制信号VU32小于预设参考信号,控制器生成低电平。则控制器可以基于第二调制信号VU32与预设参考信号的比较结果,生成t0时刻之前的PWM_Q31信号。
同理的,控制器可以基于第二调制信号VV32与预设参考信号的比较结果,生成t0时刻之前的PWM_Q33信号;控制器可以基于第二调制信号VW32与预设参考信号的比较结果,生成t0时刻之前的PWM_Q35信号。
控制器向开关管Q31发送t0时刻之前的PWM_Q31信号、向开关管Q33发送t0时刻之前的PWM_Q33信号,以及向开关管Q35发送t0时刻之前的PWM_Q35信号。此时,电动机M3的三个电动机绕组的电流和为零,电动机M3输出扭矩。
示例性的,以开关管Q31、开关管Q33和开关管Q35关断,以及开关管Q32、开关管Q34和开关管Q36导通为例,图3中示出的动力总成可以形成图10中示出的电路状态。即电流从电动机绕组NU3流入,从电动机绕组NV3和电动机绕组NW3流出,在该电路状态中有IU3+IV3+IW3=0。此时,电动机M3输出扭矩,驱动混合动力汽车。
需要解释的是,图10中示出的电流回路应当理解为示例性的,流入电动机绕组NU3的电流是可以由发电机和动力电池BAT3中的至少一个提供。在一些其他的可行实施方式中,电流可以是从电动机绕组NU3和电动机绕组NV3流入,从电动机绕组NW3流出。无论各个电动机绕组的电流方向如何变化,三个电动机绕组的电流之和为零,即IU3+IV3+IW3=0时,电动机M3输出扭矩。
控制器控制同一个桥臂中的两个开关管的信号是互补的。即控制器向开关管Q32发送的信号与PWM_Q31信号互补,向开关管Q34发送的信号与PWM_Q33信号互补,向开关管Q36发送的信号与PWM_Q35信号互补。
可选的,在一些可行的实施方式中,控制器可以在三个桥臂中确定至少一个第一桥臂,并在每个第一桥臂的第二调制信号上叠加预设目标值V1,从而得到每个第一桥臂第一调制信号。该预设目标值V1是控制器根据动力电池BAT3的电压以及母线电压确定的,例如预设目标值V1是动力电池BAT3的电压与母线电压之间的比值。
图9是以控制器在三个桥臂中确定一个第一桥臂为例,并且具体是以开关管Q31与开关管Q32串联所形成的桥臂是第一桥臂为例,从图9可以看出,t0时刻之后的第一调制信号VU31的幅值比t0时刻之前的第二调制信号VU32的幅值增大了预设目标值V1,即预设目标值V1作为正偏置电压,控制器在第二调制信号VU32上叠加预设目标值V1,得到第一调制信号VU31
此时,控制器将第一调制信号VU31与预设参考信号进行比较,生成t0时刻之后的PWM_Q31信号(即开关管Q31所在第一桥臂的第一PWM信号)。可以看出,t0时刻之后的PWM_Q31信号的占空比大于t0时刻之后的PWM_Q31信号的占空比。即控制器在第二调制信号VU32上叠加预设目标值V1,具体是增大了开关管Q31的控制信号的占空比。
除了第一桥臂之外的其他桥臂沿用t0时刻之前的调制信号,即沿用第二调制信号VV32以及第二调制信号VW32。则PWM_Q33信号和PWM_Q35信号在t0时刻前后的占空比没有发生变化。
控制器向开关管Q31发送t0时刻之后的PWM_Q31信号、向开关管Q33发送t0时刻之后的PWM_Q33信号,以及向开关管Q35发送t0时刻之后的PWM_Q35信号。此时,电容C31经电动机绕组NU3向动力电池BAT3充电、经电动机绕组NV3向动力电池BAT3充电以及经电动机绕组NW3向动力电池BAT3充电。并且,电动机M3输出扭矩。此时,电容C31中存储的能量可以是由发电机提供的,与该发电机连接的GCU将发电机输出的电压变换得到第一电压,具体是将发电机输出的交流电转换为直流电,然后MCU将该第一电压进行变换以驱动电动机M3输出扭矩。总的来说,第一桥臂和该第一桥臂连接的电动机绕组可以保证电动机的电驱动***的功能,即可以实现DC/AC变换器的功能。并且,第一桥臂和该第一桥臂连接的电动机绕组可以实现DC/DC变换器的功能,具体实现的是DC/DC变换器的降压功能,即BUCK变换器。即发电机驱动电动机,且发电机向动力电池充电。
示例性的,以t0时刻至t1时刻之间的时间段为例,此时PWM_Q31信号、PWM_Q33信号和PWM_Q35都为高电平,即开关管Q31、开关管Q33和开关管Q35导通,以及开关管Q32、开关管Q34和开关管Q36关断,动力总成可以形成图11A中示出的电路状态。如图11A所示,假设三个电机绕组的感抗相同,则电动机绕组NU3上流过的电流是IU3+IC/3,电动机绕组NV3上流过的电流是IV3+IC/3,电动机绕组NW3上流过的电流是IW3+IC/3,其中,IU3+IV3+IW3=0。此时,电动机M3输出扭矩,三个电动机绕组处于储能阶段。
需要解释的是,电动机M3输出扭矩过程中的电流方向是随机的,可以是从电动机绕组NU3和电动机绕组NV3流入,从电动机绕组NW3流出。无论每个电动机绕组的电流方向如何变化,三个电动机绕组的电流之和为零,即IU3+IV3+IW3=0。
在t2时刻至t3时刻之间的时间段内,此时PWM_Q31信号、PWM_Q33信号和PWM_Q35信号都为低电平,即开关管Q31、开关管Q33和开关管Q35关断,以及开关管Q32、开关管Q34和开关管Q36导通,动力总成可以形成图11B中示出的电路状态。如图11B所示,各个电动机绕组的电流不可突变,三个电动机绕组上流过的电流依然如图11A中示出的电路状态中流过的电流,即电动机绕组NU3上流过的电流是IU3+IV/3,电动机绕组NV3上流过的电流是IV3+IC/3,电动机绕组NW3上流过的电流是IW3+IC/3,其中,IU3+IV3+IW3=0。此时,电动机M3输出扭矩。并且,电动机绕组NU3向动力电池BAT3充电,电动机绕组NV3向动力电池BAT3充电,电动机绕组NW3向动力电池BAT3充电。而每个电动机绕组上的电流由电容C31提供,即电容C31经第一桥臂连接的电动机绕组向动力电池BAT3充电,充电电流为IC
需要解释的是,在具体实现应用中,控制器可以直接发送t0时刻之后的PWM_Q31信号、PWM_Q33信号和PWM_Q35信号。或者直接发送t0时刻之前的PWM_Q31信号、PWM_Q33信号和PWM_Q35信号。即t0时刻前后的信号可以相对独立存在。
可选的,在一些可行的实施方式中,控制器可以具体根据动力电池的电池电量来确定向每个桥臂发送的控制信号。例如,控制器监测到动力电池BAT3的电池电量低于预设充电阈值,则向开关管Q31发送t0时刻之后的PWM_Q31信号、向开关管Q33发送t0时刻之后的PWM_Q33信号,以及向开关管Q35发送t0时刻之后的PWM_Q35信号;当动力电池BAT3的电池电量大于或等于预设充电阈值,控制器则向开关管Q31发送t0时刻之前的PWM_Q31信号、向开关管Q33发送t0时刻之前的PWM_Q33信号,以及向开关管Q35发送t0时刻之前的PWM_Q35信号。或者,控制器也可以在接收到动力电池BAT3的充电指令的情况下,向开关管Q31发送t0时刻之后的PWM_Q31信号、向开关管Q33发送t0时刻之后的PWM_Q33信号,以及向开关管Q35发送t0时刻之后的PWM_Q35信号。
总的来说,在一个第一桥臂的第二调制信号上叠加预设目标值V1,即动力电池的充电控制是复用了三个桥臂中的一个桥臂。本申请实施例通过改变第一桥臂对应的开关管的导通和关断时间,实现电动机输出扭矩以及动力电池充电,即动力总成既可以实现DC/AC变换器的功能,又可以实现BUCK变换器的功能。
可选的,在一些可行的实施方式中,参见图12,图12为本申请实施例提供的又一波形示意图。如图12所示,控制器可以根据电动机的工作参数以及母线电压确定每个桥臂第二调制信号,例如第二调制信号VU32′、第二调制信号VV32′以及第二调制信号VW32′。
控制器根据第二调制信号VU32′与预设参考信号的比较结果,生成t0′时刻之前的PWM_Q31′信号;控制器根据第二调制信号VV32′与预设参考信号的比较结果,生成t0′时刻之前的PWM_Q33′信号;控制器根据第二调制信号VW32′与预设参考信号的比较结果,生成t0′时刻之前的PWM_Q35′信号。
控制器向开关管Q31发送t0′时刻之前的PWM_Q31′信号、向开关管Q33发送t0′时刻之前的PWM_Q33′信号,以及向开关管Q35发送t0′时刻之前的PWM_Q35′信号。此时,动力总成也可以形成图10中示出的电路状态,在该电路状态中有IU3+IV3+IW3=0,电动机M3输出扭矩。
可选的,在一些可行的实施方式中,控制器可以将三个桥臂分别作为三个第一桥臂,则控制器在每个第一桥臂的第二调制信号上都叠加预设目标值V1,从而得到每个第一桥臂的第一调制信号。
此时,控制器在第二调制信号VU32′上叠加预设目标值V1得到第一调制信号VU31′,在第二调制信号VV32′上叠加预设目标值V1得到第一调制信号VV31′,在第二调制信号VW32′上叠加预设目标值V1得到第一调制信号VW31′。
控制器将第一调制信号VU31′与预设参考信号进行比较,生成得到t0′时刻之后的PWM_Q31′信号(即开关管Q31所在第一桥臂的第一PWM信号)。可以看出,t0′时刻之后的PWM_Q31′信号的占空比大于t0′时刻之前的PWM_Q31′信号的占空比。
同理的,控制器将第一调制信号VV31′与预设参考信号进行比较,生成t0′时刻之后的PWM_Q33′信号(即开关管Q33所在第一桥臂的第一PWM信号),t0′时刻之后的PWM_Q33′信号的占空比大于t0′时刻之前的PWM_Q33′信号的占空比。
控制器将第一调制信号VW31′与预设参考信号进行比较,生成t0′时刻之后的PWM_Q35′信号(即开关管Q35所在第一桥臂的第一PWM信号),t0′时刻之后的PWM_Q35′信号的占空比大于t0′时刻之前的PWM_Q35′信号的占空比。
控制器向开关管Q31发送t0′时刻之后的PWM_Q31′信号、向开关管Q33发送t0′时刻之后的PWM_Q33′信号,以及向开关管Q35发送t0′时刻之后的PWM_Q35′信号。此时,电动机M3输出扭矩,且动力电池BAT3充电。
示例性的,在t0′时刻至t1′时刻之间的时间段,动力总成依然可以形成图11A中示出的电路状态;在t2′时刻至t3′时刻之间的时间段,动力总成依然可以形成图11B中示出的电路状态。则动力总成的电路状态可以参考图11A和图11B的描述,此处不作赘述。
相对图9中示出的波形示意图,控制器采用图12中示出的波形示意图,具体实现的是动力电池的充电控制复用了三个桥臂。即在三个桥臂中的每个桥臂的第二调制信号上都叠加预设目标值V1,依然可以实现前文结合图9至图11B所描述实施例的效果。并且,本申请实施例复用的是三个桥臂,使得三个桥臂之间可以均流。
可选的,在一些可行的实施方式中,可以在三个桥臂中的两个桥臂的第二调制信号上叠加预设目标值V1(图中未示出),即动力电池的充电控制可以复用两个桥臂。此时依然可以形成图11A和图11B的电路状态,电动机M3输出扭矩,且动力电池BAT3处于充电状态。
可选的,在一些可行的实施方式,电动机可以不输出扭矩,动力电池处于充电状态。此时,控制器可以在MCU的三个桥臂中确定至少一个第二桥臂,并根据母线电压以及动力电池BAT3的电压确定每个第二桥臂的第二PWM信号。
可以理解的是,控制器根据母线电压以及动力电池BAT3的电压确定第二PWM信号的具体实现方式可以参考现有BUCK变换器中开关管的控制信号的确定方式,此处不作赘述。
其中,电容C31向动力电池BAT3充电可以分为电动机绕组储能阶段以及动力电池充电阶段。图13A和图13B以三个桥臂分别作为三个第二桥臂为例,在图13A中示出的电路状态中,开关管Q31、开关管Q33和开关管Q35导通,以及开关管Q32、开关管Q34和开关管Q36关断。此时电动机绕组NU3、电动机绕组NV3和电动机绕组NW3处于储能阶段。示例性的,图11A示出的电路状态可以理解为图13A示出的电路状态与图10示出的电路状态之间的叠加。
在图13B中示出的电路状态中,开关管Q31、开关管Q33和开关管Q35关断,以及开关管Q32、开关管Q34和开关管Q36导通。假设三个电机绕组的感抗相同,则电动机绕组NU3上流过的电流是IC/3,电动机绕组NV3上流过的电流是IC/3,电动机绕组NW3上流过的电流是IC/3,此时,电容C31经电动机绕组NU3向动力电池BAT3充电、电容C31经电动机绕组NV3向动力电池BAT3充电以及电容C31经电动机绕组NW3向动力电池BAT3充电,则动力电池BAT3的充电电流可以是IC。并且,电容C31中存储的能量可以是由发电机提供的,与该发电机连接的GCU将发电机输出的电压变换得到第三电压,然后MCU将该第三电压进行变换以向动力电池BAT3进行充电。总的来说,发电机向动力电池充电。
示例性的,图11B示出的电路状态可以理解为图13B示出的电路状态与图10示出的电路状态之间的叠加。即每个电动机绕组上流过的电流是电动机输出扭矩的电流与动力电池的充电电流的叠加。
需要说明的是,图13A和图13B中示出的电路状态应当理解为示例,在其他可行的实施方式中,可以控制三个桥臂中的一个桥臂或两个桥臂,即可实现如BUCK变换器的功能。
可选的,在一些可行的实施方式中,参见图14,图14为本申请实施例提供的又一波形示意图。如图14所示,控制器可以根据电动机的工作参数、母线电压以及动力电池的电压确定每个桥臂的第二调制信号,例如第二调制信号VU3B、第二调制信号VV3B以及第二调制信号VW3B
控制器基于第二调制信号VU3B与预设参考信号的比较结果,生成t4时刻之前的PWM1_Q31信号;控制器可以基于第二调制信号VV3B与预设参考信号的比较结果,生成t4时刻之前的PWM1_Q33信号;控制器可以基于第二调制信号VW3B与预设参考信号的比较结果,生成t4时刻之前的PWM1_Q35信号。
控制器向开关管Q31发送t4时刻之前的PWM1_Q31信号、向开关管Q33发送t4时刻之前的PWM1_Q33信号,以及向开关管Q35发送t4时刻之前的PWM1_Q35信号。此时,动力总成也可以形成图10中示出的电路状态。即以开关管Q31、开关管Q33和开关管Q35关断,以及开关管Q32、开关管Q34和开关管Q36导通为例,在该电路状态中有IU3+IV3+IW3=0,电动机M3输出扭矩。
可选的,在一些可行的实施方式中,区别于电动机M3输出扭矩以及动力电池BAT3处于充电状态,本申请实施例中的动力电池BAT3放电,且电动机M3输出扭矩。
具体实现中,控制器可以在三个桥臂中确定至少一个第一桥臂,并在每个第一桥臂的第二调制信号上减去预设目标值V2,从而得到每个第一桥臂的第一调制信号。该预设目标值V2是控制器根据动力电池BAT3的电压以及母线电压确定的。例如预设目标值V2是动力电池BAT3的电压与母线电压之间的比值。
图14是以三个桥臂中包括一个第一桥臂为例,并且具体是以开关管Q31与开关管Q32串联所形成的桥臂是第一桥臂为例,从图14可以看出,t4时刻之后的第一调制信号VU3A的幅值比t4时刻之前的第二调制信号VU3B的幅值减小了预设目标值V2,即预设目标值V2作为副偏置电压,控制器在第二调制信号VU3B上减去预设目标值V2,可以得到第一调制信号VU3A
此时,控制器将第一调制信号VU3A与预设参考信号进行比较,生成t4时刻之后的PWM1_Q31信号(即开关管Q31所在第一桥臂的第一PWM信号)。可以看出,t4时刻之后的PWM1_Q31信号的占空比小于t4时刻之后的PWM1_Q31信号的占空比。即控制器在第二调制信号VU3B上减去预设目标值V2,具体是减小了开关管Q31的控制信号的占空比。
除了第一桥臂之外的其他桥臂沿用t4时刻之前的调制信号,即沿用第二调制信号VV3B以及第二调制信号VW3B。则PWM1_Q33信号和PWM1_Q35信号在t4时刻前后的占空比没有发生变化。
控制器向开关管Q31发送t4时刻之后的PWM1_Q31信号、向开关管Q33发送t4时刻之后的PWM1_Q33信号,以及向开关管Q35发送t4时刻之后的PWM1_Q35信号。此时,电动机M3输出扭矩,且动力电池BAT3处于放电状态。即动力电池BAT3和母线电容单元(例如电容C31)共同向电动机M3提供驱动电压。此时,第一桥臂和该第一桥臂对应的电动机绕组可以保证电动机电驱动***的功能,即可以实现DC/AC变换器的功能。并且,该第一桥臂和该第一桥臂对应的电动机绕组可以实现DC/DC变换器的功能,具体实现的是DC/DC变换器中的升压功能,即BOOST变换器。
示例性的,以t4时刻至t5时刻之间的时间段为例,此时PWM1_Q31信号、PWM1_Q33信号和PWM1_Q35信号都为高电平,即开关管Q31、开关管Q33和开关管Q35导通,以及开关管Q32、开关管Q34和开关管Q36关断,动力总成可以形成图15A中示出的电路状态。如图15A所示,假设三个电机绕组的感抗相同,则电动机绕组NU3上流过的电流是IU3+IDC/3,电动机绕组NV3上流过的电流是IV3+IDC/3,电动机绕组NW3上流过的电流是IW3+IDC/3,其中,IU3+IV3+IW3=0。此时,电动机M3输出扭矩。并且,动力电池BAT3通过电动机绕组NU3、电动机绕组NV3以及电动机绕组NW3放电,即动力电池BAT3处于放电状态,放电电流为IDC。可以理解的是,此时发电机和动力电池同时驱动电动机。即与该发电机连接的GCU将发电机输出的电压变换得到第二电压,MCU可以根据第二电压和动力电池的电压驱动电动机输出扭矩。
在t6时刻至t7时刻之间的时间段内,此时PWM1_Q31信号、PWM1_Q33信号和PWM1_Q35信号都为低电平,即开关管Q31、开关管Q33和开关管Q35关断,以及开关管Q32、开关管Q34和开关管Q36导通,动力总成可以形成图15B中示出的电路状态。如图15B所示,各个电动机绕组的电流不可突变,三个电动机绕组上流过的电流依然如图15A中示出的电路状态中流过的电流,即电动机绕组NU3上流过的电流是IU3+IDC/3,电动机绕组NV3上流过的电流是IV3+IDC/3,电动机绕组NW3上流过的电流是IW3+IDC/3,其中,IU3+IV3+IW3=0。此时,电动机M3输出扭矩,三个电动机绕组处于储能阶段。
需要解释的是,在具体实现应用中,控制器可以直接发送t4时刻之后的PWM1_Q31信号、PWM1_Q33信号和PWM1_Q35信号。或者直接发送t4时刻之前的PWM1_Q31信号、PWM1_Q33信号和PWM1_Q35信号。即t4时刻前后的信号可以相对独立存在。
可选的,在一些可行的实施方式中,控制器可以根据电动机的转速以及动力电池的电池电量来确定向每个桥臂发送的控制信号。例如,控制器检测电动机的转速大于预设速度,且动力电池的两端电压大于预设放电阈值,则向开关管Q31发送PWM1_Q31在t4时刻之后的信号、向开关管Q33发送PWM1_Q33在t4时刻之后的信号,以及向开关管Q35发送PWM1_Q35在t4时刻之后的信号。
总的来说,在三个桥臂中的一个第一桥臂的第二调制信号上减去预设目标值V2,即动力电池的放电控制是复用了三个桥臂中的一个桥臂。本申请实施例通过改变第一桥臂对应的开关管的导通和关断时间,实现电动机输出扭矩以及动力电池同时放电,即动力总成既可以实现BOOST变换器的功能,又可以实现DC/AC变换器的功能。
可选的,在一些可行的实施方式中,参见图16,图16为本申请实施例提供的又一波形示意图。如图16所示,控制器可以电动机的工作参数以及母线电压确定每个桥臂的第二调制信号,例如第二调制信号VU3B′、第二调制信号VV3B′以及第二调制信号VW3B′。
控制器根据第二调制信号VU3B′与预设参考信号的比较结果,生成t4′时刻之前的PWM1_Q31′信号;控制器根据第二调制信号VV3B′与预设参考信号的比较结果,生成t4′时刻之前的PWM1_Q33′信号;控制器根据第二调制信号VW3B′与预设参考信号的比较结果,生成t4′时刻之前的PWM1_Q35′信号。
控制器向开关管Q31发送t4′时刻之前的PWM1_Q31′信号、向开关管Q33发送t4′时刻之前的PWM1_Q33′信号,以及向开关管Q35发送t4′时刻之前的PWM1_Q35′信号。此时,动力总成也可以形成图10中示出的电路状态,在该电路状态中有IU3+IV3+IW3=0,电动机M3输出扭矩。
可选的,在一些可行的实施方式中,控制器可以将三个桥臂分别作为三个第一桥臂,则控制器在每个第一桥臂的第二调制信号上都减去预设目标值V2,从而得到每个第一桥臂的第一调制信号。
此时,控制器在第二调制信号VU3B′上减去预设目标值V2得到第一调制信号VU3A′,在第二调制信号VV3B′上减去预设目标值V2得到第一调制信号VV3A′,在第二调制信号VW3B′上减去预设目标值V2得到第一调制信号VW3A′。
控制器将第一调制信号VU3A′与预设参考信号进行比较,生成t4′时刻之后的PWM1_Q31′信号在信号(即开关管Q31所在第一桥臂的第一PWM信号)。可以看出,t4′时刻之后的PWM1_Q31′信号的占空比小于t4′时刻之前的PWM1_Q31′信号在的占空比。
同理的,控制器将第一调制信号VV3A′与预设参考信号进行比较,生成t4′时刻之后PWM1_Q33′信号(即开关管Q33所在第一桥臂的第一PWM信号),t4′时刻之后的PWM1_Q33′信号的占空比小于t4′时刻之前的PWM1_Q33′信号的占空比。
控制器将第一调制信号VW3A′与预设参考信号进行比较,生成t4′时刻之后的PWM1_Q35′信号(即开关管Q35所在第一桥臂的第一PWM信号),t4′时刻之后的PWM1_Q35′信号的占空比小于t4′时刻之前的PWM1_Q35′信号的占空比。
控制器向开关管Q31发送t4′时刻之后的PWM1_Q31′信号、向开关管Q33发送t4′时刻之后PWM1_Q33′信号,以及向开关管Q35发送t4′时刻之后的PWM1_Q35′信号。此时,电动机M3输出扭矩,且动力电池BAT3处于放电状态。
示例性的,在t4′时刻至t5′时刻之间的时间段,动力总成依然可以形成图15A中示出的电路状态;在t6′时刻至t7′时刻之间的时间段,动力总成依然可以形成图15B中示出的电路状态。则动力总成的电路状态可以参考图15A和图15B的描述,此处不作赘述。
相对图14中示出的波形示意图,控制器采用图16中示出的波形示意图,具体实现的是动力电池的放电控制复用了三个桥臂。即在三个桥臂中的每个桥臂的第二调制信号上都减去动力电池的预设目标值V2,依然可以实现前文结合图14至图15B所描述实施例的效果。并且,本申请实施例复用的是三个桥臂,使得三个桥臂之间可以均流。
可选的,在一些可行的实施方式中,可以在三个桥臂中的两个桥臂的第二调制信号上减去预设目标值V2(图中未示出),即动力电池的放电控制可以复用两个桥臂。此时依然可以形成图15A和图15B的电路状态,电动机输出扭矩,且动力电池BAT3处于放电状态。
可选的,在一些可行的实施方式,电动机可以不输出扭矩,动力电池处于放电状态。示例性的,此时动力电池在正母线BUS3+与负母线BUS3-之间输出电压。示例性的,动力总成包括有发电机,那么此时动力电池可以向发电机提供功率,该发电机在转动的过程中带动内燃机点火,以启动发电机将机械能转换为电能。
此时,控制器可以在MCU的三个桥臂中确定至少一个第二桥臂,并根据母线电压以及动力电池BAT3的电压确定每个第二桥臂的第二PWM信号。
可以理解的是,控制器根据母线电压以及动力电池BAT3的电压确定第二PWM信号的具体实现方式可以参考现有BOOST变换器中开关管的控制信号的确定方式,此处不作赘述。
其中,动力电池BAT3放电,即动力电池BAT3向母线输出电压。动力电池BAT3向母线输出电压可以分为电动机绕组储能阶段以及动力电池放电阶段。图17A和图17B以三个桥臂分别作为三个第二桥臂为例,在图17A中示出的电路状态中,开关管Q31、开关管Q33和开关管Q35导通,以及开关管Q32、开关管Q34和开关管Q36关断。此时,动力电池BAT3经电动机绕组NU3放电、动力电池BAT3经电动机绕组NV3放电以及动力电池BAT3经电动机绕组NW3放电,此时MCU将动力电池BAT3的电压变换得到第四电压,并在正母线BUS3+与负母线BUS3-之间输出该第四电压。那么连接在正母线BUS3+与负母线BUS3-之间的GCU可以根据该第四电压驱动发电机。总的来说,动力电池放电,以驱动发电机。
示例性的,图15A示出的电路状态可以理解为图17A示出的电路状态与图10中示出的电路状态之间的叠加。
在图17B中示出的电路状态中,开关管Q31、开关管Q33和开关管Q35关断,以及开关管Q32、开关管Q34和开关管Q36导通。此时电动机绕组NU3、电动机绕组NV3和电动机绕组NW3处于储能阶段。示例性的,图15B示出的电路状态可以理解为图17B示出的电路状态与图10示出的电路状态之间的叠加。即每个电动机绕组上流过的电流是电动机输出扭矩的电流与动力电池的放电电流的叠加。
需要说明的是,图17A和图17B中示出的电路状态应当理解为示例,在其他可行的实施方式中,可以控制三个桥臂中的一个桥臂或两个桥臂,即可实现如BOOST变换器的功能。
综上所述,在前文结合图10至图17B所描述的实施例中,动力电池BAT3的一端是正极,连接电动机绕组;动力电池BAT3的另一端是负极,连接负母线BUS3-。
可选的,在一些可行的实施方式中,动力电池的一端可以是负极,连接电动机绕组;动力电池的另一端可以是正极,连接正母线。
此时,动力总成的结构可以参见图18,如图18所示,本申请实施例提供的动力总成包括MCU 1800以及电动机M18。可以看出,图18中的动力总成与前文结合图3至图17B中示出的动力总成的区别在于,动力电池BAT18的另一端连接的是正母线。
则有,三个桥臂中的每个桥臂的第一端连接正母线BUS18+,即开关管Q181的集电极、开关管Q183的集电极以及开关管Q185的集电极连接正母线BUS18+。每个桥臂的第二端连接负母线BUS18-,即开关管Q182的发射极、开关管Q184的发射极以及开关管Q186的发射极连接负母线BUS18-。每个桥臂的中点连接一个电动机绕组的一端,即开关管Q181的发射极与开关管Q182的集电极连接电动机绕组NU18的一端,开关管Q183的发射极与开关管Q184的集电极连接电动机绕组NV18的一端,开关管Q185的发射极与开关管Q186的集电极连接电动机绕组NW18的一端。
电动机绕组NU18的另一端、电动机绕组NV18的另一端以及电动机绕组NW18的另一端连接动力电池BAT18的一端,动力电池BAT18的另一端连接正母线BUS18+。
同理的,动力总成还包括连接在正母线BUS18+与负母线BUS18-之间的母线电容单元(例如电容C181)。
可选的,可以在图18中示出的动力总成中增加发电模块,得到图19中示出的动力总成。此时,动力总成除了包括前文结合图18所描述的MCU 1800以及电动机M18之外,还包括GCU 1901和发电机M19。
需要解释的是,MCU 1800、电动机M18、GCU 1901和发电机M19可以一起集成在动力总成内。或者,MCU 1800和电动机M18可以集成在动力总成内,GCU 1901和发电机M19可以单独设置。
具体实现中,GCU 1901的输入端连接发电机M19,GCU 1901的输出端连接在正母线BUS18+与负母线BUS18-之间。该GCU 1901可以将发电机M19输出的交流电转换为直流电,并将该直流电在正母线BUS18+与负母线BUS18-之间输出。
可选的,在一些可行的实施方式中,正母线BUS18+与负母线BUS18-之间的母线电压可以是发电机M19提供的,也可以是动力电池BAT18和发电机M19共同提供的。
此时,图9、图12、图14和图16中示出的波形示意图依然适用于图18和图19中的动力总成的结构。
在一些可行的实施方式中,控制器向每个桥臂发送图9中示出的t0时刻之前的信号,即控制器向开关管Q181发送t0时刻之前的PWM_Q31信号、向开关管Q183发送t0时刻之前的PWM_Q33信号,以及向开关管Q185发送t0时刻之前的PWM_Q35信号。此时,电动机M18的三个电动机绕组的电流和为零,电动机M18输出扭矩。
示例性的,以开关管Q181、开关管Q183和开关管Q185关断,以及开关管Q182、开关管Q184和开关管Q186导通为例,图18中示出的动力总成可以形成图20中示出的电路状态。即电动机M18的电流从电动机绕组NU18流入,从电动机绕组NV18和电动机绕组NW18流出,在该电路状态中有IU18+IV18+IW18=0。此时,电动机M18输出扭矩,即发电机驱动电动机M18。
可选的,在一些可行的实施方式中,控制器可以每个桥臂发送图9中示出的t0时刻之后的信号,即控制器向开关管Q181发送t0时刻之后的PWM_Q31信号、向开关管Q183发送t0时刻之后的PWM_Q33信号,以及向开关管Q185发送t0时刻之后的PWM_Q35信号。此时,电动机M18输出扭矩,且动力电池BAT18放电。即发电机与动力电池共同驱动电动机M18。
示例性的,以t0时刻至t1时刻之间的时间段为例,此时PWM_Q31信号、PWM_Q33信号和PWM_Q35信号都高电平,即开关管Q181、开关管Q183和开关管Q185导通,以及开关管Q182、开关管Q184和开关管Q186关断,动力总成可以形成图21A中示出的电路状态。如图21A所示,假设三个电机绕组的感抗相同,则电动机绕组NU18上流过的电流是IU18+IDC18/3,电动机绕组NV18上流过的电流是IV18+IDC18/3,电动机绕组NW18上流过的电流是IW18+IDC18/3,其中,IU18+IV18+IW18=0。此时,电动机M18输出扭矩,三个电动机绕组处于储能阶段。
在t2时刻至t3时刻之间的时间段内,此时PWM_Q31信号、PWM_Q33信号和PWM_Q35信号都为低电平,即开关管Q181、开关管Q183和开关管Q185关断,以及开关管Q182、开关管Q184和开关管Q186导通,动力总成可以形成图21B中示出的电路状态。如图21B所示,每个电动机绕组的电流不可突变,三个电动机绕组上流过的电流依然如图21A中示出的电路状态中流过的电流,即电动机绕组NU18上流过的电流是IU18+IDC18/3,电动机绕组NV18上流过的电流是IV18+IDC18/3,电动机绕组NW18上流过的电流是IW18+IDC18/3,其中,IU18+IV18+IW18=0。此时,电动机M18输出扭矩。并且动力电池BAT18放电,放电电流是IDC18
同理的,控制器向每个桥臂发送图12中示出的t0′时刻之后的信号,即控制器向开关管Q181发送t0′时刻之后的PWM_Q31′信号、向开关管Q183发送t0′时刻之后的PWM_Q33′信号,以及向开关管Q185发送t0′时刻之后的PWM_Q35′信号。
示例性的,在t0′时刻至t1′时刻之间的时间段,动力总成依然可以形成图21A中示出的电路状态;在t1′时刻至t2′时刻之间的时间段,动力总成依然可以形成图21B中示出的电路状态。则动力总成的电路状态可以参考图21A和图21B的描述,此处不作赘述。
可选的,在一些可行的实施方式中,控制器可以在MCU的三个桥臂中确定至少一个第二桥臂,并根据母线电压以及动力电池BAT18的电压确定每个第二桥臂的第二PWM信号。此时,控制器根据母线电压以及动力电池BAT18的电压确定第二PWM信号的具体实现方式可以参考现有BOOST变换器中开关管的控制信号的确定方式。
其中,电容C181向动力电池BAT18充电可以分为电动机绕组储能阶段以及动力电池充电阶段。图22A和图22B以三个桥臂分别作为三个第二桥臂为例,在图22A中示出的电路状态中,开关管Q181、开关管Q183和开关管Q185导通,以及开关管Q182、开关管Q184和开关管Q186关断。此时电动机绕组NU18、电动机绕组NV18和电动机绕组NW18处于储能阶段。示例性的,图21A示出的电路状态可以理解为图22A示出的电路状态与图20示出的电路状态之间的叠加。
在图22B中示出的电路状态中,开关管Q181、开关管Q183和开关管Q185关断,以及开关管Q182、开关管Q184和开关管Q186关断。此时,动力电池BAT18通过三个电动机绕组向电容C181提供电压,即在正母线BUS18+与负母线BUS18-之间输出电压,电动机M18由动力电池BAT18驱动。示例性的,图21B示出的电路状态可以理解为图22B示出的电路状态与图20示出的电路状态之间的叠加。即每个发电机绕组上流过的电流是发电机产生的电流与动力电池的放电电流的叠加。
需要说明的是,图22A和图22B中示出的电路状态应当理解为示例,在其他可行的实施方式中,可以控制三个桥臂中的一个桥臂或两个桥臂,即可实现如BOOST变换器的功能。
可选的,在一些可行的实施方式中,控制器向每个桥臂发送图14中示出的t4时刻之前的信号,即控制器向开关管Q181发送t4时刻之前的PWM1_Q31信号、向开关管Q183发送t4时刻之前的PWM1_Q33信号,以及向开关管Q185发送t4时刻之前的PWM1_Q35信号。此时,以开关管Q181、开关管Q183和开关管Q185关断,以及开关管Q182、开关管Q184和开关管Q186导通为例,动力总成也可以形成图20中示出的电路状态,在该电路状态中有IU18+IV18+IW18=0,电动机M18输出扭矩。
可选的,在一些可行的实施方式中,控制器可以每个桥臂发送图14中示出的t4时刻之后的信号,即控制器向开关管Q181发送t4时刻之后的PWM1_Q31信号、向开关管Q183发送t4时刻之后的PWM1_Q33信号,以及向开关管Q185发送t4时刻之后的PWM1_Q35信号。此时,电动机M18输出扭矩,且动力电池BAT18处于充电状态。即发电机驱动电动机M18,且向动力电池BAT18充电。
示例性的,以t4时刻至t5时刻之间的时间段为例,此时PWM1_Q31信号、PWM1_Q33信号和PWM1_Q35信号都为高电平,即开关管Q181、开关管Q183和开关管Q185导通,以及开关管Q182、开关管Q184和开关管Q186关断,动力总成可以形成图23A中示出的电路状态。如图23A所示,假设三个电机绕组的感抗相同,则电动机绕组NU18上流过的电流是IU18+IC18/3,电动机绕组NV18上流过的电流是IV18+IC18/3,电动机绕组NW18上流过的电流是IW18+ICI8/3,其中,IU18+IV18+IW18=0。此时,电动机输出扭矩,三个电动机绕组处于储能阶段。
在t6时刻至t7时刻之间的时间段内,此时PWM1_Q31信号、PWM1_Q33信号和PWM1_Q35信号都为低电平,即开关管Q181、开关管Q183和开关管Q185关断,以及开关管Q182、开关管Q184和开关管Q186导通,动力总成可以形成图23B中示出的电路状态。如图23B所示,三个电动机绕组上流过的电流依然如图23A中示出的电路状态中流过的电流,即电动机绕组NU18上流过的电流是IU18+IC18/3,电动机绕组NV18上流过的电流是IV18+IC18/3,电动机绕组NW18上流过的电流是IW18+IC18/3,其中,IU18+IV18+IW18=0。此时,电动机输出扭矩,并且电动机绕组NU18向动力电池BAT18充电,电动机绕组NV18向动力电池BAT18充电,电动机绕组NW18向动力电池BAT18充电。即动力电池BAT18处于充电状态,充电电流为IC18
同理的,控制器向每个桥臂发送图16中示出的t4′时刻之后的信号,即控制器向开关管Q181发送t4′时刻之后的PWM_Q31信号、向开关管Q183发送t4′时刻之后的PWM_Q183信号,以及向开关管Q185发送t4′时刻之后的PWM_Q185信号。示例性的,在t4′时刻至t5′时刻之间的时间段,动力总成依然可以形成图23A中示出的电路状态;在t6′时刻至t7′时刻之间的时间段,动力总成依然可以形成图23B中示出的电路状态。则动力总成的电路状态可以参考图23A和图23B的描述,此处不作赘述。
可选的,在一些可行的实施方式中,控制器可以在MCU的三个桥臂中确定至少一个第二桥臂,并根据母线电压以及动力电池BAT18的电压确定每个第二桥臂的第二PWM信号。此时,控制器根据母线电压以及动力电池BAT18的电压确定第二PWM信号的具体实现方式可以参考现有BUCK变换器中的开关管的控制信号的确定方式。
其中,电容C181向动力电池BAT18充电可以分为电动机绕组储能阶段以及动力电池充电阶段。图24A和图24B以三个桥臂分别作为三个第二桥臂为例,在图24A中示出的电路状态中,开关管Q181、开关管Q183和开关管Q185关断,以及开关管Q182、开关管Q184和开关管Q186导通。假设三个电机绕组的感抗相同,则电动机绕组NU18上流过的电流是IC18/3,电动机绕组NV18上流过的电流是IC18/3,电动机绕组NW18上流过的电流是IC18/3,此时,电动机绕组NU18向动力电池BAT18充电,电动机绕组NV18向动力电池BAT18充电,电动机绕组NW18向动力电池BAT18充电,则动力电池的充电电流可以是IC18。即电容C181向动力电池BAT18充电。
在图24B中示出的电路状态中,开关管Q181、开关管Q183和开关管Q185导通,以及开关管Q182、开关管Q184和开关管Q186关断。此时,电动机绕组NU3、电动机绕组NV3和电动机绕组NW3处于储能阶段。
可以理解的是,图3至图17B中示出的动力总成与图18至图24B中示出的动力总成的区别点在于,动力电池连接的是正母线还是负母线。因此,图18至图24B所示的动力总成也可以实现如图3至图17B所描述实施例的有益效果,两者之间可以相互参考,此处不作赘述。
需要说明的是,上述术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (20)

1.一种动力总成,其特征在于,所述动力总成包括电动机控制单元(Motor ControllerUnit,MCU)以及电动机;所述MCU包括N个桥臂;所述电动机包括与所述N个桥臂对应的N个电动机绕组;其中,N大于或等于2;
所述N个桥臂中的每个桥臂包括第一端和第二端;
所述每个桥臂的第一端连接正母线,所述每个桥臂的第二端连接负母线,所述每个桥臂的中点连接一个电动机绕组的一端;
所述N个电动机绕组中的每个电动机绕组的另一端连接所述动力电池的一端,所述动力电池的另一端连接所述正母线或所述负母线。
2.根据权利要求1所述的动力总成,其特征在于,所述动力总成还包括连接在所述正母线与所述负母线之间的母线电容单元;所述MCU还包括控制器,所述N个桥臂包括至少一个第一桥臂;
所述第一桥臂用于根据第一脉冲宽度调制(Pulse Width Modulation,PWM)信号导通或关断;其中,所述第一PWM信号用于使所述母线电容单元经所述第一桥臂连接的电动机绕组向所述动力电池充电;或者所述第一PWM信号用于使所述动力电池经所述第一桥臂连接的电动机绕组放电。
3.根据权利要求2所述的动力总成,其特征在于,所述第一PWM信号为所述控制器根据所述电动机的工作参数、母线电压以及所述动力电池的电压确定;所述母线电压为所述正母线与所述负母线之间的电压。
4.根据权利要求3所述的动力总成,其特征在于,所述第一PWM信号为所述控制器根据所述电动机的工作参数、母线电压以及所述动力电池的电压确定,具体包括:
所述第一PWM信号为所述控制器根据第一调制信号与预设参考信号比较得到;
其中,所述第一调制信号为所述控制器根据第二调制信号与预设目标值得到;所述第二调制信号为所述控制器根据所述电动机的工作参数以及所述母线电压确定;所述预设目标值为所述控制器根据所述动力电池的电压以及所述母线电压确定。
5.根据权利要求4所述的动力总成,其特征在于,所述第一PWM信号用于使所述母线电容单元经所述第一桥臂连接的电动机绕组向所述动力电池充电时,所述第一调制信号为所述控制器根据所述第二调制信号与预设目标值得到,具体包括:
所述第一调制信号为所述第二调制信号与所述预设目标值之和。
6.根据权利要求4所述的动力总成,其特征在于,所述第一PWM信号用于使所述动力电池经所述第一桥臂连接的电动机绕组放电时,所述第一调制信号为所述控制器根据所述第二调制信号与预设目标值得到,具体包括:
所述第一调制信号为所述第二调制信号与所述预设目标值之差。
7.根据权利要求1所述的动力总成,其特征在于,所述动力总成还包括连接在所述正母线与所述负母线之间的母线电容单元;所述MCU还包括控制器,所述N个桥臂包括至少一个第二桥臂;
所述第二桥臂用于根据第二PWM信号导通或关断;其中,所述第二PWM信号用于使所述母线电容单元经所述第二桥臂连接的电动机绕组向所述动力电池充电;或者所述第二PWM信号用于使所述动力电池经所述第二桥臂连接的电动机绕组放电。
8.根据权利要求7所述的动力总成,其特征在于,所述第二PWM信号为所述控制器根据母线电压以及所述动力电池的电压确定;所述母线电压为所述正母线与所述负母线之间的电压。
9.根据权利要求2-8任一项所述的动力总成,其特征在于,所述动力总成还包括发电机控制单元(Generator Control Unit,GCU)以及发电机;其中,所述GCU的输入端连接所述发电机,所述GCU的输出端连接在所述正母线与所述负母线之间。
10.根据权利要求9所述的动力总成,其特征在于,所述第一PWM信号用于使所述母线电容单元经所述第一桥臂连接的电动机绕组向所述动力电池充电时,所述GCU用于将所述发电机输出的电压变换得到第一电压;
所述MCU用于根据所述第一电压驱动所述电动机输出扭矩且向所述动力电池充电。
11.根据权利要求9所述的动力总成,其特征在于,所述第一PWM信号用于使所述动力电池经所述第一桥臂连接的电动机绕组放电时,所述GCU用于将所述发电机输出的电压变换得到第二电压;
所述MCU用于根据所述第二电压和所述动力电池的电压驱动所述电动机输出扭矩。
12.根据权利要求7或8所述的动力总成,其特征在于,所述动力总成还包括GCU以及发电机;其中,所述GCU的输入端连接所述发电机,所述GCU的输出端连接在所述正母线与所述负母线之间;
所述第二PWM信号用于使所述母线电容单元经所述第二桥臂连接的电动机绕组向所述动力电池充电时,所述GCU用于将所述发电机输出的电压变换得到第三电压;
所述MCU用于根据所述第三电压向所述动力电池充电。
13.根据权利要求7或8所述的动力总成,其特征在于,所述动力总成还包括GCU以及发电机;其中,所述GCU的输入端连接所述发电机,所述GCU的输出端连接在所述正母线与所述负母线之间;
所述第二PWM信号用于使所述动力电池经所述第二桥臂连接的电动机绕组放电时,所述MCU用于将所述动力电池的电压变换得到第四电压;
所述GCU用于根据所述第四电压驱动所述发电机。
14.根据权利要求1-13任一项所述的动力总成,其特征在于,所述每个桥臂还包括第三端;其中,所述每个桥臂的第三端连接所述正母线与所述负母线的中性点,所述中性点的电压为所述正母线与所述负母线之间的电压的一半。
15.一种动力总成的控制方法,其特征在于,所述动力总成包括电动机控制单元(MotorController Unit,MCU)、电动机以及连接在所述正母线与所述负母线之间的母线电容单元;所述MCU包括N个桥臂,所述N个桥臂包括至少一个第一桥臂;所述电动机包括与所述N个桥臂对应的N个电动机绕组;其中,N大于或等于2;
所述控制方法包括:
根据第一脉冲宽度调制(Pulse Width Modulation,PWM)信号导通或关断所述第一桥臂;使得所述母线电容单元经所述第一桥臂连接的电动机绕组向所述动力电池充电;或者使得所述动力电池经所述第一桥臂连接的电动机绕组放电。
16.根据权利要求15所述的控制方法,其特征在于,所述N个桥臂中的每个桥臂包括第一端和第二端;所述每个桥臂的第一端连接正母线,所述每个桥臂中的第二端连接负母线;
在根据第一PWM信号导通或关断所述第一桥臂之前,所述控制方法还包括:
根据所述电动机的工作参数、母线电压以及所述动力电池的电压确定所述第一PWM信号;所述母线电压为所述正母线与所述负母线之间的电压。
17.根据权利要求16所述的控制方法,其特征在于,根据所述电动机的工作参数、母线电压以及所述动力电池的电压确定所述第一PWM信号,具体包括:
根据第二调制信号与预设目标值得到第一调制信号;
根据第一调制信号与预设参考信号比较得到第一PWM信号;所述第二调制信号为所述控制器根据所述电动机的工作参数以及所述母线电压确定;所述预设目标值为所述控制器根据所述动力电池的电压以及所述母线电压确定。
18.根据权利要求17所述的控制方法,其特征在于,所述第一PWM信号使得所述母线电容单元经所述第一桥臂连接的电动机绕组向所述动力电池充电时,所述第一调制信号为所述第二调制信号与所述预设目标值之和。
19.根据权利要求17所述的控制方法,其特征在于,所述第一PWM信号用于使所述动力电池经所述第一桥臂连接的电动机绕组放电时,所述第一调制信号为所述第二调制信号与所述预设目标值之差。
20.一种混合动力汽车,其特征在于,所述混合动力汽车包括动力电池以及如权利要求1-14任一项所述的动力总成;其中,所述动力总成中的电动机与所述动力电池连接。
CN202210989253.0A 2022-08-17 2022-08-17 一种动力总成、控制方法及混合动力汽车 Pending CN115339329A (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202210989253.0A CN115339329A (zh) 2022-08-17 2022-08-17 一种动力总成、控制方法及混合动力汽车
EP23187182.3A EP4331894A1 (en) 2022-08-17 2023-07-24 Powertrain, control method, and hybrid electric vehicle
US18/364,666 US20240128914A1 (en) 2022-08-17 2023-08-03 Powertrain, control method, and hybrid electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210989253.0A CN115339329A (zh) 2022-08-17 2022-08-17 一种动力总成、控制方法及混合动力汽车

Publications (1)

Publication Number Publication Date
CN115339329A true CN115339329A (zh) 2022-11-15

Family

ID=83952129

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210989253.0A Pending CN115339329A (zh) 2022-08-17 2022-08-17 一种动力总成、控制方法及混合动力汽车

Country Status (3)

Country Link
US (1) US20240128914A1 (zh)
EP (1) EP4331894A1 (zh)
CN (1) CN115339329A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024104048A1 (zh) * 2022-11-16 2024-05-23 华为数字能源技术有限公司 电动车辆驱动***、控制器及电动车辆

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112016000426B4 (de) * 2015-01-21 2024-02-15 Mitsubishi Electric Corporation Energieumwandlungseinrichtung
US10581363B2 (en) * 2018-06-22 2020-03-03 Ford Global Technologies, Llc Isolated dual bus hybrid vehicle drivetrain
DE102018120236A1 (de) * 2018-08-20 2020-02-20 Thyssenkrupp Ag Ladevorrichtung mit steuerbarer Zwischenkreismittelpunktsspannung sowie Antriebssystem mit einer derartigen Ladevorrichtung

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024104048A1 (zh) * 2022-11-16 2024-05-23 华为数字能源技术有限公司 电动车辆驱动***、控制器及电动车辆

Also Published As

Publication number Publication date
EP4331894A1 (en) 2024-03-06
US20240128914A1 (en) 2024-04-18

Similar Documents

Publication Publication Date Title
US7362597B2 (en) AC voltage generating apparatus and motive power outputting apparatus
US8039987B2 (en) Power source device and vehicle with power source device
US10836264B2 (en) Drive system
US8072725B2 (en) Connection unit and vehicle incorporating the same
CN111355430B (zh) 电机控制电路、充放电方法、加热方法及车辆
US8110948B2 (en) Power conversion apparatus and method
CN103269901B (zh) 把至少一个直流源耦合到可控储能器的***以及所属的运行方法
KR20130100285A (ko) 영상 덤프 저항에 연결된 중성점을 갖는 hvdc 컨버터
RU2738965C1 (ru) Устройство электропитания
CN115339328A (zh) 一种动力总成、控制方法及混合动力汽车
US20220355674A1 (en) Energy conversion apparatus and vehicle
US9190921B2 (en) Transformerless cycloconverter
US7719138B2 (en) Two-source series inverter
WO2014026460A1 (zh) 一种集成开关磁阻电机驱动与低压电池充电的变换装置
JP2018102070A (ja) 電力変換装置
US20240128914A1 (en) Powertrain, control method, and hybrid electric vehicle
Akiyama et al. A novel charging control for D-EPC with DC power sources connected in series
CN112224054B (zh) 能量转换装置及车辆
CN112224056B (zh) 一种车辆及其能量转换装置
Sung et al. A power-assistance system using a battery and an electric double-layer capacitor bank for light electric vehicles
EP3975411B1 (en) Rectifier, charging system and electric vehicle
CN104118331B (zh) 混合动力汽车电机驱动电路
Xia et al. An integrated modular converter for switched reluctance motor drives in range-extended electric vehicles
CN116404944A (zh) 一种动力总成、控制器及混合动力汽车
KR20150062999A (ko) 에너지 저장 장치용 충전 회로를 포함하는 전기 구동 시스템, 그리고 에너지 저장 장치의 작동 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination