CN115274893B - 一种稀土掺杂硅基薄膜材料及其制备方法 - Google Patents

一种稀土掺杂硅基薄膜材料及其制备方法 Download PDF

Info

Publication number
CN115274893B
CN115274893B CN202210917203.1A CN202210917203A CN115274893B CN 115274893 B CN115274893 B CN 115274893B CN 202210917203 A CN202210917203 A CN 202210917203A CN 115274893 B CN115274893 B CN 115274893B
Authority
CN
China
Prior art keywords
rare earth
film material
doped silicon
silicon
earth doped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210917203.1A
Other languages
English (en)
Other versions
CN115274893A (zh
Inventor
张帆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Poppula Semiconductor Co ltd
Original Assignee
Jiangsu Poppula Semiconductor Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Poppula Semiconductor Co ltd filed Critical Jiangsu Poppula Semiconductor Co ltd
Priority to CN202210917203.1A priority Critical patent/CN115274893B/zh
Publication of CN115274893A publication Critical patent/CN115274893A/zh
Application granted granted Critical
Publication of CN115274893B publication Critical patent/CN115274893B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0328Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/48Ion implantation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0328Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
    • H01L31/0336Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032 in different semiconductor regions, e.g. Cu2X/CdX hetero- junctions, X being an element of Group VI of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种稀土掺杂硅基薄膜材料及其制备方法,属于光伏材料制备技术领域。所述稀土掺杂硅基薄膜材料的制备包括多晶材料的制备、磁控溅射处理、稀土元素的掺杂三个主要步骤。本发明提供的制备工艺简单,可控性强;制备得到的稀土掺杂硅基薄膜材料光电转化率高,具有良好的应用前景。

Description

一种稀土掺杂硅基薄膜材料及其制备方法
技术领域
本发明属于光伏材料制备技术领域,具体涉及一种稀土掺杂硅基薄膜材料及其制备方法。
背景技术
随着不可再生能源的消费,加强风能、太阳能、潮汐能等可再生能源的开发利用十分重要。其中,太阳能利用过程中最重要的是太阳能电池,其是通过光电效应或者光化学效应直接把光能转化为电能的装置;根据材料的不同,太阳能电池可以分为硅太阳能电池、多元化合物薄膜太阳能电池、聚合物多层修饰电极型电池、有机太阳能电池、纳米晶太阳能电池、塑料太阳能电池等。其中,根据硅材料的不同,硅太阳能电池又可分为单晶硅、多晶硅、非晶硅等。当前,太阳能电池的发展已经经历了三代,第一代为单晶硅太阳能电池,第二代为多晶硅、非晶硅等太阳能电池,第三代就是铜铟镓硒CIGS(CIS中掺入Ga)等化合物薄膜太阳能电池以及薄膜Si系太阳能电池。
现有技术中,专利文献CN106340552B公开了一种稀土掺杂的光伏薄膜材料,其制备方法如下:步骤1,将铜盐放入至反应釜中,加入溶剂与催化剂,搅拌均匀得到铜液;步骤2,将硫化物缓慢加入至无水乙醇中,搅拌均匀,加入稳定剂,得到硫液;步骤3,将硫液缓慢滴加至铜液中,搅拌均匀,得到混合液,密封静置2-5h;步骤4,将EDTA缓慢滴加至缓和液,并形成曝气反应3-5h,得到络合液;步骤5,将氧化钇加入至络合液中,搅拌均匀,然后进行水浴超声反应2-4h;步骤6,将超声反应后的络合液中加入引发剂,进行回流曝气还原反应3-5h;步骤7,将还原反应后的还原液加入分散剂,并进行恒温蒸馏反应,即可得到光伏薄膜材料。整个制备工艺相对复杂,使用到的硫化氢毒性高,且光电转化效率还有待进一步提高。
发明内容
针对现有技术存在的不足,本发明的目的之一在于提供一种稀土掺杂硅基薄膜材料,光电转化效率高,应用前景好。
本发明的另外一个目的在于提供上述稀土掺杂硅基薄膜材料的制备方法,制备工艺简单,可操作性强。
为了实现上述目的,本发明采用如下技术方案:
一种稀土掺杂硅基薄膜材料,包括如下步骤:
S1、多晶材料的制备:将ZnO与Ga2O3混合研磨后进行压片,随后进行煅烧;煅烧完成后即得多晶材料;
S2、磁控溅射处理:将步骤S1制备得到的多晶材料通过磁控溅射的方式溅射到硅基材料上,得材料a;
S3、稀土元素的掺杂:在惰性气氛中,将步骤S2所得材料a先进行第一次退火处理,得材料b,随后注入稀土离子;最后,在惰性气氛中,进行第二次退火处理,即得稀土掺杂硅基薄膜材料;
其中,稀土离子由摩尔比为1~3:1~3:1的Gd2O3、La2O3、Sc2O3均匀混合而成。
优选的,步骤S1中,ZnO与Ga2O3的摩尔比为1.2~1.8:1。
优选的,步骤S1中,压片压力为6~10MPa,保压时间为3~8min;煅烧温度为1100~1500℃,煅烧时间为6~24h。
优选的,步骤S2中,所述硅基材料选自单晶硅光伏薄膜材料、多晶硅光伏薄膜材料中的一种或两种。
优选的,步骤S2中,磁控溅射的工艺条件为:真空压力为6×10-3~9×10-3Pa,氦气流量为35~45sccm,溅射压强为3~10Pa,基片温度为380~500℃,射频电源溅射功率为90~110W,溅射时间为3~6h。
优选的,步骤S2中,多晶材料的用量为0.15~0.55mol,硅基材料的规格为15mm×15mm×(70~85)nm。
优选的,步骤S3中,第一次退火的温度为300~700℃,退火时间为12~18min;第二次退火的温度为1050~1200℃,退火时间为22~28min。
优选的,步骤S3中,稀土离子采用离子注入法注入,真空压力为3×10-3~4×10- 3Pa,注入稀土氧化物携带的能量为120~180Kev。
优选的,步骤S3中,稀土离子的注入总剂量为1014~1018ions/cm2
同时,本发明还要求保护由上述方法制备得到的稀土掺杂硅基薄膜材料。
与现有技术相比,本发明具有如下有益效果:
(1)本发明制备得到的稀土掺杂硅基薄膜材料具有优良的光电转化率,达到30%左右,性能十分优良。
(2)首先,本发明选用常见的ZnO和Ga2O3混合得到多晶材料;其中ZnO是良好的半导体材料,在光照激发下,能吸收能量使得原子跃迁以实现光能转化为热能,Ga2O3则能提高光电转化效率;随后,利用磁控溅射将多晶材料溅射到硅基材料表面,并随后注入稀土离子,进一步提高光电转化效率;需要特别强调的是,本发明中对于稀土离子种类的选择做了反复优化,最终注入Gd、La、Sc三种元素混合得到的稀土元素,能够使得光电转化效率最大化。
(3)本发明稀土掺杂硅基薄膜材料制备工艺简单,可控性强,具有较好的应用前景。
具体实施方式
同时,需要说明的是,本发明中的磁控溅射仪型号为JGP-450型;所用硅基材料及其他试剂或化学药品均通过市场途径购买得到。
实施例1
一种稀土掺杂硅基薄膜材料,包括如下步骤:
S1、多晶材料的制备:将摩尔比为1.4:1的ZnO与Ga2O3混合研磨后于6.5MPa下压片6min,随后于1150℃下煅烧8h;煅烧完成后即得多晶材料;
S2、磁控溅射处理:将步骤S1制备得到的多晶材料通过磁控溅射的方式溅射到规格为15mm×15mm×75nm的单晶硅光伏薄膜材料上,得材料a;其中,多晶材料的用量为0.35mol;磁控溅射的工艺条件为:真空压力为7×10-3Pa,氦气流量为35sccm,溅射压强为8Pa,基片温度为420℃,射频电源溅射功率为95W,溅射时间为3.5h;
S3、稀土元素的掺杂:在氩气惰性气氛中,将步骤S2所得材料a先于650℃下退火处理14min,得材料b,随后注入总剂量为3×1015ions/cm2的含稀土离子的氧化物;最后,在氩气惰性气氛中,于1050℃下退火处理24min,即得稀土掺杂硅基薄膜材料;
其中,含稀土离子的氧化物由摩尔比为1.5:1.5:1的Gd2O3、La2O3、Sc2O3均匀混合而成。
其中,步骤S3中,稀土离子采用离子注入法注入,真空压力为3×10-3Pa,注入稀土氧化物携带的能量为140Kev。
实施例2
一种稀土掺杂硅基薄膜材料,包括如下步骤:
S1、多晶材料的制备:将摩尔比为1.6:1的ZnO与Ga2O3混合研磨后于7MPa下压片5min,随后于1200℃下煅烧7h;煅烧完成后即得多晶材料;
S2、磁控溅射处理:将步骤S1制备得到的多晶材料通过磁控溅射的方式溅射到规格为15mm×15mm×75nm的单晶硅光伏薄膜材料上,得材料a;其中,多晶材料的用量为0.4mol;磁控溅射的工艺条件为:真空压力为6×10-3Pa,氦气流量为38sccm,溅射压强为7Pa,基片温度为440℃,射频电源溅射功率为100W,溅射时间为4h;
S3、稀土元素的掺杂:在氩气惰性气氛中,将步骤S2所得材料a先于670℃下退火处理12min,得材料b,随后注入总剂量为6×1015ions/cm2的含稀土离子的氧化物;最后,在氩气惰性气氛中,于1100℃下退火处理26min,即得稀土掺杂硅基薄膜材料;
其中,含稀土离子的氧化物由摩尔比为1.4:1.6:1的Gd2O3、La2O3、Sc2O3均匀混合而成。
其中,步骤S3中,稀土离子采用离子注入法注入,真空压力为4×10-3Pa,注入稀土氧化物携带的能量为130Kev。
实施例3
一种稀土掺杂硅基薄膜材料,包括如下步骤:
S1、多晶材料的制备:将摩尔比为1.5:1的ZnO与Ga2O3混合研磨后于8MPa下压片4min,随后于1200℃下煅烧6h;煅烧完成后即得多晶材料;
S2、磁控溅射处理:将步骤S1制备得到的多晶材料通过磁控溅射的方式溅射到规格为15mm×15mm×75nm的单晶硅光伏薄膜材料上,得材料a;其中,多晶材料的用量为0.38mol;磁控溅射的工艺条件为:真空压力为7×10-3Pa,氦气流量为40sccm,溅射压强为9Pa,基片温度为460℃,射频电源溅射功率为110W,溅射时间为4.5h;
S3、稀土元素的掺杂:在氩气惰性气氛中,将步骤S2所得材料a先于680℃下退火处理16min,得材料b,随后注入总剂量为1×1016ions/cm2的含稀土离子的氧化物;最后,在氩气惰性气氛中,于1150℃下退火处理22min,即得稀土掺杂硅基薄膜材料;
其中,含稀土离子的氧化物由摩尔比为1.6:1.4:1的Gd2O3、La2O3、Sc2O3均匀混合而成。
其中,步骤S3中,稀土离子采用离子注入法注入,真空压力为3×10-3Pa,注入稀土氧化物携带的能量为150Kev。
对比例1
一种稀土掺杂硅基薄膜材料,包括如下步骤:
S1、多晶材料的制备:将摩尔比为1.4:1的ZnO与Ga2O3混合研磨后于6.5MPa下压片6min,随后于1150℃下煅烧8h;煅烧完成后即得多晶材料;
S2、磁控溅射处理:将步骤S1制备得到的多晶材料通过磁控溅射的方式溅射到规格为15mm×15mm×75nm的单晶硅光伏薄膜材料上,得材料a;其中,多晶材料的用量为0.35mol;磁控溅射的工艺条件为:真空压力为7×10-3Pa,氦气流量为35sccm,溅射压强为8Pa,基片温度为420℃,射频电源溅射功率为95W,溅射时间为3.5h;
S3、稀土元素的掺杂:在氩气惰性气氛中,将步骤S2所得材料a先于650℃下退火处理14min,得材料b,随后注入总剂量为3×1015ions/cm2的含稀土离子的氧化物;最后,在氩气惰性气氛中,于1050℃下退火处理24min,即得稀土掺杂硅基薄膜材料;
其中,含稀土离子的氧化物为Sc2O3
其中,步骤S3中,稀土离子采用离子注入法注入,真空压力为3×10-3Pa,注入稀土氧化物携带的能量为140Kev。
将实施例1~3和对比例1制备得到的稀土掺杂硅基薄膜材料进行光电转化率的测试,具体测试方法为:测试各稀土掺杂硅基薄膜材料单位面积输出最大功率与单位面积入射光能量,并基于下述公式进行计算光电转化率。
光电转化率(%)=单位面积输出最大功率/单位面积入射光能量*100。
测试结果见表1所示。
光电转化率/%
实施例1 30.2
实施例2 30.8
实施例3 31.1
对比例1 27.9
从表1中可以看到,本申请各实施例制备得到的稀土掺杂硅基薄膜材料的光电转化率均高于30%,性能佳,具有良好的应用前景。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (6)

1.一种稀土掺杂硅基薄膜材料,其特征在于,包括如下步骤:
S1、多晶材料的制备:将ZnO与Ga2O3混合研磨后进行压片,随后进行煅烧;煅烧完成后即得多晶材料;
S2、磁控溅射处理:将步骤S1制备得到的多晶材料通过磁控溅射的方式溅射到硅基材料上,得材料a;
S3、稀土元素的掺杂:在惰性气氛中,将步骤S2所得材料a先进行第一次退火处理,得材料b,随后注入稀土离子;最后,在惰性气氛中,进行第二次退火处理,即得稀土掺杂硅基薄膜材料;
其中,稀土离子由摩尔比为1~3:1~3:1的Gd2O3、La2O3、Sc2O3均匀混合而成;
其中,步骤S1中,ZnO与Ga2O3的摩尔比为1.2~1.8:1;
其中,步骤S1中,压片压力为6~10MPa,保压时间为3~8min;煅烧温度为1100~1500℃,煅烧时间为6~24h;
其中,步骤S2中,磁控溅射的工艺条件为:真空压力为6×10-3~9×10-3Pa,氦气流量为35~45sccm,溅射压强为3~10Pa,硅基材料的温度为380~500℃,射频电源溅射功率为90~110W,溅射时间为3~6h。
2.根据权利要求1所述的一种稀土掺杂硅基薄膜材料,其特征在于,步骤S2中,所述硅基材料选自单晶硅光伏薄膜材料、多晶硅光伏薄膜材料中的一种或两种。
3.根据权利要求1所述的一种稀土掺杂硅基薄膜材料,其特征在于,步骤S2中,多晶材料的用量为0.15~0.55mol,硅基材料的规格为15mm×15mm×(70~85)nm。
4.根据权利要求1所述的一种稀土掺杂硅基薄膜材料,其特征在于,步骤S3中,第一次退火的温度为300~700℃,退火时间为12~18min;第二次退火的温度为1050~1200℃,退火时间为22~28min。
5.根据权利要求1所述的一种稀土掺杂硅基薄膜材料,其特征在于,步骤S3中,稀土离子采用离子注入法注入,真空压力为3×10-3~4×10-3Pa,注入稀土氧化物携带的能量为120~180Kev。
6.根据权利要求1所述的一种稀土掺杂硅基薄膜材料,其特征在于,步骤S3中,稀土离子的注入总剂量为1014~1018ions/cm2
CN202210917203.1A 2022-08-01 2022-08-01 一种稀土掺杂硅基薄膜材料及其制备方法 Active CN115274893B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210917203.1A CN115274893B (zh) 2022-08-01 2022-08-01 一种稀土掺杂硅基薄膜材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210917203.1A CN115274893B (zh) 2022-08-01 2022-08-01 一种稀土掺杂硅基薄膜材料及其制备方法

Publications (2)

Publication Number Publication Date
CN115274893A CN115274893A (zh) 2022-11-01
CN115274893B true CN115274893B (zh) 2023-08-04

Family

ID=83747477

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210917203.1A Active CN115274893B (zh) 2022-08-01 2022-08-01 一种稀土掺杂硅基薄膜材料及其制备方法

Country Status (1)

Country Link
CN (1) CN115274893B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010122166A (ja) * 2008-11-21 2010-06-03 Tohoku Univ 放射線検出器および放射線検査装置
CN101787272A (zh) * 2009-01-23 2010-07-28 E.I.内穆尔杜邦公司 掺杂稀土离子的纳米荧光颗粒及其相关应用
CN110098269A (zh) * 2019-04-29 2019-08-06 北京铂阳顶荣光伏科技有限公司 薄膜太阳能电池及其制备方法
CN110165001A (zh) * 2019-06-03 2019-08-23 南阳理工学院 一种稀土掺杂的光伏薄膜材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010122166A (ja) * 2008-11-21 2010-06-03 Tohoku Univ 放射線検出器および放射線検査装置
CN101787272A (zh) * 2009-01-23 2010-07-28 E.I.内穆尔杜邦公司 掺杂稀土离子的纳米荧光颗粒及其相关应用
CN110098269A (zh) * 2019-04-29 2019-08-06 北京铂阳顶荣光伏科技有限公司 薄膜太阳能电池及其制备方法
CN110165001A (zh) * 2019-06-03 2019-08-23 南阳理工学院 一种稀土掺杂的光伏薄膜材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
裴立宅.《高技术陶瓷材料》.2015,234-235. *

Also Published As

Publication number Publication date
CN115274893A (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
CN101866963B (zh) 高转化率硅基多结多叠层pin薄膜太阳能电池及其制造方法
CN101820007B (zh) 高转化率硅晶及薄膜复合型多结pin太阳能电池及其制造方法
CN102157577B (zh) 纳米硅/单晶硅异质结径向纳米线太阳电池及制备方法
CN111599923A (zh) 一种提高钙钛矿太阳能电池效率的方法
CN101373799B (zh) 双层掺杂层硅基薄膜太阳电池
CN102341919B (zh) 太阳能电池
CN101562220B (zh) 一种非晶硅薄膜太阳电池的制造工艺
CN102157617B (zh) 一种硅基纳米线太阳电池的制备方法
CN115274893B (zh) 一种稀土掺杂硅基薄膜材料及其制备方法
CN109545659B (zh) 一种锡锑硫薄膜的化学浴制备方法
CN112030143A (zh) 一种用于a-Si/c-Si异质结太阳电池的高效非晶硅钝化膜的制备方法
CN113506853B (zh) 一种异质结锡基钙钛矿薄膜的制备方法和产品
CN102332504B (zh) 提高非晶硅太阳能电池中p型层和i型层界面性能的方法
CN101459206A (zh) 高效多结太阳能电池的制造方法
CN101656274B (zh) 提高非晶硅薄膜太阳能电池开路电压的方法
CN101807611B (zh) 一种具有光伏效应的钯掺杂碳薄膜材料
CN105762206A (zh) 晶体硅及其制备方法
CN110165001A (zh) 一种稀土掺杂的光伏薄膜材料及其制备方法
CN102931270A (zh) 一种弱光型非晶硅太阳能电池及其制造方法
CN109713061B (zh) 一种基于溶胶凝胶法制备铜铟镓硒吸收层的方法
CN115101611B (zh) 一种基于AgSbS2的无机薄膜太阳能电池及其制备方法
CN112939483B (zh) Ho掺杂Bi2S3纳米薄膜的制备方法
CN101510574A (zh) 一种窄带隙薄膜光伏材料β-FeSi2的制备方法
CN101834229A (zh) 一种改善硅薄膜太阳能电池微结构和电学性能的方法
CN105070789A (zh) 一种晶体硅太阳能电池发射极的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant