CN115247189A - Construction method of alopecia model pig nuclear transplantation donor cell expressing humanized II-type 5 alpha-reductase - Google Patents

Construction method of alopecia model pig nuclear transplantation donor cell expressing humanized II-type 5 alpha-reductase Download PDF

Info

Publication number
CN115247189A
CN115247189A CN202210534971.9A CN202210534971A CN115247189A CN 115247189 A CN115247189 A CN 115247189A CN 202210534971 A CN202210534971 A CN 202210534971A CN 115247189 A CN115247189 A CN 115247189A
Authority
CN
China
Prior art keywords
dna molecule
plasmid
pig
recombinant
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210534971.9A
Other languages
Chinese (zh)
Inventor
牛冬
汪滔
陶裴裴
王磊
曾为俊
程锐
赵泽英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Qizhen Genetic Engineering Co Ltd
Original Assignee
Nanjing Qizhen Genetic Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Qizhen Genetic Engineering Co Ltd filed Critical Nanjing Qizhen Genetic Engineering Co Ltd
Priority to CN202210534971.9A priority Critical patent/CN115247189A/en
Publication of CN115247189A publication Critical patent/CN115247189A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New breeds of animals
    • A01K67/027New breeds of vertebrates
    • A01K67/0273Cloned animals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/0004Screening or testing of compounds for diagnosis of disorders, assessment of conditions, e.g. renal clearance, gastric emptying, testing for diabetes, allergy, rheuma, pancreas functions
    • A61K49/0008Screening agents using (non-human) animal models or transgenic animal models or chimeric hosts, e.g. Alzheimer disease animal model, transgenic model for heart failure
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0656Adult fibroblasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/001Oxidoreductases (1.) acting on the CH-CH group of donors (1.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y103/00Oxidoreductases acting on the CH-CH group of donors (1.3)
    • C12Y103/99Oxidoreductases acting on the CH-CH group of donors (1.3) with other acceptors (1.3.99)
    • C12Y103/990053-Oxo-5alpha-steroid 4-dehydrogenase (acceptor) (1.3.99.5), i.e. steroid-5alpha-reductase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2207/00Modified animals
    • A01K2207/15Humanized animals
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/108Swine
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2503/00Use of cells in diagnostics
    • C12N2503/02Drug screening
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/10Plasmid DNA
    • C12N2800/106Plasmid DNA for vertebrates
    • C12N2800/107Plasmid DNA for vertebrates for mammalian
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value
    • G01N2500/10Screening for compounds of potential therapeutic value involving cells

Abstract

The invention discloses a method for constructing an alopecia model pig nuclear transplantation donor cell for expressing humanized II-type 5 alpha-reductase. The invention provides a method for preparing recombinant porcine cells, which comprises the following steps: integrating a DNA molecule named as a DNA molecule A to the genome DNA of the pig cell at a fixed point to obtain a recombinant pig cell; the DNA molecule A expresses human type II 5 alpha-reductase. The invention obtains the pig recombinant cell capable of highly expressing the human II-type 5 alpha-reductase by a gene editing technology, and the recombinant cell can be used as a nuclear transplantation cell donor to clone and produce an alopecia model pig in later period, is beneficial to researching and revealing the pathogenesis of androgenetic alopecia, and can be used for research of drug screening, drug effect detection, gene and cell treatment and the like.

Description

Construction method of hair loss model pig nuclear transplantation donor cell expressing humanized II-type 5 alpha-reductase
Technical Field
The invention belongs to the technical field of biology, and particularly relates to a construction method of an alopecia model pig nuclear transplantation donor cell for expressing humanized II-type 5 alpha-reductase. The method provided by the invention adopts a CRISPR/Cas9 system and a homologous recombination technology to prepare the recombinant pig cell integrating specific DNA molecules at a specific position of a genome, wherein the specific DNA molecules express human II type 5 alpha-reductase genes, and the cloned pig prepared by utilizing the recombinant cell can be used as a alopecia model pig.
Background
According to the survey data of the national Weijian Commission in 2019, the number of Chinese hair loss exceeds 2.5 hundred million, and 1 person of hair loss exists in every 6 persons on average, wherein about 1.63 hundred million of male hair loss exists, about 0.88 hundred million of female hair loss exists, the hair loss rate reaches 84% before the age of 30, and the hair loss tendency is obvious.
There are many types of hair loss, of which androgenetic alopecia (AGA) is one of the most common types of hair loss, a progressive follicular miniaturization that begins at or later than puberty. Both men and women may suffer from, but exhibit different patterns and prevalence of alopecia. Current research indicates that androgens are the determining factors in the pathogenesis of AGA, and other factors including perifollicular inflammation, increased stress on life, stress and anxiety, poor living and eating habits, etc. can contribute to the symptoms of AGA.
Androgens in men are derived primarily from testosterone secreted by the testes; androgens in women are synthesized mainly by the adrenal cortex and are secreted by the ovaries in small amounts. Androgens are primarily androstenediol, which can be metabolized to testosterone and dihydrotestosterone. Although androgens are a key factor in the pathogenesis of AGA, almost all AGA patients maintain normal levels of circulating androgens. Research shows that the androgen effect on susceptible hair follicles is increased due to the increase of androgen receptor gene expression and/or type II 5 alpha-reductase gene expression in hair loss regions. In the case of AGA, cells in the dermal region of the susceptible hair follicle contain specific type ii 5 α -reductase, which converts testosterone circulating in the blood to dihydrotestosterone, and causes a series of reactions by binding to the androgen receptor in the cells, thereby progressively miniaturizing the hair follicle and causing alopecia until baldness occurs.
The treatment of alopecia is also increasingly gaining attention because patients with alopecia often suffer from psychological problems such as anxiety, depression and even aversion to emotional emotion due to impairment of their own image. At the present stage, the treatment means still cannot be generally accepted by the public due to large side effect or high cost, so that the discovery of a novel treatment method has great significance for promoting the public to recognize and receive treatment, and a relevant animal disease model is required to be used as an experimental tool. At present, a common animal model is a mouse model, however, a mouse is greatly different from a human body in aspects of body type, organ size, physiology, pathology and the like, and can not truly simulate normal physiological and pathological states of the human body. The pig is a large animal, is a main meat food supply animal for human for a long time, is similar to human in body size and physiological function, is easy to breed and feed in a large scale, has low requirements on ethics, animal protection and the like, and is an ideal human disease model animal.
Gene editing is a biotechnology that has been greatly developed in recent years, and includes editing technologies from homologous recombination-based gene editing to nuclease-based ZFNs, TALENs, CRISPR/Cas9, and the like, wherein CRISPR/Cas9 technology is currently the most advanced gene editing technology. Currently, gene editing techniques are increasingly applied to the production of animal models.
Disclosure of Invention
The invention relates to a construction method of a hair loss model pig nuclear transplantation donor cell expressing humanized II-type 5 alpha-reductase. The method provided by the invention adopts a CRISPR/Cas9 system and a homologous recombination technology to prepare the recombinant pig cell integrating specific DNA molecules at a specific position of a genome, wherein the specific DNA molecules express human II type 5 alpha-reductase genes, and the cloned pig prepared by utilizing the recombinant cell can be used as a alopecia model pig.
The invention provides a method for preparing recombinant pig cells, which comprises the following steps: integrating a DNA molecule named as a DNA molecule A into the genome DNA of the pig cell to obtain a recombinant pig cell; the DNA molecule A expresses human type II 5 alpha-reductase.
Specifically, the human type II 5 alpha-reductase (hSRD 5A2 protein) is shown as SEQ ID NO: shown at 15.
The human type II 5 α -reductase is encoded by a human type II 5 α -reductase gene.
Human SRD5A2 gene (hSRD 5A2 gene) information: is located on human chromosome 2; geneID is 6716.
Specifically, the human type II 5 alpha-reductase gene (hSRD 5A2 gene) is shown as SEQ ID NO:14 from nucleotide 2266 to nucleotide 3030.
Specifically, the DNA molecule A has an hSRD5A2 gene expression cassette.
In the hSRD5A2 gene expression cassette, the hSRD5A2 gene expression is driven by the human hEF1 alpha promoter.
Specifically, the human hEF1 alpha promoter is shown as SEQ ID NO:14 from nucleotide 1088 to nucleotide 2265.
The hSRD5A2 gene expression cassette has Poly (A) at the downstream of hSRD5A2 gene.
Specifically, the Poly (A) is EF1 alpha Poly (A).
Specifically, EF1 alpha Poly (A) is shown as SEQ ID NO:14, nucleotides 3031-3603.
Specifically, the hSRD5A2 gene expression cassette is shown as SEQ ID NO:14, nucleotides 1088-3603.
Specifically, the DNA molecule A has a resistance screening gene expression cassette.
The resistance selection gene may be a gene encoding a resistance selection protein.
The resistance screening protein is specifically a Neomycin resistance protein.
Specifically, the expression cassette of the resistance screening gene is shown as SEQ ID NO: nucleotides 3731-5373 in FIG. 14.
The DNA molecule A also comprises a LoxP sequence.
The DNA molecule A specifically comprises 2 LoxP sequences which are respectively shown as SEQ ID NO: the 3633-3666 th nucleotides and the 5430-5463 th nucleotides in the 14.
The DNA molecule A also comprises an insulator.
The DNA molecule A specifically comprises 2 insulators which are respectively shown as SEQ ID NO: nucleotides 887-1087 and nucleotides 5484-5685 of 14.
The DNA molecule A sequentially comprises the following sections from upstream to downstream: human hEF1 alpha promoter, hSRD5A2 gene, EF1 alpha Poly (A), loxP sequence, pGK promoter, nucleotide for coding Neomycin resistance protein, bGH Poly (A) and LoxP sequence.
The DNA molecule A sequentially comprises the following sections from upstream to downstream: insulator 1, human hEF1 alpha promoter, hSRD5A2 gene, EF1 alpha Poly (A), loxP sequence, pGK promoter, nucleotide for coding Neomycin resistance protein, bGH Poly (A), loxP sequence and insulator 5.
Specifically, the DNA molecule A is shown as SEQ ID NO: nucleotide numbers 887-5685 of 14.
Specifically, the DNA molecule A is shown as SEQ ID NO: nucleotide numbers 881-5685 in 14.
The mode of integrating the DNA molecule named DNA molecule A into the genome DNA of the pig cell is as follows: introducing a DNA molecule named DNA molecule B into a pig cell or introducing a recombinant plasmid with the DNA molecule B into the pig cell; and in the DNA molecule B, the DNA molecule A is provided, an upstream homology arm is arranged at the upstream of the DNA molecule A, and a downstream homology arm is arranged at the downstream of the DNA molecule A, and the upstream homology arm and the downstream homology arm are used for integrating the DNA molecule A into the genome DNA of the pig cells.
The homology arm is directed at the ROSA26 gene, the upstream homology arm is the SH1 left arm, and the downstream homology arm is the SH1 right arm. The left arm of SH1 is shown as SEQ ID NO:3, and the SH1 right arm is shown as SEQ ID NO:3 from 9184 to 10195.
The homology arm is a homology arm aiming at the AAVS1 gene, the upstream homology arm is an SH2 left arm, and the downstream homology arm is an SH2 right arm. The left arm of SH2 is shown as SEQ ID NO:4, the right arm of SH2 is shown as SEQ ID NO:5, respectively.
The homology arm is a homology arm aiming at an H11 locus, the upstream homology arm is an SH3 left arm, and the downstream homology arm is an SH3 right arm. The left arm of SH3 is shown as SEQ ID NO:6, the right arm of SH3 is shown as SEQ ID NO: shown at 7.
The homology arm is directed at the COL1A1 gene, the upstream homology arm is SH4 left arm, and the downstream homology arm is SH4 right arm. The left arm of SH4 is shown as SEQ ID NO:8, the right arm of SH4 is shown as SEQ ID NO: shown at 9.
The homology arm is directed at the COL1A1 gene, the upstream homology arm is an SH4 left arm, and the downstream homology arm is an SH4 right arm. The left arm of SH4 is shown as SEQ ID NO:14, nucleotides 9-880, and the right arm of SH4 is shown in SEQ ID NO: nucleotides 5686-6412 of 14.
The DNA molecule B sequentially comprises the following sections from upstream to downstream: an upstream homology arm, an insulator 1, a human hEF1 alpha promoter, an hSRD5A2 gene, EF1 alpha Poly (A), a LoxP sequence, a pGK promoter, nucleotide for coding Neomycin resistance protein, bGH Poly (A), a LoxP sequence, an insulator 5 and a downstream homology arm.
Specifically, the DNA molecule B is shown as SEQ ID NO: nucleotide numbers 9-6412 in 14.
Specifically, the recombinant plasmid with the DNA molecule B is shown as SEQ ID NO: as shown at 14.
The DNA molecule A is integrated into ROSA26 gene or AAVS1 gene or H11 site or COL1A1 gene of the genomic DNA of the pig cells. Preferably COL1A1 gene.
The DNA molecule A is integrated into the ROSA26 safe harbor insertion site or the AAVS1 safe harbor insertion site or the H11 safe harbor insertion site or the COL1A1 safe harbor insertion site of the genomic DNA of the pig cells. Preferably a COL1A1 safe harbor insertion site.
Integration of the DNA molecule A into the ROSA26 gene of the genomic DNA of the pig cells means that the DNA molecule A is inserted between the left arm of SH1 and the right arm of SH1 in the genomic DNA; the left arm of SH1 is shown as SEQ ID NO:3, and the SH1 right arm is shown as SEQ ID NO:3 from 9184 to 10195.
The integration of the DNA molecule A into the AAVS1 gene of the genomic DNA of the pig cells means that the DNA molecule A is inserted between the SH2 left arm and the SH2 right arm in the genomic DNA; the left arm of SH2 is shown as SEQ ID NO:4, the right arm of SH2 is shown as SEQ ID NO:5, respectively.
Integration of the DNA molecule a into the H11 site of the genomic DNA of the pig cells means insertion of the DNA molecule a between the SH3 left arm and the SH3 right arm in the genomic DNA; the left arm of SH3 is shown as SEQ ID NO:6, the right arm of SH3 is shown as SEQ ID NO: shown at 7.
The integration of the DNA molecule A into the COL1A1 gene of the genomic DNA of the pig cells means that the DNA molecule A is inserted between the left arm of SH4 and the right arm of SH4 in the genomic DNA; the left arm of SH4 is shown as SEQ ID NO:8, and the right arm of SH4 is shown as SEQ ID NO: shown at 9.
The integration of the DNA molecule A into the COL1A1 gene of the genomic DNA of the pig cells means that the DNA molecule A is inserted into the genomic DNA between the SH4 left arm and the SH4 right arm; the left arm of SH4 is shown as SEQ ID NO:14, nucleotides 9-880, and the right arm of SH4 is as shown in SEQ ID NO: nucleotides 5686-6412 of 14.
In the method, a recombinant plasmid with the DNA molecule B and two auxiliary plasmids are introduced into a pig cell together; the two helper plasmids are sgRNA plasmid and Cas9 plasmid;
transcribing the sgRNA plasmid to obtain a specific sgRNA; the specific sgRNA is sgRNA ROSA26-g3 、sgRNA AAVS1-g4 、sgRNA H11-g1 Or sgRNA COL1A1-g3 ;sgRNA ROSA26-g3 The target sequence binding region of (a) is as shown in SEQ ID NO:10 at nucleotides 1 to 20; sgRNA AAVS1-g4 The target sequence binding region of (3) is as shown in SEQ ID NO:11, nucleotides 1-20; sgRNA H11-g1 The target sequence binding region of (a) is as shown in SEQ ID NO:12, nucleotides 1 to 20; sgRNA COL1A1-g3 The target sequence binding region of (a) is as shown in SEQ ID NO:13, nucleotides 1-20;
the target sequence binding region refers to a region of the sgRNA that binds to a target sequence (the target sequence is located in a target region of a target gene).
Specifically, the sgRNA plasmid is obtained by inserting a coding sequence of a target sequence binding region of a specific sgRNA into a pKG-U6gRNA vector by means of a restriction enzyme BbsI.
The Cas9 plasmid expresses Cas9 protein.
The Cas9 plasmid can be a plasmid pKG-GE3.
The molar ratio of the recombinant plasmid with the DNA molecule B, the sgRNA plasmid and the Cas9 plasmid can be specifically 1:3:1.
the proportion of the pig cell, the recombinant plasmid with the DNA molecule B, the sgRNA plasmid and the Cas9 plasmid can be specifically as follows: about 20 ten thousand porcine cells: 1.3. Mu.g of recombinant plasmid with the DNA molecule B: 0.8 μ g sgRNA plasmid: 0.9 μ g Cas9 plasmid.
Specifically, the ROSA26 safe harbor insertion site and the peripheral region thereof in the pig genome are shown as SEQ ID NO: shown at 16.
Specifically, the AAVS1 safe harbor insertion site and the peripheral region thereof in the pig genome are shown as SEQ ID NO: shown at 17.
Specifically, the H11 safe harbor insertion site and the peripheral region thereof in the pig genome are shown as SEQ ID NO:18, respectively.
Specifically, the COL1A1 safe harbor insertion site and the peripheral region thereof in the pig genome are shown as SEQ ID NO:19, respectively.
The recombinant porcine cells are homozygous recombinant (i.e., the DNA molecules A are integrated at the same positions of two homologous chromosomes, respectively).
The recombinant porcine cells are heterozygous recombinant (i.e., the DNA molecule A is integrated into a homologous chromosome).
The invention also provides a kit comprising any one of the DNA molecules B.
The invention also provides a kit which comprises the recombinant plasmid containing any one of the DNA molecules B.
The kit also includes the sgRNA plasmid and the Cas9 plasmid.
The molar ratio of the recombinant plasmid with the DNA molecule B, the sgRNA plasmid and the Cas9 plasmid can be specifically 1:3:1.
the kit may further comprise porcine cells.
The proportion of the pig cell, the recombinant plasmid with the DNA molecule B, the sgRNA plasmid and the Cas9 plasmid can be specifically as follows: about 20 million porcine cells: 1.3. Mu.g of recombinant plasmid with the DNA molecule B: 0.8 μ g sgRNA plasmid: 0.9 μ g Cas9 plasmid.
The invention also protects the application of any one of the DNA molecules B in the preparation of the kit.
The invention also protects the application of the recombinant plasmid with any one of the DNA molecules B in the preparation of a kit.
The invention also protects the application of the recombinant plasmid, sgRNA plasmid and Cas9 plasmid with any one of the DNA molecules B in the preparation of a kit.
The application of any one of the kits is as follows (a) or (b): (a) Preparing a recombinant porcine cell expressing a human type II 5 alpha-reductase gene; (b) preparing the alopecia model pig.
The invention also protects the application of any one of the DNA molecules B, the recombinant plasmid with any one of the DNA molecules B or any one of the kits, and the application is as follows (a) or (b): (a) Preparing a recombinant porcine cell expressing a human type II 5 alpha-reductase gene; (b) preparing the alopecia model pig.
The pig cell is a cell derived from a male pig.
The pig cell is a somatic cell derived from a male pig.
The porcine cells are porcine primary fibroblasts.
The pig cells are primary fibroblasts derived from male pigs.
The pig can be any variety of pig, and preferably, the pig can be a congjiang scented pig.
The pig may be a newborn pig.
The plasmid pKG-GE3 has a specific fusion gene; the specific fusion gene encodes a specific fusion protein;
the specific fusion protein sequentially comprises the following elements from N end to C end: two nuclear localization signals, cas9 protein, two nuclear localization signals, P2A peptide, fluorescent reporter protein, T2A peptide and resistance screening marker protein;
in the plasmid pKG-GE3, the expression of the specific fusion gene is started by the EF1a promoter;
in plasmid pKG-GE3, the specific fusion gene has downstream of it a WPRE sequence element, a 3' LTR sequence element and a bGHpoly (A) signal sequence element.
The plasmid pKG-GE3 comprises the following elements in this order: CMV enhancer, EF1a promoter, the specific fusion gene, WPRE sequence element, 3' LTR sequence element, bGH poly (A) signal sequence element.
In the specific fusion protein, two nuclear localization signals at the upstream of the Cas9 protein are SV40 nuclear localization signals, and two nuclear localization signals at the downstream of the Cas9 protein are nucleoplamin nuclear localization signals.
In the specific fusion protein, the fluorescent reporter protein can be EGFP protein.
In the specific fusion protein, the resistance screening marker protein can be Puromycin resistance protein.
The amino acid sequence of the P2A peptide is "ATNFSLLKQAGDVEENPGP" (cleavage site between the first and second amino acid residues from the C-terminus).
The amino acid sequence of the T2A peptide is "EGRGSLLTCGVEENPGP" (cleavage site between the first and second amino acid residues from the C-terminus).
The specific fusion gene is specifically shown as SEQ ID NO:1 from nucleotide 911 to nucleotide 6706.
The CMV enhancer is as set forth in SEQ ID NO:1 from nucleotide 395 to nucleotide 680.
The EF1a promoter is shown as SEQ ID NO:1, nucleotides 682-890.
The WPRE sequence element is shown as SEQ ID NO:1 from 6722 to 7310.
3' LTR sequence element is shown as SEQ ID NO:1 from nucleotide 7382 to nucleotide 7615.
The bGH poly (a) signal sequence element is as set forth in SEQ ID NO:1, nucleotides 7647-7871.
The plasmid pKG-GE3 is specifically shown in SEQ ID NO:1 is shown.
In plasmid pKG-U6gRNA, the plasmid has the sequence of SEQ ID NO:2 from 2280 th to 2637 th nucleotides.
The plasmid pKG-U6gRNA is specifically shown in SEQ ID NO:2, respectively.
Specifically, sgRNA ROSA26-g3 As shown in SEQ ID NO: shown at 10.
Specifically, sgRNA AAVS1-g4 As shown in SEQ ID NO: shown at 11.
Specifically, sgRNA H11-g1 As shown in SEQ ID NO: shown at 12.
Specifically, sgRNA COL1A1-g3 As shown in SEQ ID NO: shown at 13.
The invention also protects the recombinant porcine cells prepared by any one of the methods.
Specifically, the recombinant porcine cell can be a recombinant porcine cell as follows: the genomic DNA of recombinant porcine cells differs compared to porcine cells only in that: the genomic DNA of the cell has inserted between the left arm of SH4 and the right arm of SH4 the sequence shown in SEQ ID NO:14, nucleotides 881-5685.
The recombinant porcine cells are homozygous recombinant (i.e., the DNA molecules A are integrated at the same positions of two homologous chromosomes, respectively).
The recombinant porcine cells are heterozygous recombinant (i.e., the DNA molecule A is integrated into a homologous chromosome).
The recombinant porcine cells are homozygous recombination (namely, DNA molecules shown by nucleotides 881-5685 in SEQ ID NO:14 are inserted between the left arm and the right arm of SH4 of two homologous chromosomes).
The recombinant porcine cells are in hybrid recombination (namely, a DNA molecule shown as nucleotides 881-5685 in SEQ ID NO:14 is inserted between the left arm of SH4 and the right arm of SH4 of one homologous chromosome).
The invention also protects the application of the recombinant porcine cells in preparing the alopecia model pig.
The recombinant pig cells are used as nuclear transplantation donor cells to carry out somatic cell cloning, so that cloned pigs, namely the alopecia model pigs, can be obtained. The model pig can be used in the biomedical fields of next-step drug screening and drug effect evaluation, gene and cell treatment, alopecia mechanism research and the like. The model pig can provide a powerful tool for researching human AGA pathogenesis or exploring related treatment methods.
Compared with the prior art, the invention has at least the following beneficial effects:
(1) The subject of the invention (pig) has better applicability than other animals (rats, mice, primates).
Rodents such as rats and mice have great differences from humans in body types, organ sizes, physiology, pathology and the like, and cannot truly simulate normal physiological and pathological states of humans. Studies have shown that over 95% of drugs validated to be effective in large mice are not effective in human clinical trials. In large animals, primates are animals that have a close relationship with humans, but are small in size, late in sexual maturity (mating starts at age 6-7), and are single-birth animals, and the population propagation speed is extremely slow, and the raising cost is high. In addition, primate cloning efficiency is low, difficulty is high, and cost is high.
However, pigs, which are animals related to humans other than primates, do not have the above-mentioned disadvantages, and have body types, body weights, organ sizes, and the like similar to those of humans, and are very similar to those of humans in terms of anatomy, physiology, immunology, nutritional metabolism, disease pathogenesis, and the like. Meanwhile, the pigs have early sexual maturity (4-6 months), high reproductive capacity and multiple piglets, and can form a large group within 2-3 years. In addition, the cloning technology of the pig is very mature, and the cloning and feeding cost is much lower than that of a primate.
(2) The invention aims at the pig genome to carry out exploration on the expression condition of 4 safe harbor site genes after knocking in, and screens out the optimal safe harbor site of the pig genome for inserting the exogenous gene, thereby effectively improving the expression condition of the target gene after knocking in the gene.
(3) The obtained hSRD5A2 gene expression box homozygous knocked-in unicellular clone strain is utilized to carry out somatic cell nuclear transfer animal cloning, so that the hSRD5A2 gene expression box homozygous knocked-in cloned pig can be directly obtained, and the homozygous inserted gene can be stably inherited. Furthermore, the method can be used in the biomedical fields of AGA, such as drug screening and drug effect evaluation, gene and cell therapy, and pathogenesis research.
In mouse model making, fertilized egg is usually injected with gene editing material and then embryo transplantation is carried out, and because the probability of directly obtaining homozygous inserted offspring is very low (less than 1%), offspring hybridization breeding is needed, which is not suitable for making large animal (such as pig) model with longer gestation period. Therefore, the method adopts the primary cell in-vitro editing and screening positive editing single cell cloning method with great technical difficulty and high challenge, and directly obtains the corresponding model pig by the somatic cell nuclear transfer animal cloning technology at the later stage, thereby greatly shortening the manufacturing period of the model pig and saving manpower, material resources and financial resources.
(4) The invention expresses human II type 5 alpha-reductase gene in pig cell for the first time, and obtains homozygous knocked-in single cell clone through verification.
The invention obtains the recombinant pig cell expressing the human II type 5 alpha-reductase gene by a gene editing technology, and the recombinant pig cell can be used as a nuclear transplantation cell donor to clone and produce an alopecia model pig in later period, is beneficial to researching and revealing the pathogenesis of AGA, can be used for researching drug screening, drug effect detection, gene and cell treatment and the like, can provide effective experimental data for further clinical application, and further provides a powerful experimental means for preventing and treating human AGA. The invention has great application value for the research of human AGA pathogenesis, the research and the development of medicaments and preclinical tests.
Drawings
FIG. 1 is a schematic diagram of the structure of plasmid PB-1G 2R 3-puro-ROSA 26.
FIG. 2 is a graph of the green fluorescence expression of GFP regulated by different harbor safety loci.
FIG. 3 shows the fluorescent quantitative PCR results of the transcriptional level of GFP gene regulated by different safe harbor loci.
FIG. 4 shows the results of FACS detection of the expression of GFP protein regulated by different harbor safety loci.
FIG. 5 is a structural diagram of plasmid EF1 α -hSRD5A2.
FIG. 6 shows the sequencing results of the COL1A1 gene sequence and the insulator 1 adaptor sequence.
Fig. 7 shows the sequencing results of the adaptor sequences of the insulator 1 and the EF1 α promoter.
FIG. 8 shows the sequencing results of the adaptor sequences of the EF 1. Alpha. Promoter and hSRD5A2 gene.
FIG. 9 shows the sequencing results of the adaptor sequence of hSRD5A2 gene and EF 1. Alpha. Poly (A).
FIG. 10 shows the sequencing of the adaptor sequence of EF 1. Alpha. Poly (A) to LoxP.
FIG. 11 shows the result of detecting the transcription level of hSRD5A2 gene of single cell clone.
Detailed Description
The present invention is described in further detail below with reference to specific embodiments, which are given for the purpose of illustration only and are not intended to limit the scope of the invention. The examples provided below serve as a guide for further modifications by a person skilled in the art and do not constitute a limitation of the invention in any way.
The experimental procedures in the following examples, unless otherwise indicated, are conventional and are carried out according to the techniques or conditions described in the literature in the field or according to the instructions of the products. Materials, reagents and the like used in the following examples are commercially available unless otherwise specified. The recombinant plasmids constructed in the examples were all sequence-verified. Complete culture broth (% by volume): 15% fetal bovine serum (Gibco) +83% DMEM medium (Gibco) +1% Penicilin-Streptomyces (Gibco) +1% HEPES (Solarbio). Cell culture conditions: 37 ℃ C., 5% CO 2 、5%O 2 The constant temperature incubator.
The porcine primary fibroblasts used in example 1 were prepared from porcine ear tissue of Jiangxiang pigs at birth. The porcine primary fibroblasts used in example 2 were prepared from ear tissue of Jiangxiang pigs (males) at birth. The method for preparing the primary pig fibroblast comprises the following steps: (1) taking 0.5g of pig ear tissue, removing hair and bone tissue, soaking in 75% alcohol for 30-40s, washing with PBS buffer containing 5% (volume ratio) Penicillin-Streptomycin (Gibco) for 5 times, and washing with PBS buffer for one time; (2) shearing the tissue with scissors, digesting with 5mL of 0.1% collagenase solution (Sigma) at 37 ℃ for 1h, centrifuging 500g for 5min, and removing the supernatant; (3) resuspending the precipitate with 1mL of complete culture solution, spreading into a 10cm diameter cell culture dish containing 10mL of complete culture solution and sealed with 0.2% gelatin (VWR), and culturing until the bottom of the dish is 60% full of cells; (4) after completion of step (3), the cells were digested with trypsin and collected, and then resuspended in complete medium. Used for carrying out subsequent electrotransfer experiments.
eEF1a-mNLS-hSpCas9-EGFP-PURO is called plasmid pKG-GE3 (circular plasmid) for short, and is shown as SEQ ID NO:1 is shown. SEQ ID NO:1, nucleotides 395-680 form a CMV enhancer, nucleotides 682-890 form an EF1a promoter, nucleotides 986-1006 encode a Nuclear Localization Signal (NLS), nucleotides 1016-1036 encode a Nuclear Localization Signal (NLS), nucleotides 1037-5161 encode a Cas9 protein, nucleotides 5162-5209 encode a Nuclear Localization Signal (NLS), nucleotides 5219-5266 encode a Nuclear Localization Signal (NLS), nucleotides 5276-5332 encode a P2A peptide (the amino acid sequence of the P2A peptide is "ATNFLKSLKKQACVEENPGP", the cleavage site is between the first and second amino acid residues from the C-terminus), nucleotides 5333-6046 encode an EGFPP protein, nucleotides 6056-6109 encode a T2A peptide (the amino acid sequence of the T2A peptide is "EGRGSLLTCGVEENPGP", the cleavage site is between the first and second amino acid residues from the C-terminus), nucleotides 682-6110-890 form an EF1a promoter, nucleotides 986-5209 encode a Nuclear Localization Signal (NLS), nucleotides 5276-51761 3-677647 encode a polypeptide element sequence, and RGSLCGSLCGSLC-677347 element sequence (RG-6773), and RG-6747). SEQ ID NO: in 1, 911-6706 forms a fusion gene to express a fusion protein. Due to the presence of P2A peptide and T2A peptide, the fusion protein spontaneously forms the following three proteins: proteins with Cas9 protein, proteins with EGFP protein and proteins with Puro protein. Is described in patent application 202011170395.1 (application publication No. CN 112522261A; application publication No. 2021.03.19).
pKG-U6gRNA vector, also known as plasmid pKG-U6gRNA (circular plasmid), is set forth in SEQ ID NO:2, respectively. The amino acid sequence of SEQ ID NO:2, the 2280-2539 th nucleotides form the hU6 promoter, and the 2558-2637 th nucleotides are used for transcription to form a gRNA framework. When the recombinant plasmid is used, a DNA molecule (a target sequence binding region for forming gRNA through transcription) of about 20bp is inserted into the plasmid pKG-U6gRNA to form a recombinant plasmid, and the recombinant plasmid is transcribed in a cell to obtain the gRNA. Is described in patent application 202011170395.1 (application publication No. CN 112522261A; application publication No. 2021.03.19).
Example 1 selection of optimal safe harbor site for site-directed insertion of foreign Gene into pig genome
1. Construction of Donor vectors containing GFP gene at different safe harbor sites
Plasmids PB-1G 2R 3-puro-ROSA26, PB-1G 2R 3-puro-AAVS1, PB-1G 2R 3-puro-H11 and PB-1G 2R 3-puro-COL1A1 were constructed. The four plasmids were circular plasmids.
The plasmid PB-1G 2R 3-puro-ROSA26 is shown as SEQ ID NO:3, the structure is shown in figure 1.SEQ ID NO:3, nucleotides 9-339 form the pig genome region 5 'of the ROSA26 safety harbor insertion site (SH 1 left arm), and nucleotides 9184-10195 form the pig genome region 3' of the ROSA26 safety harbor insertion site (SH 1 right arm). The amino acid sequence of SEQ ID NO:3, the 346-546, 3132-3531, 6506-6706, 8975-9175 nucleotides respectively form 4 different insulator regions. SEQ ID NO:3, the 637-1209 th nucleotide constitutes EF-1 alpha poly (A) signal, the 1216-1935 th nucleotide encodes EGFP protein, the 1954-3131 th nucleotide constitutes EF-1 alpha promoter, the 3543-4042 th nucleotide constitutes PGK promoter, the 4059-4769 th nucleotide encodes mCheerry protein, the 4791-5015 th nucleotide constitutes bGH poly (A) signal, the 5054-6504 th nucleotide is loxP-puro-loxP expression frame region, the 6969-7233 th nucleotide constitutes beta-globin poly (A) signal, and the 7259-8974 th nucleotide constitutes pCAG promoter.
The plasmid PB-1G 2R 3-puro-AAVS1 differs from the plasmid PB-1G 2R 3-puro-ROSA26 only in that: the SH1 left arm was replaced with the pig genome region 5 'of the AAVS1 safety harbor insertion site (SH 2 left arm, SH2 left arm shown in SEQ ID NO: 4) and the SH1 right arm was replaced with the pig genome region 3' of the AAVS1 safety harbor insertion site (SH 2 right arm, SH2 right arm shown in SEQ ID NO: 5).
The plasmid PB-1G 2R 3-puro-H11 differs from the plasmid PB-1G 2R 3-puro-ROSA26 only in that: the SH1 left arm was replaced with the pig genome region 5 'of the H11 safety harbor insertion site (SH 3 left arm, SH3 left arm is shown in SEQ ID NO: 6) and the SH1 right arm was replaced with the pig genome region 3' of the H11 safety harbor insertion site (SH 3 right arm, SH3 right arm is shown in SEQ ID NO: 7).
The plasmid PB-1G 2R 3-puro-COL1A1 differs from the plasmid PB-1G 2R 3-puro-ROSA26 only in that: the SH1 left arm was replaced with the pig genome region 5 'of the COL1A1 safe harbor insertion site (SH 4 left arm, SH4 left arm shown in SEQ ID NO: 8) and the SH1 right arm was replaced with the pig genome region 3' of the COL1A1 safe harbor insertion site (SH 4 right arm, SH4 right arm shown in SEQ ID NO: 9).
2. Efficient cutting target screening of safe harbor sites of porcine ROSA26, AAVS1, H11 and COL1A1 genomes
Through early screening, the efficient cutting target of the ROSA26 safe harbor site is sgRNA ROSA26-g3 (the cutting efficiency is 38%), and the efficient cutting target of the AAVS1 safe harbor site is sgRNA AAVS1-g4 (cleavage efficiency is 30%), and efficient cleavage targets of H11 safe harbor sites are sgRNAs H11-g1 (cleavage efficiency is 60%), and the efficient cleavage target of the COL1A1 safe harbor site is sgRNA COL1A1-g3 (cutting efficiency 56%).
The target sequences are as follows:
sgRNA ROSA26-g3 and (3) target spot: 5 'GAAGGAGCAAACTGACATGG-3';
sgRNA AAVS1-g4 and (3) target point: 5 'TGCAGTGGGTCTTTGGGGAC-3';
sgRNA H11-g1 and (3) target point: 5 'TTCCAGGAACATAAAGAAAGT-doped 3';
sgRNA COL1A1-g3 and (3) target point: 5 'GCAGTCTCAGCAACCACTGA-3'.
3. Preparation of safe harbor site gRNA recombinant vector
The plasmid pKG-U6gRNA was digested with the restriction enzyme BbsI, and the vector backbone (approximately 3kb linear large fragment) was recovered.
ROSA26-g3-S and ROSA26-g3-A were synthesized separately, and then mixed and annealed to obtain a double-stranded DNA molecule having a cohesive end. The double-stranded DNA molecule having a cohesive end was ligated to a vector backbone to obtain plasmid pKG-U6gRNA (ROSA 26-g 3). Plasmid pKG-U6gRNA (ROSA 26-g 3) expresses the nucleic acid sequence of SEQ ID NO:10 sgRNA ROSA26-g3
AAVS1-g4-S and AAVS1-g4-A were synthesized separately, mixed and annealed to give a double-stranded DNA molecule having a cohesive end. The double-stranded DNA molecule having a cohesive end was ligated to a vector backbone to obtain a plasmid pKG-U6gRNA (AAVS 1-g 4). Plasmid pKG-U6gRNA (AAVS 1-g 4) expresses the nucleic acid sequence of SEQ ID NO:11 sgRNA AAVS1-g4
H11-g1-S and H11-g1-A were synthesized separately, and then mixed and annealed to obtain a double-stranded DNA molecule having a cohesive end. The double-stranded DNA molecule having a cohesive end was ligated to a vector backbone to obtain a plasmid pKG-U6gRNA (H11-g 1). Plasmid pKG-U6gRNA (H11-g 1) expresses the nucleic acid sequence of SEQ ID NO:12 sgRNA H11-g1
COL1A1-g3-S and COL1A1-g3-A were synthesized separately, and then mixed and annealed to obtain a double-stranded DNA molecule having a cohesive end. The double-stranded DNA molecule having a cohesive end was ligated to a vector backbone to obtain a plasmid pKG-U6gRNA (COL 1A1-g 3). Plasmid pKG-U6gRNA (COL 1A1-g 3) expresses the nucleic acid sequence of SEQ ID NO:13 sgRNA COL1A1-g3
ROSA26-g3-S, ROSA26-g3-A, AAVS1-g4-S, AAVS1-g4-A, H11-g1-S, H11-g1-A, COL1A1-g3-S and COL1A1-g3-A are single-stranded DNA molecules.
ROSA26-g3-S:caccGAAGGAGCAAACTGACATGG;
ROSA26-g3-A:aaacCCATGTCAGTTTGCTCCTTC。
AAVS1-g4-S:caccgTGCAGTGGGTCTTTGGGGAC;
AAVS1-g4-A:aaacGTCCCCAAAGACCCACTGCAc。
H11-g1-S:caccgTTCCAGGAACATAAGAAAGT;
H11-g1-A:aaacACTTTCTTATGTTCCTGGAAc。
COL1A1-g3-S:caccGCAGTCTCAGCAACCACTGA;
COL1A1-g3-A:aaacTCAGTGGTTGCTGAGACTGC。
sgRNA ROSA26-g3 (SEQ ID NO:10):
GAAGGAGCAAACUGACAUGGguuuuagagcuagaaauagcaaguuaaaauaaggcuaguccguuaucaacuugaaaaaguggcaccgagucggugcuuuu。
sgRNA AAVS1-g4 (SEQ ID NO:11):
UGCAGUGGGUCUUUGGGGACguuuuagagcuagaaauagcaaguuaaaauaaggcuaguccguuaucaacuugaaaaaguggcaccgagucggugcuuuu。
sgRNA H11-g1 (SEQ ID NO:12):
UUCCAGGAACAUAAGAAAGUguuuuagagcuagaaauagcaaguuaaaauaaggcuaguccguuaucaacuugaaaaaguggcaccgagucggugcuuuu。
sgRNA COL1A1-g3 (SEQ ID NO:13):
GCAGUCUCAGCAACCACUGAguuuuagagcuagaaauagcaaguuaaaauaaggcuaguccguuaucaacuugaaaaaguggcaccgagucggugcuuuu。
4. Fluorescent Donor vectors (namely different safety harbor site vectors containing exogenous gene GFP), sgRNA vectors and Cas9 vectors (namely plasmid pKG-GE 3) containing homologous arms on two sides of different safety harbor insertion sites for mixed electrotransformation of porcine primary fibroblasts and detection of fluorescence intensity of cell GFP
1. Cotransfection
First group (ROSA 26 group): the plasmid PB-1G 2R 3-puro-ROSA26, the plasmid pKG-U6gRNA (ROSA 26-g 3) and the plasmid pKG-GE3 were co-transfected into porcine primary fibroblasts. Proportioning: about 20 million porcine primary fibroblasts: 1.26. Mu.g of plasmid PB-1G 2R 3-puro-ROSA26: 0.82. Mu.g of plasmid pKG-U6gRNA (ROSA 26-g 3): 0.92. Mu.g of plasmid pKG-GE3; namely, the molar ratio of the 3 plasmids is as follows in sequence: 1:3:1.
second group (AAVS 1 group): the plasmid PB-1G 2R 3-puro-AAVS1, the plasmid pKG-U6gRNA (AAVS 1-g 4) and the plasmid pKG-GE3 were co-transfected into porcine primary fibroblasts. Proportioning: about 20 million porcine primary fibroblasts: 1.26. Mu.g of plasmid PB-1G 2R 3-puro-AAVS1:0.82 μ g plasmid pKG-U6gRNA (AAVS 1-g 4): 0.92. Mu.g of plasmid pKG-GE3; namely, the molar ratio of the 3 plasmids is as follows in sequence: 1:3:1.
third group (H11 group): the plasmid PB-1G 2R 3-puro-H11, the plasmid pKG-U6gRNA (H11-g 1) and the plasmid pKG-GE3 were co-transfected into porcine primary fibroblasts. Proportioning: about 20 ten thousand porcine primary fibroblasts: 1.26. Mu.g of plasmid PB-1G 2R 3-puro-H11: 0.82. Mu.g of plasmid pKG-U6gRNA (H11-g 1): 0.92. Mu.g of plasmid pKG-GE3; namely, the molar ratio of the 3 plasmids is as follows in sequence: 1:3:1.
fourth group (COL 1A1 group): the plasmid PB-1G 2R 3-puro-COL1A1, plasmid pKG-U6gRNA (COL 1A1-g 3) and plasmid pKG-GE3 were co-transfected into porcine primary fibroblasts. Proportioning: about 20 ten thousand porcine primary fibroblasts: 1.26. Mu.g of plasmid PB-1G 2R 3-puro-COL1A1: 0.82. Mu.g of plasmid pKG-U6gRNA (COL 1A1-g 3): 0.92. Mu.g of plasmid pKG-GE3; namely, the molar ratio of the 3 plasmids is as follows in sequence: 1:3:1.
a fifth group: carrying out electrotransformation operation on primary pig fibroblasts under the same isoelectric parameters without adding any plasmid.
Co-transfection was performed by electroporation using a mammalian nuclear transfection kit (Neon kit, thermofeisher) and a Neon TM transfection system electrotransformation apparatus (parameters set at 1450V, 10ms, 3 pulses).
2. After the completion of step 1, the culture is carried out for 12 to 24 hours by using the complete culture solution, and then the culture is carried out by replacing with a new complete culture solution. The total time of incubation was 48 hours.
3. After the completion of step 2, the cells were cultured in a complete culture medium containing 1.5. Mu.g/mL puromycin for 3 weeks (a new complete culture medium containing 1.5. Mu.g/mL puromycin was added every 2 days), and the GFP green fluorescence was continuously observed and photographed, and the level of the expression efficiency of the foreign gene at the safe harbor site was judged by the intensity of the GFP fluorescence expression.
One week after puromycin screening, the fluorescence intensity of the ROSA26 and COL1A1 safety harbor site test group is obviously stronger than that of the AAVS1 and H11 test group. After two weeks of puromycin screening, the fluorescence intensity is from strong to weak: COL1A1> ROSA26> H11> AAVS1, wherein the fluorescence intensity of the H11 group is not very uniform, the fluorescence intensity of the ROSA26 group is relatively uniform and relatively high, the fluorescence expression of the AAVS1 group cells is the weakest, and the fluorescence of the COL1A1 group cells is the largest and strongest. After the puromycin is continuously screened for three weeks, the fluorescence intensity is from strong to weak: COL1A1> ROSA26> H11> AAVS1, the photograph is shown in FIG. 2.
5. GFP Gene transcript level detection
To compare the difference in mRNA transcript levels after the GFP gene was integrated into four different safe harbor sites, it was possible to determine whether it could be involved in the regulation of GFP expression and influence on the expression level. Designing a pair of primers at the exon of the GFP gene, taking the cells after three weeks of puromycin screening in the step four, extracting total RNA, carrying out reverse transcription to obtain cDNA, detecting the transcription level of primary cells after the GFP gene is integrated at four different safe harbor sites, and simultaneously using the quantitative result obtained by the cells of the fifth group (a plasmid-free control electrotransformation group) as a control. GAPDH gene as reference gene according to 2 -ΔCt And (4) calculating by the method.
Primers for detection of GFP gene: AGATCCGCCACACACATCGAG; r is GTCCATGCCGAGAGTGATCC.
Primers for detecting GAPDH gene: GGTCGGAGTGAACGGATTTG; and R is CCATTTGATGTTGGCGGGAT.
Data analysis was performed using SPSS statistical software, expressed as (mean. + -. Standard deviation), and statistical analysis was performed using two-way analysis of variance. 2 -ΔCt The results showed that the GFP expression levels in AAVS1 and H11 groups were low, that in ROSA26 and COL1A1 groups were high, and that the difference in GFP transcription levels between COL1A1 and ROSA26 groups was very significant (P) compared with AAVS1 and H11 groups after three weeks of puromycin screening (P)<0.01)。2 -ΔCt The values are shown in Table 1, and the results of the significance analysis are shown in FIG. 3.
TABLE 12 -ΔCt Value information
Figure BDA0003647429240000101
Figure BDA0003647429240000111
From the results of real-time fluorescence quantitative PCR of GFP gene and fluorescence signal intensity three weeks after culturing the cells, it was concluded that, among the four genomic safe harbor sites ROSA26, AAVS1, H11, and COL1A1, the COL1A1 site had the best expression effect when a foreign gene was inserted.
6. FACS detection of protein expression level of GFP Gene
To compare the expression of GFP after the GFP gene was integrated into four different safe harbor sites. After three weeks of puromycin screening in step IV, the cells were trypsinized, centrifuged at 400g for 4min and the supernatant discarded. The cells were resuspended in 1mL of complete medium and the cell suspensions were transferred separately into flow tubes. GFP signals were detected in the FITC channel of a BD FACSELODy flow cytometer, and 5X 10 GFP signals were collected 4 Individual cells were analyzed and the results are shown in figure 4.
The results showed that the GFP fluorescence signal intensity COL1A1> ROSA26> H11> AAVS1.
Therefore, combining the above results, the COL1A1 site is the safe harbor site of the porcine primary cell which most efficiently expresses the foreign gene among the four safe harbor sites ROSA26, AAVS1, H11 and COL1A1.
Example 2 preparation of information on the single cell clone human SRD5A2 gene (hSRD 5A2 gene) by inserting hSRD5A2 gene expression cassette into the genome COL1A1 safe harbor site: encodes type II 5 alpha-reductase (5-alpha reductase type 2); homo sapiens; is located on human chromosome 2; geneID is 6716. The amino acid sequence of the human II type 5 alpha-reductase is shown as SEQ ID NO: shown at 15.
1. Construction of EF1 alpha-hSRD 5A2Donor vector
The EF1 alpha-hSRD 5A2Donor vector is the plasmid EF1 alpha-hSRD 5A2.
The plasmid EF1 alpha-hSRD 5A2 is shown as SEQ ID NO:14, which is a circular plasmid, and the structural schematic diagram is shown in FIG. 5.SEQ ID NO:14, the 9 th to 880 th nucleotides are a pig genome region (SH 4 left arm) at the 5' end of a COL1A1 safe harbor insertion site, the 887 th to 1087 th nucleotides are insulators (named as insulator 1 and insulator 1), the 1088 th to 2265 th nucleotides are human hEF1 alpha promoters, the 2266 th to 3030 th nucleotides are hSRD5A2 genes, the 3031 th to 3603 th nucleotides are EF1 alpha Poly (A), the 3633 th to 3666 th nucleotides are LoxP sequences, the 3731 th to 4230 th nucleotides are pGK promoters, and the 4308 th to 5111 th nucleotides encode Neomycin resistance protein (called Neo for short) R Protein), the 5149-5373 th nucleotide is bGH Poly (A), the 5430-5463 th nucleotide is LoxP sequence, the 5484-5685 th nucleotide is LoxP sequenceThe nucleotide is an insulator (named as insulator 5, insulator 5), and the nucleotides 5686-6412 are the porcine genome region (SH 4 right arm) at the 3' end of the COL1A1 safe harbor insertion site. The Neomycin resistance protein is a Neomycin resistance protein. Neomycin (Geneticin), also known as G418 or Geneticin.
2. Cotransfection
The plasmid EF1 alpha-hSRD 5A2, the plasmid pKG-U6gRNA (COL 1A1-g 3) and the plasmid pKG-GE3 were co-transfected into porcine primary fibroblasts. Proportioning: about 20 ten thousand porcine primary fibroblasts: 1.3 μ g plasmid EF1 α -hSRD5A2: 0.8. Mu.g of plasmid pKG-U6gRNA (COL 1A1-g 3): 0.9. Mu.g of plasmid pKG-GE3; namely, the molar ratio of the 3 plasmids is as follows in sequence: 1:3:1.
