CN115301197A - 一种复合改性蒙脱土吸附剂、制备方法及其应用 - Google Patents

一种复合改性蒙脱土吸附剂、制备方法及其应用 Download PDF

Info

Publication number
CN115301197A
CN115301197A CN202210837117.XA CN202210837117A CN115301197A CN 115301197 A CN115301197 A CN 115301197A CN 202210837117 A CN202210837117 A CN 202210837117A CN 115301197 A CN115301197 A CN 115301197A
Authority
CN
China
Prior art keywords
montmorillonite
adsorbent
modified montmorillonite
composite modified
benzene sulfonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210837117.XA
Other languages
English (en)
Inventor
赵彬侠
樊笑笑
马继贤
高怡嘉
赵宇科
刘林学
张小里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Jutai New Energy Materials Co ltd
Original Assignee
Northwest University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwest University filed Critical Northwest University
Priority to CN202210837117.XA priority Critical patent/CN115301197A/zh
Publication of CN115301197A publication Critical patent/CN115301197A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/12Naturally occurring clays or bleaching earth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3021Milling, crushing or grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3071Washing or leaching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/22Chromium or chromium compounds, e.g. chromates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Dispersion Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Inorganic Chemistry (AREA)
  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明公开了一种复合改性蒙脱土吸附剂、制备方法及其应用,本发明的复合改性蒙脱土吸附剂的制备方法以蒙脱土为吸附剂原料,以阳离子表面活性剂氯代十六烷基吡啶和阴离子表面活性剂十二烷基苯磺酸钠为改性剂,本发明方法实现了对蒙脱土的阳离子与阴离子有机复合改性,避免了通过有机或无机单一改性得到的蒙脱土吸附剂对六价铬离子吸附能力低、吸附效果差的问题不仅能够扩大蒙脱土的层间结构,而且还可以改变其表面的负电荷的性质以及疏水性,从而使得蒙脱土从废水中更容易吸附含铬离子。采用本发明方法制备复合改性蒙脱土吸附剂不仅能够扩大蒙脱土的层间结构,而且还可以改变其表面的负电荷的性质以及疏水性。

Description

一种复合改性蒙脱土吸附剂、制备方法及其应用
技术领域
本发明涉及污水处理技术领域,具体涉及一种复合改性蒙脱土吸附剂、制备方法及其应用。
背景技术
由于工业化的快速发展,大量有毒重金属被排放到地下水生态***中,对水生***造成许多影响,造成健康危害,损害生态,干扰了水的合法使用。由于在冶金、电镀、金属整理、皮革制革、造纸和核电站等工业中大量使用铬盐,导致这些工业产生的废水中含有铬离子,排放到水中或土壤中造成严重的铬污染。而铬是一种独特的金属,在环境中经常以Cr(III)和Cr(VI)氧化态存在,如铬酸盐(CrO4 2-或 HCrO4 -)和重铬酸盐(Cr2O7 2-)。Cr(III)是生物必需元素,在碳水化合物代谢中发挥重要作用。但长期暴露Cr(VI)会致癌,易患皮肤、溃疡、过敏、鼻中隔破裂和肾功能衰竭等疾病,其毒性是Cr(III)的100-1000 倍,且六价铬以其水溶性阴离子形式在土壤和水介质中非常容易渗透。因此,工业以及其他行业废水在排放含铬废水之前必须要低于 0.05mg/L。
目前去除废水中含水铬离子的技术主要包括反渗透法、超滤法、离子交换法、化学沉淀法和电解法,但是这些方法已被证明是不经济的。采用功能性粘土对污染物进行吸附是一种非常有效的去除水中有毒物质的技术,现有技术中,对蒙脱土进行改性研究较为广泛的是使用无机和有机改性剂,但鲜见使用两种有机物(阳离子和阴离子表面活性剂)对进行复合改性并进行六价铬的吸附的研究。
发明内容
针对现有技术存在的不足之处,本发明的目的在于,提供复合改性蒙脱土吸附剂、制备方法及其应用,以解决现有技术中蒙脱土改性方法单一以及单独改性蒙脱土对六价铬离子吸附效果较差的问题。
为达到上述目的,本发明采取如下的技术方案:
一种复合改性蒙脱土吸附剂的制备方法,以蒙脱土为吸附剂原料,以阳离子表面活性剂氯代十六烷基吡啶为改性剂,以阴离子表面活性剂十二烷基苯磺酸钠为改性剂,以去离子水为溶剂,混合搅拌并加入适量PH值调节剂得到混合料液;将混合料液在水浴中加热搅拌2~4h 后静置老化12~24h得到反应产物;对反应产物进行洗涤、干燥和研磨处理得到改性蒙脱土吸附剂;
其中,所述氯代十六烷基吡啶、十二烷基苯磺酸钠与蒙脱土的质量比为(1~4):1:(1~5)。
本发明还具有如下技术特征:
可选的,所述氯代十六烷基吡啶、十二烷基苯磺酸钠与蒙脱土的质量比为2:1:4。
可选的,所述PH调节剂为盐酸或硝酸。
可选的,所述水浴中加热的温度为50~70℃。
可选的,所述干燥的温度为60~80℃,干燥时间为24~48h。
可选的,具体包括以下步骤:
步骤1、在室温条件下,将配方量的氯代十六烷基吡啶溶于去离子水中,超声分散得到氯代十六烷基吡啶改性剂溶液;
步骤2、将配方量的蒙脱土溶于所述步骤1得到的氯代十六烷基吡啶改性剂溶液中,在室温条件下在磁力搅拌器上搅拌5~10h,得到氯代十六烷基吡啶改性蒙脱土的悬浮液;
步骤3、将配方量的十二烷基苯磺酸钠溶于去离子水中,超声分散得到十二烷基苯磺酸钠改性剂溶液;
步骤4、将步骤3得到的十二烷基苯磺酸钠改性剂溶液加入步骤 2得到的氯代十六烷基吡啶改性蒙脱土的悬浮液中,在磁力搅拌条件下,加入适量PH值调节剂,得到PH值为5~6的混合料液;
步骤5、将混合料液在50~70℃的水浴中加热搅拌2~4h后静置老化12~24h得到反应产物;对反应产物进行6-10次离心洗涤后,在 60~80℃条件下干燥24~48h,然后研磨即得;
其中,氯代十六烷基吡啶、十二烷基苯磺酸钠与蒙脱土的质量比为2:1:4。
具体的,步骤1和步骤3所述的超声分散具体包括:在90Hz条件下超声分散15min。
更进一步的,所述蒙脱土为纳米级钠基蒙脱土,细度为200~250 目。
本发明还保护一种复合改性蒙脱土吸附剂,所述复合改性蒙脱土吸附剂采用上述的方法制备。
本发明还保护一种复合改性蒙脱土吸附剂用于处理含六价铬离子废水的应用。
具体的,所述复合改性蒙脱土吸附剂的用量为2~3g/L含铬废水,含铬废水的浓度为30mg/L,在恒温磁力搅拌机中进行含铬废水的吸附,吸附条件为:温度为25℃,转速为800rmp,时间为1~120分钟,恒温搅拌后离心分离,滤液调节至中性排放。
本发明与现有技术相比,有益的技术效果是:
(I)本发明以阳离子表面活性剂氯代十六烷基吡啶和阴离子表面活性剂十二烷基苯磺酸钠为改性剂,实现了对蒙脱土的阳离子与阴离子有机复合改性,避免了通过有机或无机单一改性得到的蒙脱土吸附剂对六价铬离子吸附能力低、吸附效果差的问题。
(II)采用本发明方法制备复合改性蒙脱土吸附剂不仅能够扩大蒙脱土的层间结构,而且还可以改变其表面的负电荷的性质以及疏水性,从而使得蒙脱土从废水中更容易吸附含铬离子。
(III)本发明生产过程简单,制备过程易于控制、生产时间短、生产效率高,对环境污染小,有利于大规模生产,具有较高的工业利用价值。
(V)本发明制备的复合改性蒙脱土吸附剂的化学性质稳定,高温不易分解,且在PH为4-7之间对铬离子都有较高的吸附性,以下结合实施例对本发明的具体内容作进一步详细解释说明。
附图说明
图1是未改性蒙脱土吸附剂、单一阳离子表面活性剂改性蒙脱土吸附剂和实施例1制得的复合改性蒙脱土吸附剂的Zeta电位表征图;
图2是未改性蒙脱土吸附剂的扫描电子显微镜图;
图3是单一阳离子表面活性剂改性蒙脱土吸附剂的扫描电子显微镜图;
图4是复合改性蒙脱土吸附剂的扫描电子显微镜图;
图5是改性前后蒙脱土吸附剂的红外图;
图6是改性前后蒙脱土吸附剂的XRD图。
具体实施方式
遵从上述技术方案,以下给出本发明的具体实施例,需要说明的是本发明并不局限于以下具体实施例,凡在本申请技术方案基础上做的等同变换均落入本发明的保护范围。
需要说明的是,本发明中的所有用到的装置和设备,在没有特殊说明的情况下,均采用本领域已知的装置和设备,例如,在本发明中:干燥装置为现有技术中已知的干燥装置。
以下对本发明所涉及的定义或概念加以说明:
蒙脱土(Mt),一类由纳米厚度的表面带负电的硅酸盐片层,依靠层间的静电作用而堆积在一起构成的土状矿物,其晶体结构中的晶胞是单一的八面体金属-氧层被两个四面体硅酸盐纳米层包裹。具有独特的一维层状纳米结构和阳离子交换性特性,且作为一种天然吸附材料因储量丰富、成本低廉、环境友好、热稳定性高从而赋予诸多改性的可能和应用领域的扩大,也因此被称为“万能材料”。然而,天然蒙脱土在中性溶液中带负电荷,会对Cr(VI)负离子产生静电排斥,此外,天然蒙脱土的层间距和孔体积较小,限制了其对重金属的吸附能力。
氯化十六烷基吡啶(CPC)是一种应用广泛的阳离子表面活性剂,用于环境修复,如增强膜分离性能。CPC具有吡啶头部基团和含有 16个碳原子的烷基链,当胶束存在于水中时,对铬酸盐有较高的选择性。基于其特殊的两亲性质,本研究选择CPC作为阳离子表面活性剂,对原蒙脱土进行改性,去除Cr(VI)。
十二烷基苯磺酸钠(SDBS)是常用的阴离子型表面活性剂,为白色或淡黄色粉状或片状固体,难挥发,易溶于水,溶于水而成半透明溶液,化学性质较阳离子表面活性剂更稳定。
本发明中,单一阳离子表面活性剂改性蒙脱土吸附剂为采用氯化十六烷基吡啶改性的蒙脱土吸附剂。
实施例1
本实施例公开了一种复合改性蒙脱土吸附剂的制备方法,该方法以蒙脱土为吸附剂原料,以阳离子表面活性剂氯代十六烷基吡啶和阴离子表面活性剂十二烷基苯磺酸钠为改性剂,具体包括以下步骤:
步骤1、在室温条件下,称取1.2g氯代十六烷基吡啶溶于去离子水中,超声分散15min,得到氯代十六烷基吡啶改性剂溶液;
步骤2、将2g蒙脱土溶于所述步骤1得到的氯代十六烷基吡啶改性剂溶液中,在室温条件下在磁力搅拌器上搅拌6h,得到氯代十六烷基吡啶改性蒙脱土的悬浮液;
步骤3、将0.545g十二烷基苯磺酸钠溶于去20ml离子水中,超声分散得到十二烷基苯磺酸钠改性剂溶液;
步骤4、将步骤3得到的十二烷基苯磺酸钠改性剂溶液加入步骤 2得到的氯代十六烷基吡啶改性蒙脱土的悬浮液中,在磁力搅拌条件下,加入0.1M盐酸调节PH到5,得到PH值为5的混合料液;
步骤5、将混合料液在60℃的水浴中加热搅拌3h后静置老化16h 得到反应产物;对反应产物进行6次离心洗涤后,在70℃条件下干燥24h,然后研磨成粉末,过80目筛得到复合改性蒙脱土吸附剂。
如图6所示,本实例制得的复合改性蒙脱土吸附剂,蒙脱土的层间距d从1.26nm增加到2.03nm。
吸附性能测试:
将制备得到的复合改性蒙脱土吸附剂用于处理含铬离子的废水,投加至含铬离子浓度为30mg/L的废水溶液中,该吸附剂投加量为 2g/L含铬废水,调节混合溶液PH为5.77,在恒温磁力搅拌机中进行含铬废水的吸附,吸附条件为:温度为25℃,转速为800rmp,时间为2h,恒温搅拌后离心分离,滤液调节至中性排放,然后通过二苯碳酰二肼的显色反应,在540nm处测定六价铬离子的吸光度(紫外分光光度法)。最后通过标准曲线计算出水样中六价铬离子的浓度,进而计算六价铬的去除率。
实验结果如表1所示。
实施例2
本实施例公开了一种单一改性蒙脱土吸附剂的制备方法,该方法具体包括以下步骤:称取1.2g氯代十六烷基吡啶溶于50mL去离子水中,超声分散15min后,加入2g蒙脱土,室温下在磁力搅拌器搅拌 6h后,将沉淀物离心、洗涤六次,然后在70℃下烘干,研磨成粉末,过80目筛。得到氯代十六烷基吡啶改性的蒙脱土。
如图6所示,本实例制得的单一的有机阳离子表面活性剂改性蒙脱土吸附剂,蒙脱土层间距从1.26nm增加到1.91nm。
然后对本实施例得到的单一改性蒙脱土吸附剂用于处理含铬离子的废水,具体反应条件和添加量与实施例1相同。
实验结果如表1所示。
实施例3
本实施例中,将实施例1制备的复合改性蒙脱土吸附剂投加至含铬离子浓度为50mg/L的废水溶液中,然后检测六价铬的去除率。
实验结果如表1所示。
实施例4
本实施例中,将实施例1制备的复合改性蒙脱土吸附剂投加至含铬离子浓度为70mg/L的废水溶液中,然后检测六价铬的去除率。
实验结果如表1所示。
实施例5
本实施例中,将实施例1制备的复合改性蒙脱土吸附剂投加至含铬离子浓度为100mg/L的废水溶液中,然后检测六价铬的去除率。
实验结果如表1所示。
Figure RE-GDA0003885860400000081
Figure RE-GDA0003885860400000091
表1六价铬的去除率对比数据
从上表中的数据可以看出,采用本发明方法制得的复合改性蒙脱土吸附剂,对不同浓度的含铬废水(30~70mg/L)中的六价铬的去除率都较高。证明本发明的新型改性蒙脱土可以高效去除废水中的六价铬离子。而实施例2中的单一改性的蒙脱土吸附剂的对六价铬的去除率只能达到47.81%。从上表还可以看出,随着含铬浓度的增加,六价铬的去除率随之降低。这是由于初始浓度较低时,复合蒙脱土吸附剂中存在许多未被占据的吸附位点,所以可以吸附大量的含铬离子,但是,随着初始浓度的增加,大部分位点被铬离子占据,导致去除率降低。
从图1可以看出,随着pH值从2增加到12,未改性蒙脱土始终具有负电荷的性质。在pH<10时,单一阳离子表面活性剂改性蒙脱土吸附剂,即采用氯代十六烷基吡啶单一改性的蒙脱土(CPC-Mt) 的zeta电位为正,这是由于蒙脱土和CPC之间的结合以及CPC分子因疏水作用而聚集,使得蒙脱土表面带正电荷,表明氯代十六烷基吡啶已经成功加入到蒙脱土中。相比之下,采用本发明方法制备得到的复合改性蒙脱土(CPC-SDBS-Mt)吸附剂的zeta电位在PH值为2~12 时,由于氯代十六烷基吡啶和十二烷基苯磺酸钠在蒙脱土层间的***,使得其显示正电荷性质,且与CPC-Mt的电位差距不大。这表明:复合改性蒙脱土在所选PH范围内始终保持正电荷的性质,这对六价铬的吸附非常有利。
从图2、图3和图4的对比可以发现,改性前后,蒙脱土形貌发生了明显的变化。复合改性后蒙脱土吸附剂的片状结构更加疏松和卷曲,这是由于氯代十六烷基吡啶和十二烷基苯磺酸钠分子插层成功,增大了蒙脱土的层间距,且复合改性后疏松且褶皱的形貌更容易结合六价铬离子。
图5为改性前后的蒙脱土红外图,从图中可以看出,本实施例制得复合改性的蒙脱土的大部分能带位置没有变化,这表明改性后蒙脱土的基本晶体结构没有改变。蒙脱土的红外带在3620cm-1处被观察到,归因于与八面体O-Al3+或O-Si2+相关的-OH拉伸振动,对脱水不敏感,所以修饰后峰的变化强度不大。516cm-1处的带状峰是Mg-O 键的弯曲振动。在910cm-1的吸收峰代表Mt晶格中Al-O的弯曲振动。 CPC-Mt和CPC-SDBS-Mt在2916cm-1和2847cm-1的新峰是由对称和不对称的-CH2的拉伸振动和属于-CH2的弯曲振动引起的,表明CPC 和SDBS成功***蒙脱土层间。此外,1465cm-1处的峰归因于有机表面活性剂中-CH3基团的C-H剪切振动。1641cm-1处的谱带为吸附水的-OH弯曲振动,在CPC-Mt和CPC-SDBS-Mt光谱中,该谱带出现衰减,表明CPC的疏水烷基链插层对水分子有排斥作用。FT-IR分析的结果证实了CPC和SDBS对蒙脱石的成功改性。
图6为改性前后蒙脱土的XRD图,从中可以看出,在CPC插层后,CPC-Mt的衍射峰明显向低角度2θ=4.68°移动,基间距d001增加到1.91nm。这种基底间距的增加是由于CPC分子***到蒙脱土的层间空间。这表明蒙脱土层的成功膨胀可以归因于用阳离子表面活性剂CPC取代粘土水合的层间阳离子。在引入阳离子表面活性剂CTAB 后,再加入阴离子表面活性剂SSDBS。从图6中可以明显看出, CPC-SDBS-Mt的衍射峰明显偏移到低角度2θ=4.34°,基间距d001增加到2.03nm,说明在CPC存在的情况下,SDBS通过协同作用成功***到Mt的层间。
蒙脱土颗粒更喜欢水相可被沉淀下来,而单一改性和复合改性的蒙脱土则更倾向于正己烷相,这表明蒙脱土具有亲水表面,而复合改性后的蒙脱土则表现出明显的疏水特征。
结合以上分析,经过复合改性的蒙脱土在形貌和表面电荷性质方面都发生了较大的变化,这就使得复合改性后的蒙脱土要比单一改性后的蒙脱土对六价铬离子的吸附更为高效。同时实验性能测试得出了相符的结论,复合改性后的蒙脱土对六价铬离子的去除率可高达 99.49%,而单一改性后的蒙脱土对六价铬离子的去除率仅为47.81%。
以上结合附图详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。

Claims (10)

1.一种复合改性蒙脱土吸附剂的制备方法,其特征在于,包括以蒙脱土为吸附剂原料,以阳离子表面活性剂氯代十六烷基吡啶和阴离子表面活性剂十二烷基苯磺酸钠为改性剂,以去离子水为溶剂,混合搅拌并加入适量PH值调节剂得到混合料液;将混合料液在水浴中加热搅拌2~4h后静置老化12~24h得到反应产物;对反应产物进行洗涤、干燥和研磨处理得到改性蒙脱土吸附剂;
其中,所述氯代十六烷基吡啶、十二烷基苯磺酸钠与蒙脱土的质量比为(1~4):1:(1~5)。
2.如权利要求1所述的复合改性蒙脱土吸附剂的制备方法,其特征在于,所述氯代十六烷基吡啶、十二烷基苯磺酸钠与蒙脱土的质量比为2:1:4。
3.如权利要求1所述复合改性蒙脱土吸附剂,其特征在于,所述PH调节剂为盐酸或硝酸。
4.如权利要求1所述的复合改性蒙脱土吸附剂的制备方法,其特征在于,所述水浴中加热的温度为50~70℃。
5.如权利要求1所述的复合改性蒙脱土吸附剂的制备方法,其特征在于,所述干燥的温度为60~80℃,干燥时间为24~48h。
6.如权利要求1所述的复合改性蒙脱土吸附剂的制备方法,其特征在于,具体包括以下步骤:
步骤1、在室温条件下,将配方量的氯代十六烷基吡啶溶于去离子水中,超声分散得到氯代十六烷基吡啶改性剂溶液;
步骤2、将配方量的蒙脱土溶于所述步骤1得到的氯代十六烷基吡啶改性剂溶液中,在室温条件下在磁力搅拌器上搅拌5~10h,得到氯代十六烷基吡啶改性蒙脱土的悬浮液;
步骤3、将配方量的十二烷基苯磺酸钠溶于去离子水中,超声分散得到十二烷基苯磺酸钠改性剂溶液;
步骤4、将步骤3得到的十二烷基苯磺酸钠改性剂溶液加入步骤2得到的氯代十六烷基吡啶改性蒙脱土的悬浮液中,在磁力搅拌条件下,加入适量PH值调节剂,得到PH值为5~6的混合料液;
步骤5、将混合料液在50~70℃的水浴中加热搅拌2~4h后静置老化12~24h得到反应产物;对反应产物进行6-10次离心洗涤后,在60~80℃条件下干燥24~48h,然后研磨即得;
其中,氯代十六烷基吡啶、十二烷基苯磺酸钠与蒙脱土的质量比为2:1:4。
7.如权利要求6所述的复合改性蒙脱土吸附剂的制备方法,其特征在于,步骤1和步骤3所述的超声分散具体包括:在90Hz条件下超声分散15min。
8.如权利要求1所述的复合改性蒙脱土吸附剂的制备方法,其特征在于,所述蒙脱土为纳米级钠基蒙脱土,细度为200~250目。
9.一种复合改性蒙脱土吸附剂,其特征在于,所述复合改性蒙脱土吸附剂采用如权利要求1至8任一项权利要求所述的方法制备。
10.权利要求1至8任一项权利要求所述的复合改性蒙脱土吸附剂制备方法制得的复合改性蒙脱土吸附剂用于吸附含铬废水的应用,其特征在于,
所述复合改性蒙脱土吸附剂的用量为2~3g/L含铬废水,含铬废水的浓度为30mg/L,在恒温磁力搅拌机中进行含铬废水的吸附,吸附条件为:温度为25℃,转速为800rmp,时间为1~120分钟,恒温搅拌后离心分离,滤液调节至中性排放。
CN202210837117.XA 2022-07-15 2022-07-15 一种复合改性蒙脱土吸附剂、制备方法及其应用 Pending CN115301197A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210837117.XA CN115301197A (zh) 2022-07-15 2022-07-15 一种复合改性蒙脱土吸附剂、制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210837117.XA CN115301197A (zh) 2022-07-15 2022-07-15 一种复合改性蒙脱土吸附剂、制备方法及其应用

Publications (1)

Publication Number Publication Date
CN115301197A true CN115301197A (zh) 2022-11-08

Family

ID=83856288

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210837117.XA Pending CN115301197A (zh) 2022-07-15 2022-07-15 一种复合改性蒙脱土吸附剂、制备方法及其应用

Country Status (1)

Country Link
CN (1) CN115301197A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140274667A1 (en) * 2013-03-15 2014-09-18 Tda Research, Inc. Mercury removal sorbents
CN104591199A (zh) * 2014-12-24 2015-05-06 武汉工程大学 一种复配表面活性剂改性蒙脱土的方法以及制备的改性蒙脱土
CN104667879A (zh) * 2015-01-24 2015-06-03 福州大学 废水中钴、锰金属离子与对二甲苯的选择性吸附剂的制备
CN111871377A (zh) * 2020-06-30 2020-11-03 西北大学 一种复合改性蒙脱土磁性吸附剂、制备方法及其应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140274667A1 (en) * 2013-03-15 2014-09-18 Tda Research, Inc. Mercury removal sorbents
CN104591199A (zh) * 2014-12-24 2015-05-06 武汉工程大学 一种复配表面活性剂改性蒙脱土的方法以及制备的改性蒙脱土
CN104667879A (zh) * 2015-01-24 2015-06-03 福州大学 废水中钴、锰金属离子与对二甲苯的选择性吸附剂的制备
CN111871377A (zh) * 2020-06-30 2020-11-03 西北大学 一种复合改性蒙脱土磁性吸附剂、制备方法及其应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
杨维;杨军锋;王立东;贾明;郭毓;王虎;: "阴-阳离子有机膨润土制备及其吸附Cr(Ⅵ)的影响因素研究", 水文地质工程地质, no. 05 *
王毅;冯辉霞;雒和明;张婷;张建强;: "改性剂种类对蒙脱土结构和性能的影响", 硅酸盐学报, no. 05, pages 2 - 3 *
苏玉红,王强: "有机膨润土对重金属离子的吸附性能研究", 新疆有色金属, no. 03, pages 24 - 25 *

Similar Documents

Publication Publication Date Title
Liu et al. A novel monolith ZnS-ZIF-8 adsorption material for ultraeffective Hg (II) capture from wastewater
Kamaraj et al. Facile development of sunlit ZnO nanoparticles-activated carbon hybrid from pernicious weed as an operative nano-adsorbent for removal of methylene blue and chromium from aqueous solution: extended application in tannery industrial wastewater
Feng et al. Superhigh co-adsorption of tetracycline and copper by the ultrathin g-C3N4 modified graphene oxide hydrogels
Guo et al. Green and facile synthesis of cobalt-based metal–organic frameworks for the efficient removal of Congo red from aqueous solution
Usgodaarachchi et al. Synthesis of mesoporous silica nanoparticles derived from rice husk and surface-controlled amine functionalization for efficient adsorption of methylene blue from aqueous solution
He et al. Photocatalytic degradation of tetracycline by metal-organic frameworks modified with Bi2WO6 nanosheet under direct sunlight
Pathania et al. Pectin@ zirconium (IV) silicophosphate nanocomposite ion exchanger: photo catalysis, heavy metal separation and antibacterial activity
Anirudhan et al. Adsorption of chromium (VI) from aqueous solutions by glycidylmethacrylate-grafted-densified cellulose with quaternary ammonium groups
He et al. Degradation of tetracycline by a novel MIL-101 (Fe)/TiO 2 composite with persulfate
Liu et al. Adsorption mechanisms of thallium (I) and thallium (III) by titanate nanotubes: ion-exchange and co-precipitation
Kim et al. Adsorptive removal of cesium by electrospun nanofibers embedded with potassium copper hexacyanoferrate
Zhang et al. Influence of fulvic acid on Pb (II) removal from water using a post-synthetically modified MIL-100 (Fe)
Janwery et al. Lamellar graphene oxide-based composite membranes for efficient separation of heavy metal ions and desalination of water
Xu et al. Novel covalent organic framework/PVDF ultrafiltration membranes with antifouling and lead removal performance
Liu et al. Photoreduction of Cr (VI) from acidic aqueous solution using TiO2-impregnated glutaraldehyde-crosslinked alginate beads and the effects of Fe (III) ions
Ahmed et al. Heterogeneous activation of peroxymonosulfate using superparamagnetic β-CD-CoFe2O4 catalyst for the removal of endocrine-disrupting bisphenol A: performance and degradation mechanism
Jana et al. In-situ polymerization into the basal spacing of LDH for selective and enhanced uranium adsorption: a case study with real life uranium alkaline leach liquor
Hosseinkhani et al. Efficient removal of hexavalent chromium from electroplating wastewater using polypyrrole coated on cellulose sulfate fibers
He et al. A novel homogenous in-situ generated ferrihydrite nanoparticles/polyethersulfone composite membrane for removal of lead from water: Development, characterization, performance and mechanism
Yang et al. Enhanced adsorption/photocatalytic removal of Cu (Ⅱ) from wastewater by a novel magnetic chitosan@ bismuth tungstate coated by silver (MCTS-Ag/Bi2WO6) composite
CN108514870B (zh) 水滑石-聚间苯二胺复合材料及其制备方法和应用
Zheng et al. Kapok fiber structure-oriented polyallylthiourea: Efficient adsorptive reduction for Au (III) for catalytic application
Jing et al. Phosphate removal using free-standing functionalized mesoporous silica films with excellent recyclability
Cai et al. Application of cetyltrimethylammonium bromide bentonite–titanium dioxide photocatalysis technology for pretreatment of aging leachate
Cheng et al. The adsorption of Rhodamine B in water by modified zeolites

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20231208

Address after: Room 117-1, Building 1, Science and Technology Innovation Center, No. 10 Chuangyuan Avenue, Dinghai Industrial Park, Dinghai District, Zhoushan City, Zhejiang Province, 316012

Applicant after: Zhejiang Jutai New Energy Materials Co.,Ltd.

Address before: 710069 No. 229 Taibai North Road, Shaanxi, Xi'an

Applicant before: NORTHWEST University