co-transfection was performed by electroporation using a mammalian Nuclear transfection kit (Neon kit, thermofisiher) with a Neon TM transfection system electrotransfer instrument (parameters set at 1450V, 10ms, 3 pulses).
The plasmids pKG-GE3 and pKG-U6gRNA (COL 1A1-g 3) function to create DNA double strand breaks in the porcine genomic DNA in order to increase the homologous recombination rate. The plasmid EF1 alpha-hSRD 5A2 is subjected to homologous recombination with the pig genome DNA, and an exogenous target gene fragment (namely a DNA molecule shown by nucleotides 881-5685 in SEQ ID NO: 14) is inserted between the left arm of SH4 and the right arm of SH4 in the pig genome DNA.
3. Neomycin pressure screen
1. Screening positive cells inserted with exogenous target gene fragment
(1) And after the second step is completed, culturing the transformed cells by adopting the complete culture solution for 16-18 hours, and then replacing a new complete culture solution for culturing. The total time of incubation was 48 hours.
(2) After completion of step (1), the selection culture was carried out by replacing the whole culture medium containing 1.5mg/mL of G418 with a fresh whole culture medium containing 1.5mg/mL of G418 every day for 3 weeks.
When the cells were cultured for 1 week, the cells died a lot.
When the screening culture is carried out for 2 weeks, the cells die sporadically, part of positive clones begin to divide and proliferate, and the number of the cells is increased continuously.
The purpose of the selection at week 3 of culture was to allow complete degradation of intracellular plasmid to exclude false positive cell clones.
(3) After completion of step (2), the cells were harvested and cultured again for 2 passages (1 passage every 2 days) using complete medium without G418, and the cells were returned to good condition for the next single cell sorting.
2. Single cell sorting and enlarged culture
(1) After completion of step 1, the cells were collected, digested with trypsin, neutralized with complete medium, centrifuged at 500G for 5min, the supernatant was discarded, the pellet was resuspended and diluted appropriately with 1mL of complete medium, the cells were picked up with a pipette and transferred to a 96-well plate (100. Mu.l of complete medium was added in advance per well) (one 96-well plate per cell group, one cell per well), cultured for 2 days, replaced with complete medium containing 1.5mg/mL G418, and then replaced with new complete medium containing 1.5mg/mL G418 every 2 to 3 days, during which the growth of the cells per well was observed with a microscope, and wells without cells and non-single cell clones were excluded.
(2) After the cells in the wells of the 96-well plate in step (1) grew to the bottom of the wells (about 2 weeks or so), cells were digested with trypsin and collected, 2/3 of the cells were seeded into a 6-well plate containing complete culture broth, and the remaining 1/3 of the cells were collected in a 1.5mL centrifuge tube.
(3) When the cells in the wells of the 6-well plate in step (2) reached 50% fullness, the cells were digested with 0.25% (Gibco) trypsin and collected, and the cells were cryopreserved using a cell cryopreservation solution (90% complete medium +10% dmso, vol.).
4. Genome level identification of exogenous target gene fragment inserted into COL1A1 safe harbor site at fixed point
To examine whether or not the COL1A1 safe harbor site of the cell genome was successfully inserted with a targeted foreign gene fragment. And (3) taking the centrifuge tube in the step (2) in the step (III), extracting cell genome DNA, performing PCR amplification by using specific primer pairs (the specific primer pairs are respectively a primer pair consisting of sh4-Lr-JDF1414 and sh4-Lr-JDR5965, a primer pair consisting of sh4-Rr-JDF282 and sh4-Rr-JDR4723, and a primer pair consisting of sh4-wt-JDF1085 and sh4-wt-JDR 1560), and performing electrophoresis. Porcine primary fibroblasts were used as wild type controls (WT).
A primer pair consisting of sh4-Lr-JDF1414 and sh4-Lr-JDR5965 is used for identifying whether the exogenous target gene fragment at the 5' end of the porcine COL1A1 safe harbor insertion site is successfully recombined (the target sequence is 4552bp, and an amplification product of about 4552bp is obtained to indicate that the recombination is successful); a primer pair consisting of sh4-Rr-JDF282 and sh4-Rr-JDR4723 is used for identifying whether the exogenous target gene fragment at the 3' end of the porcine COL1A1 safe harbor insertion site is successfully recombined (the target sequence is 4442bp, and an amplification product of about 4442bp is obtained to indicate that the recombination is successful); the primer pair consisting of sh4-wt-JDF1085 and sh4-wt-JDR1560 is used for identifying whether the exogenous target gene fragment inserted into the porcine COL1A1 safe harbor site at a fixed point is homozygous or heterozygous (the genomic DNA of the wild type control can amplify a 476bp fragment, and the recombinant cell cannot amplify the inserted exogenous target gene fragment because the inserted exogenous target gene fragment is too large, so that if the amplification product is not displayed, the cell is homozygous for inserting the exogenous target gene fragment, and if the 476bp amplification product is displayed, the cell is heterozygous or wild type for inserting the exogenous target gene fragment).
sh4-Lr-JDF1414:CCTGCTGTAAGTGCCGTAGT;
sh4-Lr-JDR5965:CTAGGGGCACAGCACGTC。
sh4-Rr-JDF282:AAGTTATTAGGTCTGAAGAGGAGTTT;
sh4-Rr-JDR4723:CCCATCATTCCGTCCCAGAG。
sh4-wt-JDF1085:TGCTGAGTTCTGGCTTCCTG;
sh4-wt-JDR1560:TCTACCAAGAGAGTGACCAGCAG。
According to the identification result, the single cell clones numbered 1-13, 15-34 and 36-60 are all single cell clones which are successfully inserted with exogenous target gene fragments at the site of the porcine COL1A1 safe harbor, wherein the single cell clones numbered 6, 17 and 50 are homozygous site-specific insertion, and the other single cell clones are heterozygous site-specific insertion. See table 2.
TABLE 2 genotypes of single cell clones
Figure BDA0003647429240000131
Figure BDA0003647429240000141
The recombinant cell numbered 1 in Table 2 (heterozygous site-directed insertion type) was designated as recombinant cell # 1. Through whole genome sequencing, compared with porcine primary fibroblasts from the same source, the genomic DNA of the # 1 recombinant cell only differs in that: a foreign target gene fragment (i.e., a DNA molecule represented by nucleotides 881-5685 in SEQ ID NO: 14) is inserted between the left arm of SH4 and the right arm of SH4 in the genomic DNA and is heterozygous (i.e., an insertion occurs in one chromosome and NO insertion occurs in the other chromosome) in the homologous chromosomes.
The recombinant cell numbered 6 in table 2 (homozygous site-directed insertional) was designated as recombinant cell # 6. The recombinant cell numbered 17 in table 2 (homozygous site-directed insertional) was designated as recombinant cell # 17. The recombinant cell numbered 50 in table 2 (homozygous site-directed insertional) was designated as recombinant cell # 50. Through whole genome sequencing, compared with a porcine primary fibroblast of the same source, the genome DNA of the recombinant cell # 6 (or the recombinant cell # 17 or the recombinant cell # 50) only differs in that: an exogenous target gene fragment (i.e., a DNA molecule represented by nucleotides 881-5685 in SEQ ID NO: 14) is inserted between the left arm of SH4 and the right arm of SH4 in the genomic DNA and is homozygous (i.e., the same insertion occurs in both homologous chromosomes). The sequencing results of the key adaptor sequences are shown in FIGS. 6-10.
5. hSRD5A2 gene transcription level detection of single cell clone
The test cells: the 14# numbered cell (wild type single cell clone, as WT control), the 1# recombinant cell, the 6# recombinant cell, the 17# recombinant cell, or the 50# recombinant cell in table 2.
Taking a test cell, extracting total RNA, and performing reverse transcription to obtain cDNA. The relative expression level of hSRD5A2 gene was detected by fluorescent quantitative PCR using cDNA as template (2 for beta-actin as reference gene) -ΔCt Calculated by the method). Porcine primary fibroblasts were used as control (WT).
The primers for the fluorescent quantitative PCR were as follows:
hSRD5A2-F:GCCACCTGGGACGGTACTTC;
hSRD5A2-R:TGAGAATGAGTATAGCTGGATA。
β-actin-F:CACGCCATCCTGCGTCTGGA;
β-actin-R:AGCACCGTGTTGGCGTAGAG。
data analysis was performed using SPSS statistical software, expressed as (mean ± standard deviation), using independent sample T-test statistical analysis. The results are shown in FIG. 11.2 -ΔCt The results show that the expression level of hSRD5A2 gene of the tested recombinant cells is significantly higher than that of WT control, and the expression level of hSRD5A2 gene of the single-cell clone inserted at the homozygous fixed point is higher than that of the single-cell clone inserted at the heterozygous fixed point. The results show that the hSRD5A2 gene has higher expression degree in the tested recombinant cells.
In conclusion, the invention successfully obtains the recombinant cell which integrates the human SRD5A2 gene into the pig genome at a fixed point and expresses the gene, and the recombinant cell can be used as a nuclear transfer cell donor to clone and produce the alopecia model pig.
The present invention has been described in detail above. It will be apparent to those skilled in the art that the invention can be practiced in a wide range of equivalent parameters, concentrations, and conditions without departing from the spirit and scope of the invention and without undue experimentation. While the invention has been described with reference to specific embodiments, it will be appreciated that the invention can be further modified. In general, this application is intended to cover any variations, uses, or adaptations of the invention following, in general, the principles of the invention and including such departures from the present disclosure as come within known or customary practice within the art to which the invention pertains. The use of some of the essential features is possible within the scope of the claims attached below.
Sequence listing
<110> Nanjing King Gene engineering Co., ltd
<120> construction method of alopecia model pig nuclear transplantation donor cell expressing humanized II-type 5 alpha-reductase
<130> GNCYX221734
<160> 19
<170> SIPOSequenceListing 1.0
<210> 1
<211> 10476
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 1
gagggcctat ttcccatgat tccttcatat ttgcatatac gatacaaggc tgttagagag 60
ataattggaa ttaatttgac tgtaaacaca aagatattag tacaaaatac gtgacgtaga 120
aagtaataat ttcttgggta gtttgcagtt ttaaaattat gttttaaaat ggactatcat 180
atgcttaccg taacttgaaa gtatttcgat ttcttggctt tatatatctt gtggaaagga 240
cgaaacaccg ggtcttcgag aagacctgtt ttagagctag aaatagcaag ttaaaataag 300
gctagtccgt tatcaacttg aaaaagtggc accgagtcgg tgcttttttc tagcgcgtgc 360
gccaattctg cagacaaatg gctctagagg tacccgttac ataacttacg gtaaatggcc 420
cgcctggctg accgcccaac gacccccgcc cattgacgtc aatagtaacg ccaataggga 480
ctttccattg acgtcaatgg gtggagtatt tacggtaaac tgcccacttg gcagtacatc 540
aagtgtatca tatgccaagt acgcccccta ttgacgtcaa tgacggtaaa tggcccgcct 600
ggcattgtgc ccagtacatg accttatggg actttcctac ttggcagtac atctacgtat 660
tagtcatcgc tattaccatg ggggcagagc gcacatcgcc cacagtcccc gagaagttgg 720
ggggaggggt cggcaattga tccggtgcct agagaaggtg gcgcggggta aactgggaaa 780
gtgatgtcgt gtactggctc cgcctttttc ccgagggtgg gggagaaccg tatataagtg 840
cagtagtcgc cgtgaacgtt ctttttcgca acgggtttgc cgccagaaca caggttggac 900
cggtgccacc atggactata aggaccacga cggagactac aaggatcatg atattgatta 960
caaagacgat gacgataaga tggcccccaa aaagaaacga aaggtgggtg ggtccccaaa 1020
gaagaagcgg aaggtcggta tccacggagt cccagcagcc gacaagaagt acagcatcgg 1080
cctggacatc ggcaccaact ctgtgggctg ggccgtgatc accgacgagt acaaggtgcc 1140
cagcaagaaa ttcaaggtgc tgggcaacac cgaccggcac agcatcaaga agaacctgat 1200
cggagccctg ctgttcgaca gcggcgaaac agccgaggcc acccggctga agagaaccgc 1260
cagaagaaga tacaccagac ggaagaaccg gatctgctat ctgcaagaga tcttcagcaa 1320
cgagatggcc aaggtggacg acagcttctt ccacagactg gaagagtcct tcctggtgga 1380
agaggataag aagcacgagc ggcaccccat cttcggcaac atcgtggacg aggtggccta 1440
ccacgagaag taccccacca tctaccacct gagaaagaaa ctggtggaca gcaccgacaa 1500
ggccgacctg cggctgatct atctggccct ggcccacatg atcaagttcc ggggccactt 1560
cctgatcgag ggcgacctga accccgacaa cagcgacgtg gacaagctgt tcatccagct 1620
ggtgcagacc tacaaccagc tgttcgagga aaaccccatc aacgccagcg gcgtggacgc 1680
caaggccatc ctgtctgcca gactgagcaa gagcagacgg ctggaaaatc tgatcgccca 1740
gctgcccggc gagaagaaga atggcctgtt cggaaacctg attgccctga gcctgggcct 1800
gacccccaac ttcaagagca acttcgacct ggccgaggat gccaaactgc agctgagcaa 1860
ggacacctac gacgacgacc tggacaacct gctggcccag atcggcgacc agtacgccga 1920
cctgtttctg gccgccaaga acctgtccga cgccatcctg ctgagcgaca tcctgagagt 1980
gaacaccgag atcaccaagg cccccctgag cgcctctatg atcaagagat acgacgagca 2040
ccaccaggac ctgaccctgc tgaaagctct cgtgcggcag cagctgcctg agaagtacaa 2100
agagattttc ttcgaccaga gcaagaacgg ctacgccggc tacattgacg gcggagccag 2160
ccaggaagag ttctacaagt tcatcaagcc catcctggaa aagatggacg gcaccgagga 2220
actgctcgtg aagctgaaca gagaggacct gctgcggaag cagcggacct tcgacaacgg 2280
cagcatcccc caccagatcc acctgggaga gctgcacgcc attctgcggc ggcaggaaga 2340
tttttaccca ttcctgaagg acaaccggga aaagatcgag aagatcctga ccttccgcat 2400
cccctactac gtgggccctc tggccagggg aaacagcaga ttcgcctgga tgaccagaaa 2460
gagcgaggaa accatcaccc cctggaactt cgaggaagtg gtggacaagg gcgcttccgc 2520
ccagagcttc atcgagcgga tgaccaactt cgataagaac ctgcccaacg agaaggtgct 2580
gcccaagcac agcctgctgt acgagtactt caccgtgtat aacgagctga ccaaagtgaa 2640
atacgtgacc gagggaatga gaaagcccgc cttcctgagc ggcgagcaga aaaaggccat 2700
cgtggacctg ctgttcaaga ccaaccggaa agtgaccgtg aagcagctga aagaggacta 2760
cttcaagaaa atcgagtgct tcgactccgt ggaaatctcc ggcgtggaag atcggttcaa 2820
cgcctccctg ggcacatacc acgatctgct gaaaattatc aaggacaagg acttcctgga 2880
caatgaggaa aacgaggaca ttctggaaga tatcgtgctg accctgacac tgtttgagga 2940
cagagagatg atcgaggaac ggctgaaaac ctatgcccac ctgttcgacg acaaagtgat 3000
gaagcagctg aagcggcgga gatacaccgg ctggggcagg ctgagccgga agctgatcaa 3060
cggcatccgg gacaagcagt ccggcaagac aatcctggat ttcctgaagt ccgacggctt 3120
cgccaacaga aacttcatgc agctgatcca cgacgacagc ctgaccttta aagaggacat 3180
ccagaaagcc caggtgtccg gccagggcga tagcctgcac gagcacattg ccaatctggc 3240
cggcagcccc gccattaaga agggcatcct gcagacagtg aaggtggtgg acgagctcgt 3300
gaaagtgatg ggccggcaca agcccgagaa catcgtgatc gaaatggcca gagagaacca 3360
gaccacccag aagggacaga agaacagccg cgagagaatg aagcggatcg aagagggcat 3420
caaagagctg ggcagccaga tcctgaaaga acaccccgtg gaaaacaccc agctgcagaa 3480
cgagaagctg tacctgtact acctgcagaa tgggcgggat atgtacgtgg accaggaact 3540
ggacatcaac cggctgtccg actacgatgt ggaccatatc gtgcctcaga gctttctgaa 3600
ggacgactcc atcgacaaca aggtgctgac cagaagcgac aagaaccggg gcaagagcga 3660
caacgtgccc tccgaagagg tcgtgaagaa gatgaagaac tactggcggc agctgctgaa 3720
cgccaagctg attacccaga gaaagttcga caatctgacc aaggccgaga gaggcggcct 3780
gagcgaactg gataaggccg gcttcatcaa gagacagctg gtggaaaccc ggcagatcac 3840
aaagcacgtg gcacagatcc tggactcccg gatgaacact aagtacgacg agaatgacaa 3900
gctgatccgg gaagtgaaag tgatcaccct gaagtccaag ctggtgtccg atttccggaa 3960
ggatttccag ttttacaaag tgcgcgagat caacaactac caccacgccc acgacgccta 4020
cctgaacgcc gtcgtgggaa ccgccctgat caaaaagtac cctaagctgg aaagcgagtt 4080
cgtgtacggc gactacaagg tgtacgacgt gcggaagatg atcgccaaga gcgagcagga 4140
aatcggcaag gctaccgcca agtacttctt ctacagcaac atcatgaact ttttcaagac 4200
cgagattacc ctggccaacg gcgagatccg gaagcggcct ctgatcgaga caaacggcga 4260
aaccggggag atcgtgtggg ataagggccg ggattttgcc accgtgcgga aagtgctgag 4320
catgccccaa gtgaatatcg tgaaaaagac cgaggtgcag acaggcggct tcagcaaaga 4380
gtctatcctg cccaagagga acagcgataa gctgatcgcc agaaagaagg actgggaccc 4440
taagaagtac ggcggcttcg acagccccac cgtggcctat tctgtgctgg tggtggccaa 4500
agtggaaaag ggcaagtcca agaaactgaa gagtgtgaaa gagctgctgg ggatcaccat 4560
catggaaaga agcagcttcg agaagaatcc catcgacttt ctggaagcca agggctacaa 4620
agaagtgaaa aaggacctga tcatcaagct gcctaagtac tccctgttcg agctggaaaa 4680
cggccggaag agaatgctgg cctctgccgg cgaactgcag aagggaaacg aactggccct 4740
gccctccaaa tatgtgaact tcctgtacct ggccagccac tatgagaagc tgaagggctc 4800
ccccgaggat aatgagcaga aacagctgtt tgtggaacag cacaagcact acctggacga 4860
gatcatcgag cagatcagcg agttctccaa gagagtgatc ctggccgacg ctaatctgga 4920
caaagtgctg tccgcctaca acaagcaccg ggataagccc atcagagagc aggccgagaa 4980
tatcatccac ctgtttaccc tgaccaatct gggagcccct gccgccttca agtactttga 5040
caccaccatc gaccggaaga ggtacaccag caccaaagag gtgctggacg ccaccctgat 5100
ccaccagagc atcaccggcc tgtacgagac acggatcgac ctgtctcagc tgggaggcga 5160
caaaaggccg gcggccacga aaaaggccgg ccaggcaaaa aagaaaaagg gcggctccaa 5220
gcggcctgcc gcgacgaaga aagcgggaca ggccaagaaa aagaaaggat ccggcgcaac 5280
aaacttctct ctgctgaaac aagccggaga tgtcgaagag aatcctggac cggtgagcaa 5340
gggcgaggag ctgttcaccg gggtggtgcc catcctggtc gagctggacg gcgacgtaaa 5400
cggccacaag ttcagcgtgt ccggcgaggg cgagggcgat gccacctacg gcaagctgac 5460
cctgaagttc atctgcacca ccggcaagct gcccgtgccc tggcccaccc tcgtgaccac 5520
cctgacctac ggcgtgcagt gcttcagccg ctaccccgac cacatgaagc agcacgactt 5580
cttcaagtcc gccatgcccg aaggctacgt ccaggagcgc accatcttct tcaaggacga 5640
cggcaactac aagacccgcg ccgaggtgaa gttcgagggc gacaccctgg tgaaccgcat 5700
cgagctgaag ggcatcgact tcaaggagga cggcaacatc ctggggcaca agctggagta 5760
caactacaac agccacaacg tctatatcat ggccgacaag cagaagaacg gcatcaaggt 5820
gaacttcaag atccgccaca acatcgagga cggcagcgtg cagctcgccg accactacca 5880
gcagaacacc cccatcggcg acggccccgt gctgctgccc gacaaccact acctgagcac 5940
ccagtccgcc ctgagcaaag accccaacga gaagcgcgat cacatggtcc tgctggagtt 6000
cgtgaccgcc gccgggatca ctctcggcat ggacgagctg tacaagggct ccggcgaggg 6060
caggggaagt cttctaacat gcggggacgt ggaggaaaat cccggcccaa ccgagtacaa 6120
gcccacggtg cgcctcgcca cccgcgacga cgtccccagg gccgtacgca ccctcgccgc 6180
cgcgttcgcc gactaccccg ccacgcgcca caccgtcgat ccggaccgcc acatcgagcg 6240
ggtcaccgag ctgcaagaac tcttcctcac gcgcgtcggg ctcgacatcg gcaaggtgtg 6300
ggtcgcggac gacggcgccg cggtggcggt ctggaccacg ccggagagcg tcgaagcggg 6360
ggcggtgttc gccgagatcg gcccgcgcat ggccgagttg agcggttccc ggctggccgc 6420
gcagcaacag atggaaggcc tcctggcgcc gcaccggccc aaggagcccg cgtggttcct 6480
ggccaccgtc ggagtctcgc ccgaccacca gggcaagggt ctgggcagcg ccgtcgtgct 6540
ccccggagtg gaggcggccg agcgcgccgg ggtgcccgcc ttcctggaga cctccgcgcc 6600
ccgcaacctc cccttctacg agcggctcgg cttcaccgtc accgccgacg tcgaggtgcc 6660
cgaaggaccg cgcacctggt gcatgacccg caagcccggt gcctgaacgc gttaagtcga 6720
caatcaacct ctggattaca aaatttgtga aagattgact ggtattctta actatgttgc 6780
tccttttacg ctatgtggat acgctgcttt aatgcctttg tatcatgcta ttgcttcccg 6840
tatggctttc attttctcct ccttgtataa atcctggttg ctgtctcttt atgaggagtt 6900
gtggcccgtt gtcaggcaac gtggcgtggt gtgcactgtg tttgctgacg caacccccac 6960
tggttggggc attgccacca cctgtcagct cctttccggg actttcgctt tccccctccc 7020
tattgccacg gcggaactca tcgccgcctg ccttgcccgc tgctggacag gggctcggct 7080
gttgggcact gacaattccg tggtgttgtc ggggaaatca tcgtcctttc cttggctgct 7140
cgcctgtgtt gccacctgga ttctgcgcgg gacgtccttc tgctacgtcc cttcggccct 7200
caatccagcg gaccttcctt cccgcggcct gctgccggct ctgcggcctc ttccgcgtct 7260
tcgccttcgc cctcagacga gtcggatctc cctttgggcc gcctccccgc gtcgacttta 7320
agaccaatga cttacaaggc agctgtagat cttagccact ttttaaaaga aaagggggga 7380
ctggaagggc taattcactc ccaacgaaga caagatctgc tttttgcttg tactgggtct 7440
ctctggttag accagatctg agcctgggag ctctctggct aactagggaa cccactgctt 7500
aagcctcaat aaagcttgcc ttgagtgctt caagtagtgt gtgcccgtct gttgtgtgac 7560
tctggtaact agagatccct cagacccttt tagtcagtgt ggaaaatctc tagcagggcc 7620
cgtttaaacc cgctgatcag cctcgactgt gccttctagt tgccagccat ctgttgtttg 7680
cccctccccc gtgccttcct tgaccctgga aggtgccact cccactgtcc tttcctaata 7740
aaatgaggaa attgcatcgc attgtctgag taggtgtcat tctattctgg ggggtggggt 7800
ggggcaggac agcaaggggg aggattggga agacaatagc aggcatgctg gggatgcggt 7860
gggctctatg gcctgcaggg gcgcctgatg cggtattttc tccttacgca tctgtgcggt 7920
atttcacacc gcatacgtca aagcaaccat agtacgcgcc ctgtagcggc gcattaagcg 7980
cggcgggtgt ggtggttacg cgcagcgtga ccgctacact tgccagcgcc ttagcgcccg 8040
ctcctttcgc tttcttccct tcctttctcg ccacgttcgc cggctttccc cgtcaagctc 8100
taaatcgggg gctcccttta gggttccgat ttagtgcttt acggcacctc gaccccaaaa 8160
aacttgattt gggtgatggt tcacgtagtg ggccatcgcc ctgatagacg gtttttcgcc 8220
ctttgacgtt ggagtccacg ttctttaata gtggactctt gttccaaact ggaacaacac 8280
tcaactctat ctcgggctat tcttttgatt tataagggat tttgccgatt tcggtctatt 8340
ggttaaaaaa tgagctgatt taacaaaaat ttaacgcgaa ttttaacaaa atattaacgt 8400
ttacaatttt atggtgcact ctcagtacaa tctgctctga tgccgcatag ttaagccagc 8460
cccgacaccc gccaacaccc gctgacgcgc cctgacgggc ttgtctgctc ccggcatccg 8520
cttacagaca agctgtgacc gtctccggga gctgcatgtg tcagaggttt tcaccgtcat 8580
caccgaaacg cgcgagacga aagggcctcg tgatacgcct atttttatag gttaatgtca 8640
tgataataat ggtttcttag acgtcaggtg gcacttttcg gggaaatgtg cgcggaaccc 8700
ctatttgttt atttttctaa atacattcaa atatgtatcc gctcatgaga caataaccct 8760
gataaatgct tcaataatat tgaaaaagga agagtatgag tattcaacat ttccgtgtcg 8820
cccttattcc cttttttgcg gcattttgcc ttcctgtttt tgctcaccca gaaacgctgg 8880
tgaaagtaaa agatgctgaa gatcagttgg gtgcacgagt gggttacatc gaactggatc 8940
tcaacagcgg taagatcctt gagagttttc gccccgaaga acgttttcca atgatgagca 9000
cttttaaagt tctgctatgt ggcgcggtat tatcccgtat tgacgccggg caagagcaac 9060
tcggtcgccg catacactat tctcagaatg acttggttga gtactcacca gtcacagaaa 9120
agcatcttac ggatggcatg acagtaagag aattatgcag tgctgccata accatgagtg 9180
ataacactgc ggccaactta cttctgacaa cgatcggagg accgaaggag ctaaccgctt 9240
ttttgcacaa catgggggat catgtaactc gccttgatcg ttgggaaccg gagctgaatg 9300
aagccatacc aaacgacgag cgtgacacca cgatgcctgt agcaatggca acaacgttgc 9360
gcaaactatt aactggcgaa ctacttactc tagcttcccg gcaacaatta atagactgga 9420
tggaggcgga taaagttgca ggaccacttc tgcgctcggc ccttccggct ggctggttta 9480
ttgctgataa atctggagcc ggtgagcgtg gaagccgcgg tatcattgca gcactggggc 9540
cagatggtaa gccctcccgt atcgtagtta tctacacgac ggggagtcag gcaactatgg 9600
atgaacgaaa tagacagatc gctgagatag gtgcctcact gattaagcat tggtaactgt 9660
cagaccaagt ttactcatat atactttaga ttgatttaaa acttcatttt taatttaaaa 9720
ggatctaggt gaagatcctt tttgataatc tcatgaccaa aatcccttaa cgtgagtttt 9780
cgttccactg agcgtcagac cccgtagaaa agatcaaagg atcttcttga gatccttttt 9840
ttctgcgcgt aatctgctgc ttgcaaacaa aaaaaccacc gctaccagcg gtggtttgtt 9900
tgccggatca agagctacca actctttttc cgaaggtaac tggcttcagc agagcgcaga 9960
taccaaatac tgttcttcta gtgtagccgt agttaggcca ccacttcaag aactctgtag 10020
caccgcctac atacctcgct ctgctaatcc tgttaccagt ggctgctgcc agtggcgata 10080
agtcgtgtct taccgggttg gactcaagac gatagttacc ggataaggcg cagcggtcgg 10140
gctgaacggg gggttcgtgc acacagccca gcttggagcg aacgacctac accgaactga 10200
gatacctaca gcgtgagcta tgagaaagcg ccacgcttcc cgaagggaga aaggcggaca 10260
ggtatccggt aagcggcagg gtcggaacag gagagcgcac gagggagctt ccagggggaa 10320
acgcctggta tctttatagt cctgtcgggt ttcgccacct ctgacttgag cgtcgatttt 10380
tgtgatgctc gtcagggggg cggagcctat ggaaaaacgc cagcaacgcg gcctttttac 10440
ggttcctggc cttttgctgg ccttttgctc acatgt 10476
<210> 2
<211> 3120
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 2
gacgaaaggg cctcgtgata cgcctatttt tataggttaa tgtcatgata ataatggttt 60
cttagacgtc aggtggcact tttcggggaa atgtgcgcgg aacccctatt tgtttatttt 120
tctaaataca ttcaaatatg tatccgctca tgagacaata accctgataa atgcttcaat 180
aatattgaaa aaggaagagt atgagtattc aacatttccg tgtcgccctt attccctttt 240
ttgcggcatt ttgccttcct gtttttgctc acccagaaac gctggtgaaa gtaaaagatg 300
ctgaagatca gttgggtgca cgagtgggtt acatcgaact ggatctcaac agcggtaaga 360
tccttgagag ttttcgcccc gaagaacgtt ttccaatgat gagcactttt aaagttctgc 420
tatgtggcgc ggtattatcc cgtattgacg ccgggcaaga gcaactcggt cgccgcatac 480
actattctca gaatgacttg gttgagtact caccagtcac agaaaagcat cttacggatg 540
gcatgacagt aagagaatta tgcagtgctg ccataaccat gagtgataac actgcggcca 600
acttacttct gacaacgatc ggaggaccga aggagctaac cgcttttttg cacaacatgg 660
gggatcatgt aactcgcctt gatcgttggg aaccggagct gaatgaagcc ataccaaacg 720
acgagcgtga caccacgatg cctgtagcaa tggcaacaac gttgcgcaaa ctattaactg 780
gcgaactact tactctagct tcccggcaac aattaataga ctggatggag gcggataaag 840
ttgcaggacc acttctgcgc tcggcccttc cggctggctg gtttattgct gataaatctg 900
gagccggtga gcgtgggtct cgcggtatca ttgcagcact ggggccagat ggtaagccct 960
cccgtatcgt agttatctac acgacgggga gtcaggcaac tatggatgaa cgaaatagac 1020
agatcgctga gataggtgcc tcactgatta agcattggta actgtcagac caagtttact 1080
catatatact ttagattgat ttaaaacttc atttttaatt taaaaggatc taggtgaaga 1140
tcctttttga taatctcatg accaaaatcc cttaacgtga gttttcgttc cactgagcgt 1200
cagaccccgt agaaaagatc aaaggatctt cttgagatcc tttttttctg cgcgtaatct 1260
gctgcttgca aacaaaaaaa ccaccgctac cagcggtggt ttgtttgccg gatcaagagc 1320
taccaactct ttttccgaag gtaactggct tcagcagagc gcagatacca aatactgttc 1380
ttctagtgta gccgtagtta ggccaccact tcaagaactc tgtagcaccg cctacatacc 1440
tcgctctgct aatcctgtta ccagtggctg ctgccagtgg cgataagtcg tgtcttaccg 1500
ggttggactc aagacgatag ttaccggata aggcgcagcg gtcgggctga acggggggtt 1560
cgtgcacaca gcccagcttg gagcgaacga cctacaccga actgagatac ctacagcgtg 1620
agctatgaga aagcgccacg cttcccgaag ggagaaaggc ggacaggtat ccggtaagcg 1680
gcagggtcgg aacaggagag cgcacgaggg agcttccagg gggaaacgcc tggtatcttt 1740
atagtcctgt cgggtttcgc cacctctgac ttgagcgtcg atttttgtga tgctcgtcag 1800
gggggcggag cctatggaaa aacgccagca acgcggcctt tttacggttc ctggcctttt 1860
gctggccttt tgctcacatg ttctttcctg cgttatcccc tgattctgtg gataaccgta 1920
ttaccgcctt tgagtgagct gataccgctc gccgcagccg aacgaccgag cgcagcgagt 1980
cagtgagcga ggaagcggaa gagcgcccaa tacgcaaacc gcctctcccc gcgcgttggc 2040
cgattcatta atgcagctgg cacgacaggt ttcccgactg gaaagcgggc agtgagcgca 2100
acgcaattaa tgtgagttag ctcactcatt aggcacccca ggctttacac tttatgcttc 2160
cggctcgtat gttgtgtgga attgtgagcg gataacaatt tcacacagga aacagctatg 2220
accatgatta cgccaagctt gcatgcaggc ctctgcagtc gacgggcccg ggatccgatg 2280
ataaacatgt gagggcctat ttcccatgat tccttcatat ttgcatatac gatacaaggc 2340
tgttagagag ataattggaa ttaatttgac tgtaaacaca aagatattag tacaaaatac 2400
gtgacgtaga aagtaataat ttcttgggta gtttgcagtt ttaaaattat gttttaaaat 2460
ggactatcat atgcttaccg taacttgaaa gtatttcgat ttcttggctt tatatatctt 2520
gtggaaagga cgaaacaccg ggtcttcgag aagacctgtt ttagagctag aaatagcaag 2580
ttaaaataag gctagtccgt tatcaacttg aaaaagtggc accgagtcgg tgcttttttc 2640
tagcgcgtgc gccaattctg cagacaaatg gctctagagg tacccataga tctagatgca 2700
ttcgcgaggt accgagctcg aattcactgg ccgtcgtttt acaacgtcgt gactgggaaa 2760
accctggcgt tacccaactt aatcgccttg cagcacatcc ccctttcgcc agctggcgta 2820
atagcgaaga ggcccgcacc gatcgccctt cccaacagtt gcgcagcctg aatggcgaat 2880
ggcgcctgat gcggtatttt ctccttacgc atctgtgcgg tatttcacac cgcatatggt 2940
gcactctcag tacaatctgc tctgatgccg catagttaag ccagccccga cacccgccaa 3000
cacccgctga cgcgccctga cgggcttgtc tgctcccggc atccgcttac agacaagctg 3060
tgaccgtctc cgggagctgc atgtgtcaga ggttttcacc gtcatcaccg aaacgcgcga 3120
<210> 3
<211> 14138
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 3
ggcgcgccct ctacctgctc tcggacccgt gggggtgggg ggtggaggaa ggagtggggg 60
gtcggtcctg ctggcttgtg ggtgggaggc gcatgttctc caaaaacccg cgcgagctgc 120
aatcctgagg gagctgcagt ggaggaggcg gagagaaggc cgcacccttc tccgcagggg 180
gaggggagtg ccgcaatacc tttatgggag ttctctgctg cctccttttc ctaaggaccg 240
ccctgggcct agaaaaatcc ctccctcccc cgcgatctcg tcatcgcctc catgtcagtt 300
tgctccttct cgattatggg cgggattctt ttgccctggc gcgccccaga cccgggcctg 360
gggggcaagt cggggggcgg ggggaggtcg ggcagggtcc cctgggagga tggggacgtg 420
ctgtgcccct agcggccacc agagggcacc aggacaccac tgcggtcggc tcagcggctc 480
ctgccctggt cagggggcgc caggtcctgc ccctcctggg gagggcgggg ggcgagaagg 540
gcgattttaa ttaacccacg tttcaacatg cacatcccag taatttggaa acattttgtt 600
tccaaagatt cacttaacat tggtttagca acatgaagct ttctatgcaa cccaaggact 660
cagtttttgg cctgttttag tgacaggcaa tcagcaacat gctgcatttc tctccagtgt 720
tgtaatcaaa gaaaccctcc catagcttta aatgatattc cttccccttc caattatgtg 780
gggggaaaac aaccctattc tccacccaga agtgttaact caagaattac attttcaaga 840
agtttccaga ttcgtaaaac cagaattaga tgtctttcac ctaaatgtct cggtgttgac 900
caaaggaaca cacaggtttc tcatttaact tttttaatgg gtctcaaaat tctgtgacaa 960
atttttggtc aagttgtttc cattaaaaag tactgatttt aaaaactaat aacttaaaac 1020
tgccacacgc aaaaaagaaa accaaagtgg tccacaaaac attctccttt ccttctgaag 1080
gttttacgat gcattgttat cattaaccag tcttttacta ctaaacttaa atggccaatt 1140
gaaacaaaca gttctgagac cgttcttcca ccactgatta agagtggggt ggcaggtatt 1200
agggataatg ctagcttact tgtacagctc gtccatgccg agagtgatcc cggcggcggt 1260
cacgaactcc agcaggacca tgtgatcgcg cttctcgttg gggtctttgc tcagggcgga 1320
ctgggtgctc aggtagtggt tgtcgggcag cagcacgggg ccgtcgccga tgggggtgtt 1380
ctgctggtag tggtcggcga gctgcacgct gccgtcctcg atgttgtggc ggatcttgaa 1440
gttcaccttg atgccgttct tctgcttgtc ggccatgata tagacgttgt ggctgttgta 1500
gttgtactcc agcttgtgcc ccaggatgtt gccgtcctcc ttgaagtcga tgcccttcag 1560
ctcgatgcgg ttcaccaggg tgtcgccctc gaacttcacc tcggcgcggg tcttgtagtt 1620
gccgtcgtcc ttgaagaaga tggtgcgctc ctggacgtag ccttcgggca tggcggactt 1680
gaagaagtcg tgctgcttca tgtggtcggg gtagcggctg aagcactgca cgccgtaggt 1740
cagggtggtc acgagggtgg gccagggcac gggcagcttg ccggtggtgc agatgaactt 1800
cagggtcagc ttgccgtagg tggcatcgcc ctcgccctcg ccggacacgc tgaacttgtg 1860
gccgtttacg tcgccgtcca gctcgaccag gatgggcacc accccggtga acagctcctc 1920
gcccttgctc accatggtgg cgtcgaccgt acgtcacgac acctgaaatg gaagaaaaaa 1980
actttgaacc actgtctgag gcttgagaat gaaccaagat ccaaactcaa aaagggcaaa 2040
ttccaaggag aattacatca agtgccaagc tggcctaact tcagtctcca cccactcagt 2100
gtggggaaac tccatcgcat aaaacccctc cccccaacct aaagacgacg tactccaaaa 2160
gctcgagaac taatcgaggt gcctggacgg cgcccggtac tccgtggagt cacatgaagc 2220
gacggctgag gacggaaagg cccttttcct ttgtgtgggt gactcacccg cccgctctcc 2280
cgagcgccgc gtcctccatt ttgagctccc tgcagcaggg ccgggaagcg gccatctttc 2340
cgctcacgca actggtgccg accgggccag ccttgccgcc cagggcgggg cgatacacgg 2400
cggcgcgagg ccaggcacca gagcaggccg gccagcttga gactaccccc gtccgattct 2460
cggtggccgc gctcgcaggc cccgcctcgc cgaacatgtg cgctgggacg cacgggcccc 2520
gtcgccgccc gcggccccaa aaaccgaaat accagtgtgc agatcttggc ccgcatttac 2580
aagactatct tgccagaaaa aaagcgtcgc agcaggtcat caaaaatttt aaatggctag 2640
agacttatcg aaagcagcga gacaggcgcg aaggtgccac cagattcgca cgcggcggcc 2700
ccagcgccca ggccaggcct caactcaagc acgaggcgaa ggggctcctt aagcgcaagg 2760
cctcgaactc tcccacccac ttccaacccg aagctcggga tcaagaatca cgtactgcag 2820
ccagtggaag taattcaagg cacgcaaggg ccataacccg taaagaggcc aggcccgcgg 2880
gaaccacaca cggcacttac ctgtgttctg gcggcaaacc cgttgcgaaa aagaacgttc 2940
acggcgacta ctgcacttat atacggttct cccccaccct cgggaaaaag gcggagccag 3000
tacacgacat cactttccca gtttaccccg cgccaccttc tctaggcacc ggttcaattg 3060
ccgacccctc cccccaactt ctcggggact gtgggcgatg tgcgctctgc ccactgacgg 3120
gcaccggagc cctagattcg attccctttg gggcaaaact caccgcctaa tcccctataa 3180
ctctaccggg gagcccggtg gagagcagac gggctgacgc tgccacctgc cggccatccc 3240
aggataggac cgccgtattc aagtcgccct caggaaggac cctcggggca ccagaggcct 3300
tcgaagcccc aatgagtgag gcaactgagg gtcgcgggtg ccattacaag gcccagccaa 3360
ggcctagagc caaggcttga accgtggggg acccccaagc cccacctgcc caggaacagc 3420
agacactggg acactttgtt tcaggtcctg cccaggcccc tcccactgtg aggctgggat 3480
ttgtcgccca gggtgcagat gagaagagtg gggaaagcag tcctgagcca ggaaattcta 3540
ccgggtaggg gaggcgcttt tcccaaggca gtctggagca tgcgctttag cagccccgct 3600
gggcacttgg cgctacacaa gtggcctctg gcctcgcaca cattccacat ccaccggtag 3660
gcgccaaccg gctccgttct ttggtggccc cttcgcgcca ccttctactc ctcccctagt 3720
caggaagttc ccccccgccc cgcagctcgc gtcgtgcagg acgtgacaaa tggaagtagc 3780
acgtctcact agtctcgtgc agatggacag caccgctgag caatggaagc gggtaggcct 3840
ttggggcagc ggccaatagc agctttgctc cttcgctttc tgggctcaga ggctgggaag 3900
gggtgggtcc gggggcgggc tcaggggcgg gctcaggggc ggggcgggcg cccgaaggtc 3960
ctccggaggc ccggcattct gcacgcttca aaagcgcacg tctgccgcgc tgttctcctc 4020
ttcctcatct ccgggccttt cgacctccta gggccaccat ggtgagcaag ggcgaggacg 4080
acaacatggc catcatcaag gagttcatgc gcttcaaggt gcacatggag ggctccgtga 4140
acggccacga gttcgagatc gagggcgagg gcgagggccg cccctacgag ggcacccaga 4200
ccgccaagct gaaggtgacc aagggcggcc ccctgccctt cgcctgggac atcctgtccc 4260
ctcagttcat gtacggctcc aaggcctacg tgaagcaccc cgccgacatc cccgactact 4320
tgaagctgtc cttccccgag ggcttcaagt gggagcgcgt gatgaacttc gaggacggcg 4380
gcgtggtgac cgtgacccag gactcctccc tgcaggacgg cgagttcatc tacaaggtga 4440
agctgcgcgg caccaacttc ccctccgacg gccccgtaat gcagaagaag accatgggct 4500
gggaggcctc ctccgagcgg atgtaccccg aggacggcgc cctgaagggc gagatcaagc 4560
agaggctgaa gctgaaggac ggcggccact acgacgccga ggtcaagacc acctacaagg 4620
ccaagaagcc cgtgcagctg cccggcgcct acaacgtcaa catcaagctg gacatcacct 4680
cccacaacga ggactacacc atcgtggaac agtacgagcg cgccgagggc cgccactcca 4740
ccggcggcat ggacgagctg tacaagtgag gatccgctga tcagcctcga ctgtgccttc 4800
tagttgccag ccatctgttg tttgcccctc ccccgtgcct tccttgaccc tggaaggtgc 4860
cactcccact gtcctttcct aataaaatga ggaaattgca tcgcattgtc tgagtaggtg 4920
tcattctatt ctggggggtg gggtggggca ggacagcaag ggggaggatt gggaagacaa 4980
tagcaggcat gctggggatg cggtgggctc tatggcttct gaggcggaaa gaacccttct 5040
gaggcggaaa gaaccagctg ccttaatata acttcgtata atgtatgcta tacgaagtta 5100
ttaggtctga agaggagttt acgtccagcc aattctgtgg aatgtgtgtc agttagggtg 5160
tggaaagtcc ccaggctccc cagcaggcag aagtatgcaa agcatgcatc tcaattagtc 5220
agcaaccagg tgtggaaagt ccccaggctc cccagcaggc agaagtatgc aaagcatgca 5280
tctcaattag tcagcaacca tagtcccgcc cctaactccg cccatcccgc ccctaactcc 5340
gcccagttcc gcccattctc cgccccatgg ctgactaatt ttttttattt atgcagaggc 5400
cgaggccgcc tctgcctctg agctattcca gaagtagtga ggaggctttt ttggaggcct 5460
aggcttttgc aaaaagctcc cgggagcttg tatatccatt ttcggcggcc gcgccaccat 5520
gaccgagtac aagcccacgg tgcgcctcgc cacccgcgac gacgtcccca gggccgtacg 5580
caccctcgcc gccgcgttcg ccgactaccc cgccacgcgc cacaccgtcg atccggaccg 5640
ccacatcgag cgggtcaccg agctgcaaga actcttcctc acgcgcgtcg ggctcgacat 5700
cggcaaggtg tgggtcgcgg acgacggcgc cgcggtggcg gtctggacca cgccggagag 5760
cgtcgaagcg ggggcggtgt tcgccgagat cggcccgcgc atggccgagt tgagcggttc 5820
ccggctggcc gcgcagcaac agatggaagg cctcctggcg ccgcaccggc ccaaggagcc 5880
cgcgtggttc ctggccaccg tcggagtctc gcccgaccac cagggcaagg gtctgggcag 5940
cgccgtcgtg ctccccggag tggaggcggc cgagcgcgcc ggggtgcccg ccttcctgga 6000
gacctccgcg ccccgcaacc tccccttcta cgagcggctc ggcttcaccg tcaccgccga 6060
cgtcgaggtg cccgaaggac cgcgcacctg gtgcatgacc cgcaagcccg gtgcctgaga 6120
attcgcggga ctctggggtt cgaaatgacc gaccaagcga cgcccaacct gccatcacga 6180
gatttcgatt ccaccgccgc cttctatgaa aggttgggct tcggaatcgt tttccgggac 6240
gccggctgga tgatcctcca gcgcggggat ctcatgctgg agttcttcgc ccaccccaac 6300
ttgtttattg cagcttataa tggttacaaa taaagcaata gcatcacaaa tttcacaaat 6360
aaagcatttt tttcactgca ttctagttgt ggtttgtcca aactcatcaa tgtatcttat 6420
catgtctgta taccgctcga ctagagcttg cggaaccctt aatataactt cgtataatgt 6480
atgctatacg aagttattag gtccgctggc catctacgag ccaaagactt tcaaatcttt 6540
ggctgccttg gccagtagga ggcgacacga aggatttgct gctgccttgg gggatgggaa 6600
ggaacctgaa ggcatttttt ccagagtggt gcagtaccac tgaggactgt tgctgtattg 6660
attaggaaaa gagacagagt aatttgcagt ttgtttgatt tatactgggc tgcaggtcga 6720
gggatcttca taagagaaga gggacagcta tgactgggag tagtcaggag aggaggaaaa 6780
atctggctag taaaacatgt aaggaaaatt ttagggatgt taaagaaaaa aataacacaa 6840
aacaaaatat aaaaaaaatc taacctcaag tcaaggcttt tctatggaat aaggaatgga 6900
cagcaggggg ctgtttcata tactgatgac ctctttatag ccacctttgt tcatggcagc 6960
cagcatatgg catatgttgc caaactctaa accaaatact cattctgatg ttttaaatga 7020
tttgccctcc catatgtcct tccgagtgag agacacaaaa aattccaaca cactattgca 7080
atgaaaataa atttccttta ttagccagaa gtcagatgct caaggggctt catgatgtcc 7140
ccataatttt tggcagaggg aaaaagatct cagtggtatt tgtgagccag ggcattggcc 7200
acaccagcca ccaccttctg ataggcagcc tgcggtacct tacatggtgg cgaattcgtt 7260
tgccaaaatg atgagacagc acaataacca gcacgttgcc caggagctgt aggaaaaaga 7320
agaaggcatg aacatggtta gcagaggctc tagagccgcc ggtcacacgc cagaagccga 7380
accccgccct gccccgtccc ccccgaaggc agccgtcccc ctgcggcagc cccgaggctg 7440
gagatggaga aggggacggc ggcgcggcga cgcacgaagg ccctccccgc ccatttcctt 7500
cctgccggcg ccgcaccgct tcgcccgcgc ccgctagagg gggtgcggcg gcgcctccca 7560
gatttcggct ccgccagatt tgggacaaag gaagtccctg cgccctctcg cacgattacc 7620
ataaaaggca atggctgcgg ctcgccgcgc ctcgacagcc gccggcgctc cggggccgcc 7680
gcgcccctcc cccgagccct ccccggcccg aggcggcccc gccccgcccg gcacccccac 7740
ctgccgccac cccccgcccg gcacggcgag ccccgcgcca cgccccgcac ggagccccgc 7800
acccgaagcc gggccgtgct cagcaactcg gggagggggg tgcagggggg ggttacagcc 7860
cgaccgccgc gcccacaccc cctgctcacc cccccacgca cacaccccgc acgcagcctt 7920
tgttcccctc gcagcccccc cgcaccgcgg ggcaccgccc ccggccgcgc tcccctcgcg 7980
cacacgcgga gcgcacaaag ccccgcgccg cgcccgcagc gctcacagcc gccgggcagc 8040
gcgggccgca cgcggcgctc cccacgcaca cacacacgca cgcacccccc gagccgctcc 8100
cccccgcaca aagggccctc ccggagccct ttaaggcttt cacgcagcca cagaaaagaa 8160
acgagccgtc attaaaccaa gcgctaatta cagcccggag gagaagggcc gtcccgcccg 8220
ctcacctgtg ggagtaacgc ggtcagtcag agccggggcg ggcggcgcga ggcggcgcgg 8280
agcggggcac ggggcgaagg caacgcagcg actcccgccc gccgcgcgct tcgcttttta 8340
tagggccgcc gccgccgccg cctcgccata aaaggaaact ttcggagcgc gccgctctga 8400
ttggctgccg ccgcacctct ccgcctcgcc ccgccccgcc cctcgccccg ccccgccccg 8460
cctggcgcgc gccccccccc cccccgcccc catcgctgca caaaataatt aaaaaataaa 8520
taaatacaaa attgggggtg gggagggggg ggagatgggg agagtgaagc agaacgtggg 8580
gctcacctcg acccatggta atagcgatga ctaatacgta gatgtactgc caagtaggaa 8640
agtcccataa ggtcatgtac tgggcataat gccaggcggg ccatttaccg tcattgacgt 8700
caataggggg cgtacttggc atatgataca cttgatgtac tgccaagtgg gcagtttacc 8760
gtaaatagtc cacccattga cgtcaatgga aagtccctat tggcgttact atgggaacat 8820
acgtcattat tgacgtcaat gggcgggggt cgttgggcgg tcagccaggc gggccattta 8880
ccgtaagtta tgtaacgcgg aactccatat atgggctatg aactaatgac cccgtaattg 8940
attactatta ataactagtc aataatcaat gtcgtaaatg tcgtaaatgt ctcagctagt 9000
caggtagtaa aaggtgtcaa ctaggcagtg gcagagcagg attcaaattc agggctgttg 9060
tgatgcctcc gcagactctg agcgccacct ggtggtaatt tgtctgtgcc tcttctgacg 9120
tggaagaaca gcaactaaca cactaacacg gcatttacta tgggccagcc attgtacgcg 9180
ttgcttaacc tgattcttgg gcgttgtcct gcaggggatt gagcaggtgt acgaggacga 9240
gcccaatttc tctatattcc cacagtcttg agtttgtgtc acaaaataat tatagtgggg 9300
tggagatggg aaatgagtcc aggcaacacc taagcctgat tttatgcatt gagactgcgt 9360
gttattacta aagatctttg tgtcgcaatt tcctgatgaa gggagatagg ttaaaaagca 9420
cggatctact gagttttaca gtcatcccat ttgtagactt ttgctacacc accaaagtat 9480
agcatctgag attaaatatt aatctccaaa ccttaggccc cctcacttgc atccttacgg 9540
tcagataact ctcactcata ctttaagccc attttgtttg ttgtacttgc tcatccagtc 9600
ccagacatag cattggcttt ctcctcacct gttttaggta gccagcaagt catgaaatca 9660
gataagttcc accaccaatt aacactaccc atcttgagca taggcccaac agtgcattta 9720
ttcctcattt actgatgttc gtgaatattt accttgattt tcattttttt ctttttctta 9780
agctgggatt ttactcctga ccctattcac agtcagatga tcttgactac cactgcgatt 9840
ggacctgagg ttcagcaata ctccccttta tgtcttttga atacttttca ataaatctgt 9900
ttgtattttc attagttagt aactgagctc agttgccgta atgctaatag cttccaaact 9960
agtgtctctg tctccagtat ctgataaatc ttaggtgttg ctgggacagt tgtcctaaaa 10020
ttaagataaa gcatgaaaat aactgacaca actccattac tggctcctaa ctacttaaac 10080
aatgcattct atcatcacaa atgtgaaaaa ggagttccct cagtggacta accttatctt 10140
ttctcaacac ctttttcttt gcacaatttt ccacacatgc ctacaaaaag tacttatgcg 10200
gccgccataa aagttttgtt actttataga agaaattttg agtttttgtt ttttttaata 10260
aataaataaa cataaataaa ttgtttgttg aatttattat tagtatgtaa gtgtaaatat 10320
aataaaactt aatatctatt caaattaata aataaacctc gatatacaga ccgataaaac 10380
acatgcgtca attttacaca tgattatctt taacgtacgt cacaatatga ttatctttct 10440
agggttaatc tagctgcgtg ttctgcagcg tgtcgagcat cttcatctgc tccatcacgc 10500
tgtaaaacac atttgcaccg cgagtctgcc cgtcctccac gggttcaaaa acgtgaatga 10560
acgaggcgcg ctcactggcc gtcgttttac aacgtcgtga ctgggaaaac cctggcgtta 10620
cccaacttaa tcgccttgca gcacatcccc ctttcgccag ctggcgtaat agcgaagagg 10680
cccgcaccga tcgcccttcc caacagttgc gcagcctgaa tggcgaatgg gacgcgccct 10740
gtagcggcgc attaagcgcg gcgggtgtgg tggttacgcg cagcgtgacc gctacacttg 10800
ccagcgccct agcgcccgct cctttcgctt tcttcccttc ctttctcgcc acgttcgccg 10860
gctttccccg tcaagctcta aatcgggggc tccctttagg gttccgattt agtgctttac 10920
ggcacctcga ccccaaaaaa cttgattagg gtgatggttc acgtagtggg ccatcgccct 10980
gatagacggt ttttcgccct ttgacgttgg agtccacgtt ctttaatagt ggactcttgt 11040
tccaaactgg aacaacactc aaccctatct cggtctattc ttttgattta taagggattt 11100
tgccgatttc ggcctattgg ttaaaaaatg agctgattta acaaaaattt aacgcgaatt 11160
ttaacaaaat attaacgctt acaatttagg tggcactttt cggggaaatg tgcgcggaac 11220
ccctatttgt ttatttttct aaatacattc aaatatgtat ccgctcatga gacaataacc 11280
ctgataaatg cttcaataat attgaaaaag gaagagtatg agtattcaac atttccgtgt 11340
cgcccttatt cccttttttg cggcattttg ccttcctgtt tttgctcacc cagaaacgct 11400
ggtgaaagta aaagatgctg aagatcagtt gggtgcacga gtgggttaca tcgaactgga 11460
tctcaacagc ggtaagatcc ttgagagttt tcgccccgaa gaacgttttc caatgatgag 11520
cacttttaaa gttctgctat gtggcgcggt attatcccgt attgacgccg ggcaagagca 11580
actcggtcgc cgcatacact attctcagaa tgacttggtt gagtactcac cagtcacaga 11640
aaagcatctt acggatggca tgacagtaag agaattatgc agtgctgcca taaccatgag 11700
tgataacact gcggccaact tacttctgac aacgatcgga ggaccgaagg agctaaccgc 11760
ttttttgcac aacatggggg atcatgtaac tcgccttgat cgttgggaac cggagctgaa 11820
tgaagccata ccaaacgacg agcgtgacac cacgatgcct gtagcaatgg caacaacgtt 11880
gcgcaaacta ttaactggcg aactacttac tctagcttcc cggcaacaat taatagactg 11940
gatggaggcg gataaagttg caggaccact tctgcgctcg gcccttccgg ctggctggtt 12000
tattgctgat aaatctggag ccggtgagcg tggttcacgc ggtatcattg cagcactggg 12060
gccagatggt aagccctccc gtatcgtagt tatctacacg acggggagtc aggcaactat 12120
ggatgaacga aatagacaga tcgctgagat aggtgcctca ctgattaagc attggtaact 12180
gtcagaccaa gtttactcat atatacttta gattgattta aaacttcatt tttaatttaa 12240
aaggatctag gtgaagatcc tttttgataa tctcatgacc aaaatccctt aacgtgagtt 12300
ttcgttccac tgagcgtcag accccgtaga aaagatcaaa ggatcttctt gagatccttt 12360
ttttctgcgc gtaatctgct gcttgcaaac aaaaaaacca ccgctaccag cggtggtttg 12420
tttgccggat caagagctac caactctttt tccgaaggta actggcttca gcagagcgca 12480
gataccaaat actgtccttc tagtgtagcc gtagttaggc caccacttca agaactctgt 12540
agcaccgcct acatacctcg ctctgctaat cctgttacca gtggctgctg ccagtggcga 12600
taagtcgtgt cttaccgggt tggactcaag acgatagtta ccggataagg cgcagcggtc 12660
gggctgaacg gggggttcgt gcacacagcc cagcttggag cgaacgacct acaccgaact 12720
gagataccta cagcgtgagc tatgagaaag cgccacgctt cccgaaggga gaaaggcgga 12780
caggtatccg gtaagcggca gggtcggaac aggagagcgc acgagggagc ttccaggggg 12840
aaacgcctgg tatctttata gtcctgtcgg gtttcgccac ctctgacttg agcgtcgatt 12900
tttgtgatgc tcgtcagggg ggcggagcct atggaaaaac gccagcaacg cggccttttt 12960
acggttcctg gccttttgct ggccttttgc tcacatgttc tttcctgcgt tatcccctga 13020
ttctgtggat aaccgtatta ccgcctttga gtgagctgat accgctcgcc gcagccgaac 13080
gaccgagcgc agcgagtcag tgagcgagga agcggaagag cgcccaatac gcaaaccgcc 13140
tctccccgcg cgttggccga ttcattaatg cagctggcac gacaggtttc ccgactggaa 13200
agcgggcagt gagcgcaacg caattaatgt gagttagctc actcattagg caccccaggc 13260
tttacacttt atgcttccgg ctcgtatgtt gtgtggaatt gtgagcggat aacaatttca 13320
cacaggaaac agctatgacc atgattacgc caagcgcgcc cgccgggtaa ctcacggggt 13380
atccatgtcc atttctgcgg catccagcca ggatacccgt cctcgctgac gtaatatccc 13440
agcgccgcac cgctgtcatt aatctgcaca ccggcacggc agttccggct gtcgccggta 13500
ttgttcgggt tgctgatgcg cttcgggctg accatccgga actgtgtccg gaaaagccgc 13560
gacgaactgg tatcccaggt ggcctgaacg aacagttcac cgttaaaggc gtgcatggcc 13620
acaccttccc gaatcatcat ggtaaacgtg cgttttcgct caacgtcaat gcagcagcag 13680
tcatcctcgg caaactcttt ccatgccgct tcaacctcgc gggaaaaggc acgggcttct 13740
tcctccccga tgcccagata gcgccagctt gggcgatgac tgagccggaa aaaagacccg 13800
acgatatgat cctgatgcag ctagattaac cctagaaaga tagtctgcgt aaaattgacg 13860
catgcattct tgaaatattg ctctctcttt ctaaatagcg cgaatccgtc gctgtgcatt 13920
taggacatct cagtcgccgc ttggagctcc cgtgaggcgt gcttgtcaat gcggtaagtg 13980
tcactgattt tgaactataa cgaccgcgtg agtcaaaatg acgcatgatt atcttttacg 14040
tgacttttaa gatttaactc atacgataat tatattgtta tttcatgttc tacttacgtg 14100
ataacttatt atatatatat tttcttgtta tagatatc 14138
<210> 4
<211> 1069
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 4
gtgctgagtc cttttcccat cccacccacc tggagctccc ctcttccagt cctgagccac 60
ttgaactggc ctggtttttg ccatcctgcg ctgccctctc tccggactcg agccactgct 120
gagggcctca ggccagtcca tcctcgtctt gtctctttcg ccctgctctt tccccacctt 180
gagcgctctt aaccagcctg gcccgtgcca cctctactct gccatcgaat gctgccccac 240
tttctcgagt ccgccacttc tcccagcttc accggtaccc actgtttccc ctagtccagg 300
caggtaccac tttccctgag cgtcctcctc ctctctcctg ggcctgtgct gcttcttttc 360
ccgctctctg gcctgggccg tttcttcggc cagcccccga gccttccatg ccctttcctt 420
caggtttctg ctcttcatcc ttggtctctg ccatctgttg ccatgtaagg gtgctctttc 480
ctgagccatc gccctcaagg cgctctgctc ctcaagtgga tgcttccctc gcctggctca 540
cctcctgctc tctctcctgc ccccttcacc tgcgtgccct cctcattctc cctctgtgcc 600
acctctggcc ttgcactgta ggctctctct tggggatgtt tctccttctc cacacacttc 660
tctttcactc tgtcctcttg ctttgtgtgg gcctgcagcg ttaccctttt ttctgggcac 720
actcagagca ccctcctctt tctggttctg ggccacctgt ctgtcctcgg gtcatcttgc 780
tctctctgcc tggatgccct cctgtggctt tgggcagctt ctccctcctt cagagtgcac 840
cgccagttct cctaggcccg gtcacttccc cttcccaggg gacctagagc cctgctaggt 900
cctctctctc cacaacctgg gcccccaaac ctttccaaaa caccttgctt tctgcctcca 960
ttggtcttgt gttccagagc cagagtcact atatgtccca gaaccaggat tccctctggt 1020
tctgagggct tttatcgcat cccctgcctg gctgcagtgg gtctttggg 1069
<210> 5
<211> 260
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 5
gacaggccac agaagagcct ctactcctcc ctctgtcccc gaggctgtct ccctcccagt 60
cttcccagct caggccagtc cccaggcctc tcttccctgc cagagcccgt caggttcggt 120
tactttgggg cccagagagg accctgtgaa ggaagcgtgg gtaggggcac gggaatgggg 180
aggatgcctg aagaggcccc cttagccaga agaggagcag aagaggagca ggtacccaga 240
agaggagcag ttcagggaaa 260
<210> 6
<211> 540
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 6
aaatacccac gtttattggg acaaaagttg ttagggaaaa tggggcctca gagttatgat 60
tcaagtcata attctttcca tttataattt cactcgagac tctgttaact gattccttgt 120
gtgttgtatc ttactcctca gctcacaatt acttttagtt attcacctta actgtatgaa 180
taacagtgga gaaaaggatt ctaccagaat actctaatta tggttttgag tcccctttcc 240
agactgaaga tttttcagtc tttttgatct gaggtgattt ttcagtcttt tcgatctgag 300
gtgacagtct caagctcctc aattcaccca gtctcttgat acttgtccat ttagggccac 360
caaagctact ttgacttcat actagagagt caattaatga ggccattctc tgatggacag 420
gtgaagcagg caaggtgact atattttgac taaacggtag aaaacagcct gagtgttaac 480
agtgtagcct ataaaaccca gagctgccca ccctgatcta aacttccagg aacataagaa 540
<210> 7
<211> 1009
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 7
agtaggtcac atttcagtaa aacctggctt tgtggattga gcatggtctg tctcttcctg 60
gtacttcatt agtcccctaa gtgggatttg ctgagcaaga ctcctcaatt acagaaatac 120
tccagtttag aattctcgca aaggcttttt gtttccacaa gtagaatcta gaaagcaatc 180
tcaagtaaca acagcagaga cctgaatccc aatccatctt tcctgtgtgt cctcttttac 240
ctccttccct ttcatgttga accaacagtc ctttttcagt ctagaagcta gtacgaaaga 300
aatgtacaga tgtaggtacc aagcaaagcc attagccaat aactggtgag atggagctaa 360
gaggaaataa aagtgttcct aagaatagca cagcagaagc tagatccaca gatcttaaaa 420
caattttggt tgagtaagag tagaggcaaa agaggaagct aataatgcag tttttaggag 480
ctaagagcca gataaagggt aagggcagga ggaagtgcta tctcagctaa cgagatacat 540
gaaacaacgg tggaagtcca gcaggcacaa gatgagttga gaagcaatca gggccagaag 600
gatgtgcaag gcctcaaaat aaaaaagcac agggccacag ggaaccttat ggaaattaaa 660
aggaagagga tgcagtcagg agaggaaaaa atagtgctcc ctcccccatg cccaaggaag 720
cagctgagca gccagtactt gggaagttag tagtaataag ttggtaagag ggagttctgt 780
tcgtggctca atggttaaca aatcagacta gaaaccgtga ggttgcgggt ttgatccctg 840
gccttgctca gtgggttaag gatccggcat tgccgtgacc tgtggtgtag gtcacagacg 900
tggctcagtt cccgcattcc tgtggctctg gtgtaggctg gtggctacag ctctgattag 960
acccctaggc tgggaacctc catatgccct ggaagtggcc gtagaaaag 1009
<210> 8
<211> 872
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 8
ggatggggac tcatgtgaat tttctaaagg tgctatttaa acggggggca cgagtgccgg 60
ctttggacag ggccgctcgc tctccaccct ttcttcttcc ccctcggccg cctctcaccc 120
cctgaggcct ctctcccccc acgacctcct ctctctcctc tgaaaccctc tcctcctcag 180
ctgcatccca ccctcgtggc ctctctctct ctctgtctgt cctgtgtcct ctctcactgg 240
gtttcagagc acagatgccc aaagcacaaa agcagttttc ccctggggtg ggaggaagca 300
agagactttg tacctatttt gtatgtgtat aataatttga gatgttttta attattttga 360
ttgctggaat aaagcatgtg gaaatgaccc aaaccaatct tgcactggcc tcctgatttc 420
cttccttgga gacggaggga gggggagacc tgggggaggg cgcttggggg ggggtgggct 480
ctcttctttc tgcgctcccc ccccccacct ccaacacctt gacgacccct cctgcttccg 540
cttgcctttc tcaggcttta acactttctc ctcgccctct cagcatgcgc atgcgcgtgc 600
ctctacctcc cccgcacatc ctggcctgcc caccctgaat ggcctggccc agcgatgcca 660
ccaactctct cgctccgtcc acggctgggg aggggggcac tctgcagggt tggggggcac 720
tgggaggctg ggttgggtga gggaggggtg cctgggcccc caccccccag caagttctct 780
ccctaggcga actggagggt cgtctggcct cttgagcctt gttgctggct ctgagctcta 840
ccaagagagt gaccagcagg accgcaccat ca 872
<210> 9
<211> 727
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 9
gtggttgctg agactgcgtg ggggcccaag gagacctgga gaaaggaatg cttcctgctc 60
cttcttctgg ggccccagga gagccttccc agggccttgg agaggtgctg tccagggact 120
aaccctgtgc tctaggaagg ctgcaggccc tgaccagctg ggcaggtcct gggtccctcc 180
tggccttcta agttccccaa acatgagacc tctgggtgtg gggtggcctg gggaggtcat 240
tttgcccagg ccctacctcc tgcccattcc taaccctttt taaaaatctg tgcgtcctct 300
tcttccttct tctccctccc ttcccttttc gctcaccctc tgctgctggc ctgagagccg 360
gaggccccca gggggaaggc gactggtctc ctccccagtc tcagggaagg gagacagaga 420
atccaggaag ccagaactca gcagacgaag cacccaggga cctagagatg ggttgaaaag 480
ttgacagctg tcccacctgc ctcccaaggt ctcagggcct aaacctccaa ggcaggaaag 540
gcccctgtcc ctccctgggg tccatagaaa gagggacaag tctgcacgga ccatttgctg 600
taatattaac accttggctg tcattaggta gtcttggctg ttaattatgt cctgtgataa 660
tgtattatta gcacgccgac cacatagggt agggaactgc agctagtaaa caaaagtttg 720
ttcctat 727
<210> 10
<211> 100
<212> RNA
<213> Artificial Sequence (Artificial Sequence)
<400> 10
gaaggagcaa acugacaugg guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaucaac uugaaaaagu ggcaccgagu cggugcuuuu 100
<210> 11
<211> 100
<212> RNA
<213> Artificial Sequence (Artificial Sequence)
<400> 11
ugcagugggu cuuuggggac guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaucaac uugaaaaagu ggcaccgagu cggugcuuuu 100
<210> 12
<211> 100
<212> RNA
<213> Artificial Sequence (Artificial Sequence)
<400> 12
uuccaggaac auaagaaagu guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaucaac uugaaaaagu ggcaccgagu cggugcuuuu 100
<210> 13
<211> 100
<212> RNA
<213> Artificial Sequence (Artificial Sequence)
<400> 13
gcagucucag caaccacuga guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaucaac uugaaaaagu ggcaccgagu cggugcuuuu 100
<210> 14
<211> 10355
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 14
ggcgcgccgg atggggactc atgtgaattt tctaaaggtg ctatttaaac ggggggcacg 60
agtgccggct ttggacaggg ccgctcgctc tccacccttt cttcttcccc ctcggccgcc 120
tctcaccccc tgaggcctct ctccccccac gacctcctct ctctcctctg aaaccctctc 180
ctcctcagct gcatcccacc ctcgtggcct ctctctctct ctgtctgtcc tgtgtcctct 240
ctcactgggt ttcagagcac agatgcccaa agcacaaaag cagttttccc ctggggtggg 300
aggaagcaag agactttgta cctattttgt atgtgtataa taatttgaga tgtttttaat 360
tattttgatt gctggaataa agcatgtgga aatgacccaa accaatcttg cactggcctc 420
ctgatttcct tccttggaga cggagggagg gggagacctg ggggagggcg cttggggggg 480
ggtgggctct cttctttctg cgctcccccc ccccacctcc aacaccttga cgacccctcc 540
tgcttccgct tgcctttctc aggctttaac actttctcct cgccctctca gcatgcgcat 600
gcgcgtgcct ctacctcccc cgcacatcct ggcctgccca ccctgaatgg cctggcccag 660
cgatgccacc aactctctcg ctccgtccac ggctggggag gggggcactc tgcagggttg 720
gggggcactg ggaggctggg ttgggtgagg gaggggtgcc tgggccccca ccccccagca 780
agttctctcc ctaggcgaac tggagggtcg tctggcctct tgagccttgt tgctggctct 840
gagctctacc aagagagtga ccagcaggac cgcaccatca cgcgccccag acccgggcct 900
ggggggcaag tcggggggcg gggggaggtc gggcagggtc ccctgggagg atggggacgt 960
gctgtgcccc tagcggccac cagagggcac caggacacca ctgcggtcgg ctcagcggct 1020
cctgccctgg tcagggggcg ccaggtcctg cccctcctgg ggagggcggg gggcgagaag 1080
ggcgattggc tccggtgccc gtcagtgggc agagcgcaca tcgcccacag tccccgagaa 1140
gttgggggga ggggtcggca attgaaccgg tgcctagaga aggtggcgcg gggtaaactg 1200
ggaaagtgat gtcgtgtact ggctccgcct ttttcccgag ggtgggggag aaccgtatat 1260
aagtgcagta gtcgccgtga acgttctttt tcgcaacggg tttgccgcca gaacacaggt 1320
aagtgccgtg tgtggttccc gcgggcctgg cctctttacg ggttatggcc cttgcgtgcc 1380
ttgaattact tccactggct gcagtacgtg attcttgatc ccgagcttcg ggttggaagt 1440
gggtgggaga gttcgaggcc ttgcgcttaa ggagcccctt cgcctcgtgc ttgagttgag 1500
gcctggcctg ggcgctgggg ccgccgcgtg cgaatctggt ggcaccttcg cgcctgtctc 1560
gctgctttcg ataagtctct agccatttaa aatttttgat gacctgctgc gacgcttttt 1620
ttctggcaag atagtcttgt aaatgcgggc caagatctgc acactggtat ttcggttttt 1680
ggggccgcgg gcggcgacgg ggcccgtgcg tcccagcgca catgttcggc gaggcggggc 1740
ctgcgagcgc ggccaccgag aatcggacgg gggtagtctc aagctggccg gcctgctctg 1800
gtgcctggcc tcgcgccgcc gtgtatcgcc ccgccctggg cggcaaggct ggcccggtcg 1860
gcaccagttg cgtgagcgga aagatggccg cttcccggcc ctgctgcagg gagctcaaaa 1920
tggaggacgc ggcgctcggg agagcgggcg ggtgagtcac ccacacaaag gaaaagggcc 1980
tttccgtcct cagccgtcgc ttcatgtgac tccacggagt accgggcgcc gtccaggcac 2040
ctcgattagt tctcgagctt ttggagtacg tcgtctttag gttgggggga ggggttttat 2100
gcgatggagt ttccccacac tgagtgggtg gagactgaag ttaggccagc ttggcacttg 2160
atgtaattct ccttggaatt tgcccttttt gagtttggat cttggttcat tctcaagcct 2220
cagacagtgg ttcaaagttt ttttcttcca tttcaggtgt cgtgaatgca ggttcagtgc 2280
cagcagagcc cagtgctggc aggcagcgcc actttggtcg cccttggggc actggccttg 2340
tacgtcgcga agccctccgg ctacgggaag cacacggaga gcctgaagcc ggcggctacc 2400
cgcctgccag cccgcgccgc ctggttcctg caggagctgc cttccttcgc ggtgcccgcg 2460
gggatcctcg cccggcagcc cctctccctc ttcgggccac ctgggacggt acttctgggc 2520
ctcttctgcc tacattactt ccacaggaca tttgtgtact cactgctcaa tcgagggagg 2580
ccttatccag ctatactcat tctcagaggc actgccttct gcactggaaa tggagtcctt 2640
caaggctact atctgattta ctgtgctgaa taccctgatg ggtggtacac agacatacgg 2700
tttagcttgg gtgtcttctt atttattttg ggaatgggaa taaacattca tagtgactat 2760
atattgcgcc agctcaggaa gcctggagaa atcagctaca ggattccaca aggtggcttg 2820
tttacgtatg tttctggagc caatttcctc ggtgagatca ttgaatggat cggctatgcc 2880
ctggccactt ggtccctccc agcacttgca tttgcatttt tctcactttg tttccttggg 2940
ctgcgagctt ttcaccacca taggttctac ctcaagatgt ttgaggacta ccccaaatct 3000
cggaaagccc ttattccatt catcttttaa attatcccta atacctgcca ccccactctt 3060
aatcagtggt ggaagaacgg tctcagaact gtttgtttca attggccatt taagtttagt 3120
agtaaaagac tggttaatga taacaatgca tcgtaaaacc ttcagaagga aaggagaatg 3180
ttttgtggac cactttggtt ttcttttttg cgtgtggcag ttttaagtta ttagttttta 3240
aaatcagtac tttttaatgg aaacaacttg accaaaaatt tgtcacagaa ttttgagacc 3300
cattaaaaaa gttaaatgag aaacctgtgt gttcctttgg tcaacaccga gacatttagg 3360
tgaaagacat ctaattccgg ttttacgaat ctggaaactt cttgaaaatg taattcttga 3420
gttaacactt ctgggtggag aatagggttg ttttcccccc acataattgg aaggggaagg 3480
aatatcattt aaagctatgg gagggtttct ttgattacaa cactggagag aaatgcagca 3540
tgttgctgat tgcctgtcac taaaacaggc caaaaactga gtccttgggt tgcatagaaa 3600
gctgtttccg atcatattca ataaccctta atataacttc gtataatgta tgctatacga 3660
agttattagg tctgaagagg agtttacgtc cagccaagct agcttggctg caggtcgtcg 3720
aaattctacc gggtagggga ggcgcttttc ccaaggcagt ctggagcatg cgctttagca 3780
gccccgctgg gcacttggcg ctacacaagt ggcctctggc ctcgcacaca ttccacatcc 3840
accggtaggc gccaaccggc tccgttcttt ggtggcccct tcgcgccacc ttctactcct 3900
cccctagtca ggaagttccc ccccgccccg cagctcgcgt cgtgcaggac gtgacaaatg 3960
gaagtagcac gtctcactag tctcgtgcag atggacagca ccgctgagca atggaagcgg 4020
gtaggccttt ggggcagcgg ccaatagcag ctttgctcct tcgctttctg ggctcagagg 4080
ctgggaaggg gtgggtccgg gggcgggctc aggggcgggc tcaggggcgg ggcgggcgcc 4140
cgaaggtcct ccggaggccc ggcattctgc acgcttcaaa agcgcacgtc tgccgcgctg 4200
ttctcctctt cctcatctcc gggcctttcg acctgcagcc tgttgacaat taatcatcgg 4260
catagtatat cggcatagta taatacgaca aggtgaggaa ctaaaccatg ggatcggcca 4320
ttgaacaaga tggattgcac gcaggttctc cggccgcttg ggtggagagg ctattcggct 4380
atgactgggc acaacagaca atcggctgct ctgatgccgc cgtgttccgg ctgtcagcgc 4440
aggggcgccc ggttcttttt gtcaagaccg acctgtccgg tgccctgaat gaactgcagg 4500
acgaggcagc gcggctatcg tggctggcca cgacgggcgt tccttgcgca gctgtgctcg 4560
acgttgtcac tgaagcggga agggactggc tgctattggg cgaagtgccg gggcaggatc 4620
tcctgtcatc tcaccttgct cctgccgaga aagtatccat catggctgat gcaatgcggc 4680
ggctgcatac gcttgatccg gctacctgcc cattcgacca ccaagcgaaa catcgcatcg 4740
agcgagcacg tactcggatg gaagccggtc ttgtcgatca ggatgatctg gacgaagagc 4800
atcaggggct cgcgccagcc gaactgttcg ccaggctcaa ggcgcgcatg cccgacggcg 4860
atgatctcgt cgtgacccat ggcgatgcct gcttgccgaa tatcatggtg gaaaatggcc 4920
gcttttctgg attcatcgac tgtggccggc tgggtgtggc ggaccgctat caggacatag 4980
cgttggctac ccgtgatatt gctgaagagc ttggcggcga atgggctgac cgcttcctcg 5040
tgctttacgg tatcgccgct cccgattcgc agcgcatcgc cttctatcgc cttcttgacg 5100
agttcttctg aggggatcaa ttctctagag ctcgctgatc agcctcgact gtgccttcta 5160
gttgccagcc atctgttgtt tgcccctccc ccgtgccttc cttgaccctg gaaggtgcca 5220
ctcccactgt cctttcctaa taaaatgagg aaattgcatc gcattgtctg agtaggtgtc 5280
attctattct ggggggtggg gtggggcagg acagcaaggg ggaggattgg gaagacaata 5340
gcaggcatgc tggggatgcg gtgggctcta tggcttctga ggcggaaaga accagctggg 5400
gctcgactag agcttgcgga acccttaata taacttcgta taatgtatgc tatacgaagt 5460
tattaggtcc ctcgagggga tccctctctc cggtctgcag gcattggcgg gtacatgcgg 5520
atcataacca ccagatggcg ctgttggcct aagctcgagc acagtccaca gcctggaggt 5580
cctgggaaag cctgacctga atctaaaact tctctaaact ccctaatttg attcaaaagc 5640
aaaacagtag aatacttctg cacatcccag cgaggtcaga gtatagtggt tgctgagact 5700
gcgtgggggc ccaaggagac ctggagaaag gaatgcttcc tgctccttct tctggggccc 5760
caggagagcc ttcccagggc cttggagagg tgctgtccag ggactaaccc tgtgctctag 5820
gaaggctgca ggccctgacc agctgggcag gtcctgggtc cctcctggcc ttctaagttc 5880
cccaaacatg agacctctgg gtgtggggtg gcctggggag gtcattttgc ccaggcccta 5940
cctcctgccc attcctaacc ctttttaaaa atctgtgcgt cctcttcttc cttcttctcc 6000
ctcccttccc ttttcgctca ccctctgctg ctggcctgag agccggaggc ccccaggggg 6060
aaggcgactg gtctcctccc cagtctcagg gaagggagac agagaatcca ggaagccaga 6120
actcagcaga cgaagcaccc agggacctag agatgggttg aaaagttgac agctgtccca 6180
cctgcctccc aaggtctcag ggcctaaacc tccaaggcag gaaaggcccc tgtccctccc 6240
tggggtccat agaaagaggg acaagtctgc acggaccatt tgctgtaata ttaacacctt 6300
ggctgtcatt aggtagtctt ggctgttaat tatgtcctgt gataatgtat tattagcacg 6360
ccgaccacat agggtaggga actgcagcta gtaaacaaaa gtttgttcct atatgcggcc 6420
gccataaaag ttttgttact ttatagaaga aattttgagt ttttgttttt tttaataaat 6480
aaataaacat aaataaattg tttgttgaat ttattattag tatgtaagtg taaatataat 6540
aaaacttaat atctattcaa attaataaat aaacctcgat atacagaccg ataaaacaca 6600
tgcgtcaatt ttacacatga ttatctttaa cgtacgtcac aatatgatta tctttctagg 6660
gttaatctag ctgcgtgttc tgcagcgtgt cgagcatctt catctgctcc atcacgctgt 6720
aaaacacatt tgcaccgcga gtctgcccgt cctccacggg ttcaaaaacg tgaatgaacg 6780
aggcgcgctc actggccgtc gttttacaac gtcgtgactg ggaaaaccct ggcgttaccc 6840
aacttaatcg ccttgcagca catccccctt tcgccagctg gcgtaatagc gaagaggccc 6900
gcaccgatcg cccttcccaa cagttgcgca gcctgaatgg cgaatgggac gcgccctgta 6960
gcggcgcatt aagcgcggcg ggtgtggtgg ttacgcgcag cgtgaccgct acacttgcca 7020
gcgccctagc gcccgctcct ttcgctttct tcccttcctt tctcgccacg ttcgccggct 7080
ttccccgtca agctctaaat cgggggctcc ctttagggtt ccgatttagt gctttacggc 7140
acctcgaccc caaaaaactt gattagggtg atggttcacg tagtgggcca tcgccctgat 7200
agacggtttt tcgccctttg acgttggagt ccacgttctt taatagtgga ctcttgttcc 7260
aaactggaac aacactcaac cctatctcgg tctattcttt tgatttataa gggattttgc 7320
cgatttcggc ctattggtta aaaaatgagc tgatttaaca aaaatttaac gcgaatttta 7380
acaaaatatt aacgcttaca atttaggtgg cacttttcgg ggaaatgtgc gcggaacccc 7440
tatttgttta tttttctaaa tacattcaaa tatgtatccg ctcatgagac aataaccctg 7500
ataaatgctt caataatatt gaaaaaggaa gagtatgagt attcaacatt tccgtgtcgc 7560
ccttattccc ttttttgcgg cattttgcct tcctgttttt gctcacccag aaacgctggt 7620
gaaagtaaaa gatgctgaag atcagttggg tgcacgagtg ggttacatcg aactggatct 7680
caacagcggt aagatccttg agagttttcg ccccgaagaa cgttttccaa tgatgagcac 7740
ttttaaagtt ctgctatgtg gcgcggtatt atcccgtatt gacgccgggc aagagcaact 7800
cggtcgccgc atacactatt ctcagaatga cttggttgag tactcaccag tcacagaaaa 7860
gcatcttacg gatggcatga cagtaagaga attatgcagt gctgccataa ccatgagtga 7920
taacactgcg gccaacttac ttctgacaac gatcggagga ccgaaggagc taaccgcttt 7980
tttgcacaac atgggggatc atgtaactcg ccttgatcgt tgggaaccgg agctgaatga 8040
agccatacca aacgacgagc gtgacaccac gatgcctgta gcaatggcaa caacgttgcg 8100
caaactatta actggcgaac tacttactct agcttcccgg caacaattaa tagactggat 8160
ggaggcggat aaagttgcag gaccacttct gcgctcggcc cttccggctg gctggtttat 8220
tgctgataaa tctggagccg gtgagcgtgg ttcacgcggt atcattgcag cactggggcc 8280
agatggtaag ccctcccgta tcgtagttat ctacacgacg gggagtcagg caactatgga 8340
tgaacgaaat agacagatcg ctgagatagg tgcctcactg attaagcatt ggtaactgtc 8400
agaccaagtt tactcatata tactttagat tgatttaaaa cttcattttt aatttaaaag 8460
gatctaggtg aagatccttt ttgataatct catgaccaaa atcccttaac gtgagttttc 8520
gttccactga gcgtcagacc ccgtagaaaa gatcaaagga tcttcttgag atcctttttt 8580
tctgcgcgta atctgctgct tgcaaacaaa aaaaccaccg ctaccagcgg tggtttgttt 8640
gccggatcaa gagctaccaa ctctttttcc gaaggtaact ggcttcagca gagcgcagat 8700
accaaatact gtccttctag tgtagccgta gttaggccac cacttcaaga actctgtagc 8760
accgcctaca tacctcgctc tgctaatcct gttaccagtg gctgctgcca gtggcgataa 8820
gtcgtgtctt accgggttgg actcaagacg atagttaccg gataaggcgc agcggtcggg 8880
ctgaacgggg ggttcgtgca cacagcccag cttggagcga acgacctaca ccgaactgag 8940
atacctacag cgtgagctat gagaaagcgc cacgcttccc gaagggagaa aggcggacag 9000
gtatccggta agcggcaggg tcggaacagg agagcgcacg agggagcttc cagggggaaa 9060
cgcctggtat ctttatagtc ctgtcgggtt tcgccacctc tgacttgagc gtcgattttt 9120
gtgatgctcg tcaggggggc ggagcctatg gaaaaacgcc agcaacgcgg cctttttacg 9180
gttcctggcc ttttgctggc cttttgctca catgttcttt cctgcgttat cccctgattc 9240
tgtggataac cgtattaccg cctttgagtg agctgatacc gctcgccgca gccgaacgac 9300
cgagcgcagc gagtcagtga gcgaggaagc ggaagagcgc ccaatacgca aaccgcctct 9360
ccccgcgcgt tggccgattc attaatgcag ctggcacgac aggtttcccg actggaaagc 9420
gggcagtgag cgcaacgcaa ttaatgtgag ttagctcact cattaggcac cccaggcttt 9480
acactttatg cttccggctc gtatgttgtg tggaattgtg agcggataac aatttcacac 9540
aggaaacagc tatgaccatg attacgccaa gcgcgcccgc cgggtaactc acggggtatc 9600
catgtccatt tctgcggcat ccagccagga tacccgtcct cgctgacgta atatcccagc 9660
gccgcaccgc tgtcattaat ctgcacaccg gcacggcagt tccggctgtc gccggtattg 9720
ttcgggttgc tgatgcgctt cgggctgacc atccggaact gtgtccggaa aagccgcgac 9780
gaactggtat cccaggtggc ctgaacgaac agttcaccgt taaaggcgtg catggccaca 9840
ccttcccgaa tcatcatggt aaacgtgcgt tttcgctcaa cgtcaatgca gcagcagtca 9900
tcctcggcaa actctttcca tgccgcttca acctcgcggg aaaaggcacg ggcttcttcc 9960
tccccgatgc ccagatagcg ccagcttggg cgatgactga gccggaaaaa agacccgacg 10020
atatgatcct gatgcagcta gattaaccct agaaagatag tctgcgtaaa attgacgcat 10080
gcattcttga aatattgctc tctctttcta aatagcgcga atccgtcgct gtgcatttag 10140
gacatctcag tcgccgcttg gagctcccgt gaggcgtgct tgtcaatgcg gtaagtgtca 10200
ctgattttga actataacga ccgcgtgagt caaaatgacg catgattatc ttttacgtga 10260
cttttaagat ttaactcata cgataattat attgttattt catgttctac ttacgtgata 10320
acttattata tatatatttt cttgttatag atatc 10355
<210> 15
<211> 254
<212> PRT
<213> Homo sapiens
<400> 15
Met Gln Val Gln Cys Gln Gln Ser Pro Val Leu Ala Gly Ser Ala Thr
1 5 10 15
Leu Val Ala Leu Gly Ala Leu Ala Leu Tyr Val Ala Lys Pro Ser Gly
20 25 30
Tyr Gly Lys His Thr Glu Ser Leu Lys Pro Ala Ala Thr Arg Leu Pro
35 40 45
Ala Arg Ala Ala Trp Phe Leu Gln Glu Leu Pro Ser Phe Ala Val Pro
50 55 60
Ala Gly Ile Leu Ala Arg Gln Pro Leu Ser Leu Phe Gly Pro Pro Gly
65 70 75 80
Thr Val Leu Leu Gly Leu Phe Cys Leu His Tyr Phe His Arg Thr Phe
85 90 95
Val Tyr Ser Leu Leu Asn Arg Gly Arg Pro Tyr Pro Ala Ile Leu Ile
100 105 110
Leu Arg Gly Thr Ala Phe Cys Thr Gly Asn Gly Val Leu Gln Gly Tyr
115 120 125
Tyr Leu Ile Tyr Cys Ala Glu Tyr Pro Asp Gly Trp Tyr Thr Asp Ile
130 135 140
Arg Phe Ser Leu Gly Val Phe Leu Phe Ile Leu Gly Met Gly Ile Asn
145 150 155 160
Ile His Ser Asp Tyr Ile Leu Arg Gln Leu Arg Lys Pro Gly Glu Ile
165 170 175
Ser Tyr Arg Ile Pro Gln Gly Gly Leu Phe Thr Tyr Val Ser Gly Ala
180 185 190
Asn Phe Leu Gly Glu Ile Ile Glu Trp Ile Gly Tyr Ala Leu Ala Thr
195 200 205
Trp Ser Leu Pro Ala Leu Ala Phe Ala Phe Phe Ser Leu Cys Phe Leu
210 215 220
Gly Leu Arg Ala Phe His His His Arg Phe Tyr Leu Lys Met Phe Glu
225 230 235 240
Asp Tyr Pro Lys Ser Arg Lys Ala Leu Ile Pro Phe Ile Phe
245 250
<210> 16
<211> 1101
<212> DNA
<213> Sus scrofa
<400> 16
aataaatgca ctgttgggcc tatgctcaag atgggtagtg ttaattggtg gtggaactta 60
tctgatttca tgacttgctg gctacctaaa acaggtgagg agaaagccaa tgggactggg 120
actggatgag caagtacaac aaacaaaatg ggcttaaagt atgagtgaga gttatctgac 180
cgtaaggatg caagtgaggg ggcctaaggt ttggagatta atatttaatc tcagatgcta 240
tactttggtg gtgtagcaaa agtctacaaa tgggatgact gtaaaactca gtagatccgt 300
gctttttaac ctatctccct tcatcaggaa attgcgacac aaagatcttt agtaataaca 360
cgcagtctca atgcataaaa tcaggcttag gtgttgcctg gactcatttc ccatctccac 420
cccactataa ttattttgtg acacaaactc aagactgtgg gaatatagag aaattgggct 480
cgtcctcgta cacctgctca atcccctgca ggacaacgcc caagaatcag gttaagccag 540
ggcaaaagaa tcccgcccat aatcgagaag gagcaaactg acatggaggc gatgacgaga 600
tcgcggggga gggagggatt tttctaggcc cagggcggtc cttaggaaaa ggaggcagca 660
gagaactccc ataaaggtat tgcggcactc ccctccccct gcggagaagg gtgcggcctt 720
ctctccgcct cctccactgc agctccctca ggattgcagc tcgcgcgggt ttttggagaa 780
catgcgcctc ccacccacaa gccagcagga ccgacccccc actccttcct ccacccccca 840
cccccacggg tccgagagca ggtagagagc tagtctcgtc cttcaggcgg cggacgccca 900
gggcggagcc gcagtcacca ccacccagaa gcctcggccc ggcagcccgc ccccgcctcc 960
tgcgcgcgct tcctgccacg ttgcgcaggg gcgaggggcc agacactgcg gcgctggcct 1020
cggggagggc cgtaccaaag accgcctccc tgccgactcg cgtagtggtt tcgctcattt 1080
gggacccaag ccaataacaa g 1101
<210> 17
<211> 1056
<212> DNA
<213> Sus scrofa
<400> 17
tgctctctct cctgccccct tcacctgcgt gccctcctca ttctccctct gtgccacctc 60
tggccttgca ctgtaggctc tctcttgggg atgtttctct ttctccacac acttctcttt 120
cactctgtcc tcttgctttg tgtgggcctg cagcgttacc cttttttctg ggcacactca 180
gagcaccctc ctctttctgg ttctgggcca cctgtctgtc ctcgggtcat cttgctctct 240
ctgcctggat gccctcctgt ggctttgggc agcttctccc tccttcagag tgcaccgcca 300
gttctcctag gcccggtcac ttccccttcc caggggacct agagccctgc taggtcctct 360
ctctccacaa cctgggcccc caaacctttc caaaacacct tgctttctgc ctccattggt 420
cttgtgttcc agagccagag tcactatatg tcccagaacc aggattccct ctggttctga 480
gggcttttat cgcatcccct gcctggctgc agtgggtctt tggggacagg ccacagaaga 540
gcctctactc ctccctctgt ccccgaggct gtctccctcc cagtcttccc agctcaggcc 600
agtccccagg cctctcttcc ctgccagagc ccgtcaggtt cggttacttt ggggcccaga 660
gaggaccctg tgaaggaagc gtgggtaggg gcacgggaat ggggaggatg cctgaagagg 720
cccccttagc cagaagagga gcagaagagg agcaggtacc cagaagagga gcagttcagg 780
gaaatagaag agtcccgagc tctttttttt tttttttttt atttcttttc ttttcttttc 840
tttttatggc agcatccgtg gtatatggag gttcccagcc taggggtcag atcatacctg 900
caactgccag cctacaccac agccacagca ctcaggatcc gagctgcatc tgcggcttac 960
gccacaggtc acagcaacgc tggatcctta acccactgaa tgaggccagg gattgaacct 1020
gcaacctcat gcacactatg ctggggtctt aatcgg 1056
<210> 18
<211> 1108
<212> DNA
<213> Sus scrofa
<400> 18
acttcctcct gcccttaccc tttatctggc tcttagctcc taaaaactgc attattagct 60
tcctcttttg cctctactct tactcaacca aaattgtttt aagatctgtg gatctagctt 120
ctgctgtgct attcttagga acacttttat ttcctcttag ctccatctca ccagttattg 180
gctaatggct ttgcttggta cctacatctg tacatttctt tcgtactagc ttctagactg 240
aaaaaggact gttggttcaa catgaaaggg aaggaggtaa aagaggacac acaggaaaga 300
tggattggga ttcaggtctc tgctgttgtt acttgagatt gctttctaga ttctacttgt 360
ggaaacaaaa agcctttgcg agaattctaa actggagtat ttctgtaatt gaggagtctt 420
gctcagcaaa tcccacttag gggactaatg aagtaccagg aagagacaga ccatgctcaa 480
tccacaaagc caggttttac tgaaatgtga cctactttct tatgttcctg gaagtttaga 540
tcagggtggg cagctctggg ttttataggc tacactgtta acactcaggc tgttttctac 600
cgtttagtca aaatatagtc accttgcctg cttcacctgt ccatcagaga atggcctcat 660
taattgactc tctagtatga agtcaaagta gctttggtgg ccctaaatgg acaagtatca 720
agagactggg tgaattgagg agcttgagac tgtcacctca gatcgaaaag actgaaaaat 780
cacctcagat caaaaagact gaaaaatctt cagtctggaa aggggactca aaaccataat 840
tagagtattc tggtagaatc cttttctcca ctgttattca tacagttaag gtgaataact 900
aaaagtaatt gtgagctgag gagtaagata caacacacaa ggaatcagtt aacagagtct 960
cgagtgaaat tataaatgga aagaattatg acttgaatca taactctgag gccccatttt 1020
ccctaacaac ttttgtccca ataaacgtgg gtatttgttt gggagaaact atcatataca 1080
tgattaccca gtaaacagac tgtttact 1108
<210> 19
<211> 1089
<212> DNA
<213> Sus scrofa
<400> 19
actttgtacc tattttgtat gtgtataata atttgagatg tttttaatta ttttgattgc 60
tggaataaag catgtggaaa tgacccaaac caatcttgca ctggcctcct gatttccttc 120
cttggagacg gagggagggg gagacctggg ggagggcgct tggggggggg tgggctctct 180
tctttctgcg ctcccccccc ccacctccaa caccttgacg acccctcctg cttccgcttg 240
cctttctcag gctttaacac tttctcctcg ccctctcagc atgcgcatgc gcgtgcctct 300
acctcccccg cacatcctgg cctgcccacc ctgaatgtcc tggcccagcg atgccaccaa 360
ctctctcgct ccgtccacgg ctggggaggg gggcactctg cagggttggg gggcactggg 420
aggctgggtt gggtgaggga ggggtgcctg ggcccccacc ccccagcaag ttctctccct 480
aggcgaactg gagggtcgtc tggcctcttg agccttgttg ctggctctga gctctaccaa 540
gagagtgacc agcaggaccg caccatcagt ggttgctgag actgcgtggg ggcccaagga 600
gacctggaga aaggaatgct tcctgctcct tcttctgggg ccccaggaga gccttcccag 660
ggccttggag agttgctgtc cagggactaa ccctgtgctc taggaaggct gcaggccctg 720
accagctggg caggtcctgg gtccctcctg gccttctaag ttccccaaac atgagacctc 780
tgggtgtggg gtggcctggg gaggtcattt tgcccaggcc ctacctcctg cccattccta 840
acccttttta aaaatctgtg cgtcctcttc ttccttcttc tccctccctt cccttttcgc 900
tcaccctctg ctgctggcct gagagccgga ggcccccagg gggaaggcga ctggtctcct 960
ccccagtctc agggaaggga gacagagaat ccaggaagcc agaactcagc agacgaagca 1020
cccagggacc tagagatggg ttgaaaagtt gacagctgtc ccacctgcct cccaaggtct 1080
cagggccta 1089

Claims (13)

1. A method of making a recombinant porcine cell comprising the steps of: integrating a DNA molecule named as a DNA molecule A into the genome DNA of the pig cell to obtain a recombinant pig cell; the DNA molecule A expresses human type II 5 alpha-reductase.
2. The method of claim 1, wherein: the DNA molecule A is integrated into the COL1A1 gene of the genomic DNA of the pig cells.
3. The method of claim 1 or 2, wherein: the "integration of the DNA molecule designated DNA molecule A into the genomic DNA of the pig cells" is carried out in the following manner: introducing a DNA molecule designated as DNA molecule B into a pig cell or introducing a recombinant plasmid having the DNA molecule B into a pig cell; and in the DNA molecule B, the DNA molecule A is provided, an upstream homology arm is arranged at the upstream of the DNA molecule A, and a downstream homology arm is arranged at the downstream of the DNA molecule A, and the upstream homology arm and the downstream homology arm are used for integrating the DNA molecule A into the genome DNA of the pig cells.
4. The method of claim 3, wherein: in the method, the recombinant plasmid with the DNA molecule B and two auxiliary plasmids are introduced into a pig cell together; the two helper plasmids are sgRNA plasmid and Cas9 plasmid;
transcribing the sgRNA plasmid to obtain a specific sgRNA; the target sequence binding region of the specific sgRNA is shown as SEQ ID NO:13, nucleotides 1 to 20;
the Cas9 plasmid expresses Cas9 protein.
5. A kit comprising the DNA molecule b of claim 3; the application of the kit is as follows (a) or (b): (a) Preparing a recombinant porcine cell expressing a human type II 5 alpha-reductase gene; (b) preparing the alopecia model pig.
6. A kit comprising a recombinant plasmid having the DNA molecule b of claim 3; the application of the kit is as follows (a) or (b): (a) Preparing a recombinant porcine cell expressing a human type II 5 alpha-reductase gene; (b) preparing the alopecia model pig.
7. The kit of claim 5 or 6, wherein: the kit further comprises a sgRNA plasmid and a Cas9 plasmid; the sgRNA plasmid is the sgRNA plasmid of claim 4; the Cas9 plasmid is the Cas9 plasmid described in claim 4.
8. The use of the DNA molecule B as claimed in claim 3 for the preparation of a kit; the application of the kit is as follows (a) or (b): (a) Preparing a recombinant porcine cell expressing a human type II 5 alpha-reductase gene; (b) preparing the alopecia model pig.
9. Use of a recombinant plasmid having the DNA molecule B of claim 3 in the preparation of a kit; the application of the kit is as follows (a) or (b): (a) Preparing a recombinant porcine cell expressing a human type II 5 alpha-reductase gene; (b) preparing the alopecia model pig.
10. Use of a recombinant plasmid having the DNA molecule b of claim 3, a sgRNA plasmid and a Cas9 plasmid in the preparation of a kit; the sgRNA plasmid is the sgRNA plasmid of claim 4; the Cas9 plasmid is the Cas9 plasmid described in claim 4; the application of the kit is as follows (a) or (b): (a) Preparing a recombinant porcine cell expressing a human type II 5 alpha-reductase gene; (b) preparing the alopecia model pig.
11. The use of the DNA molecule B of claim 3, the recombinant plasmid having the DNA molecule B of claim 3, the kit of claim 5, the kit of claim 6 or the kit of claim 7 as (a) or (b) below: (a) Preparing a recombinant porcine cell expressing a human type II 5 alpha-reductase gene; (b) preparing the alopecia model pig.
12. A recombinant porcine cell produced by the method of any one of claims 1 to 4.
13. Use of the recombinant porcine cells of claim 12 for the preparation of a hair loss model pig.
CN202210534971.9A 2022-05-17 2022-05-17 Construction method of alopecia model pig nuclear transplantation donor cell expressing humanized II-type 5 alpha-reductase Pending CN115247189A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210534971.9A CN115247189A (en) 2022-05-17 2022-05-17 Construction method of alopecia model pig nuclear transplantation donor cell expressing humanized II-type 5 alpha-reductase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210534971.9A CN115247189A (en) 2022-05-17 2022-05-17 Construction method of alopecia model pig nuclear transplantation donor cell expressing humanized II-type 5 alpha-reductase

Publications (1)

Publication Number Publication Date
CN115247189A true CN115247189A (en) 2022-10-28

Family

ID=83698247

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210534971.9A Pending CN115247189A (en) 2022-05-17 2022-05-17 Construction method of alopecia model pig nuclear transplantation donor cell expressing humanized II-type 5 alpha-reductase

Country Status (1)

Country Link
CN (1) CN115247189A (en)

Similar Documents

Publication Publication Date Title
AU2020289750B2 (en) Engineered meganucleases with recognition sequences found in the human T cell receptor alpha constant region gene
AU2021200863A1 (en) Genetically-modified cells comprising a modified human t cell receptor alpha constant region gene
CN108359691A (en) The kit and method of abnormal mitochondrial DNA are knocked out using mito-CRISPR/Cas9 systems
PT1649027E (en) Expression systems for insect pest control
CN112779291A (en) Method for constructing high-quality pig nuclear transplantation donor cells with high lean meat percentage, fast growth, high reproductive capacity and resistance to series epidemic diseases and application thereof
CN114958760B (en) Gene editing technology for constructing Alzheimer disease model pig and application thereof
CN114958759B (en) Construction method and application of amyotrophic lateral sclerosis model pig
CN114525304B (en) Gene editing method
KR20140043890A (en) Regulated gene expression systems and constructs thereof
CN114958762B (en) Method for constructing nerve tissue specific overexpression humanized SNCA parkinsonism model pig and application
CN112522264B (en) CRISPR/Cas9 system causing congenital deafness and application thereof in preparation of model pig nuclear donor cells
CN115247189A (en) Construction method of alopecia model pig nuclear transplantation donor cell expressing humanized II-type 5 alpha-reductase
CN113046388B (en) CRISPR system for constructing atherosclerosis pig nuclear transfer donor cells with double genes in combined knockout mode and application of CRISPR system
CN115247188A (en) Kit and application thereof in constructing alopecia model pig nuclear transplantation donor cells of high-expression pig II-type 5 alpha-reductase
CN114958761B (en) Construction method and application of stomach cancer model pig
CN112522310B (en) CRISPR system and application thereof in construction of LRP5 gene mutant osteoporosis clone pig nuclear donor cell
CN112899306B (en) CRISPR system and application thereof in construction of GABRG2 gene mutation cloned pig nuclear donor cells
CN112522255B (en) CRISPR/Cas9 system and application thereof in construction of porcine recombinant cell with insulin receptor substrate gene defect
CN112522311B (en) CRISPR system for ADCY3 gene editing and application thereof in construction of obese pig nuclear transfer donor cells
CN112608941B (en) CRISPR system for constructing obese pig nuclear transplantation donor cells with MC4R gene mutation and application of CRISPR system
CN112680453B (en) CRISPR system and application thereof in construction of STXBP1 mutant epileptic encephalopathy clone pig nuclear donor cell
CN112522292B (en) CRISPR/Cas9 system for constructing congenital amaranth clone pig nuclear donor cells and application thereof
CN113584078B (en) CRISPR system for double-target gene editing and application thereof in construction of depressive pig nuclear transfer donor cells
CN112813101B (en) Gene editing system for constructing high-quality pig nuclear transplantation donor cells with high lean meat percentage and rapid growth and application thereof
CN112522256B (en) CRISPR/Cas9 system and application thereof in construction of dystrophin gene-deficient porcine recombinant cells

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination