CN115246627B - 一种纳米颗粒镁基复合储氢材料的制备方法 - Google Patents

一种纳米颗粒镁基复合储氢材料的制备方法 Download PDF

Info

Publication number
CN115246627B
CN115246627B CN202210961669.1A CN202210961669A CN115246627B CN 115246627 B CN115246627 B CN 115246627B CN 202210961669 A CN202210961669 A CN 202210961669A CN 115246627 B CN115246627 B CN 115246627B
Authority
CN
China
Prior art keywords
ball milling
hydrogen storage
magnesium
storage material
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210961669.1A
Other languages
English (en)
Other versions
CN115246627A (zh
Inventor
张剑峰
张力宇
独彪
黄林泉
朱小宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi Coal and Chemical Technology Institute Co Ltd
Original Assignee
Shaanxi Coal and Chemical Technology Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi Coal and Chemical Technology Institute Co Ltd filed Critical Shaanxi Coal and Chemical Technology Institute Co Ltd
Priority to CN202210961669.1A priority Critical patent/CN115246627B/zh
Publication of CN115246627A publication Critical patent/CN115246627A/zh
Application granted granted Critical
Publication of CN115246627B publication Critical patent/CN115246627B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0031Intermetallic compounds; Metal alloys; Treatment thereof
    • C01B3/0042Intermetallic compounds; Metal alloys; Treatment thereof only containing magnesium and nickel; Treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0084Solid storage mediums characterised by their shape, e.g. pellets, sintered shaped bodies, sheets, porous compacts, spongy metals, hollow particles, solids with cavities, layered solids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B6/00Hydrides of metals including fully or partially hydrided metals, alloys or intermetallic compounds ; Compounds containing at least one metal-hydrogen bond, e.g. (GeH3)2S, SiH GeH; Monoborane or diborane; Addition complexes thereof
    • C01B6/04Hydrides of alkali metals, alkaline earth metals, beryllium or magnesium; Addition complexes thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Abstract

本发明公开了一种纳米颗粒镁基复合储氢材料的制备方法,包括以下步骤:将纳米片状镁与过渡族金属在氢气气氛下进行球磨,得到镁/过渡金属复合储氢材料;将镁/过渡金属复合储氢材料与金属氟化物在氢气气氛下进行球磨,得到纳米颗粒镁基复合储氢材料。本发明通过多步原位氢化球磨法制备纳米颗粒镁基复合储氢材料,针对球磨法制备镁基储氢材料颗粒易于团聚,难于制备纳米尺度粉末的困境,采用多步球磨法制备纳米颗粒镁基储氢材料。过渡族金属和金属氟化物等无机盐不仅可以作为吸放氢催化剂,也可作为润滑剂,在球磨过程中附着在颗粒表面,抑制由于冷焊造成的颗粒团聚,本发明的储氢材料具有良好的动力学性能、较高的储氢容量和优良的循环性能。

Description

一种纳米颗粒镁基复合储氢材料的制备方法
技术领域
本发明属于金属氢化物材料制备技术领域,具体涉及一种纳米颗粒镁基复合储氢材料的制备方法。
背景技术
氢能储运问题是制约氢能推广应用的关键环节之一,高容量储氢材料是解决这一问题的有效手段,镁基储氢材料具有储氢容量高、资源丰富、价格低廉等优点而成为最具吸引力的储氢材料之一,但它吸/放氢动力学性能差、放氢温度高,从而限制了实际应用。
在目前已知的金属基储氢材料中,Mg是最早被研究的储氢材料之一,MgH2的理论可逆储氢容量为7.6wt%,在地壳中Mg的含量排在第八位(2.3%)、海水中的含量是第三,因此镁基材料具有低成本的优势。但是无论是热力学(焓变为-74.5kJ/(mol H2))还是动力学性能,MgH2的吸/放氢反应都存在很大障碍。研究表明,导致Mg氢化动力学缓慢的第一个原因是镁基储氢合金耐氧化性能差,在表面易形成氧化层,不利于氢气的解离和向块体中扩散;另一个原因是MgH2层在表面形成后氢原子扩散很困难,因为氢气在MgH2中的扩散系数(1.5×10-16m2/s)比在Mg中的(4×10-13m2/s)小很多。脱氢动力学缓慢的原因包括Mg-H键断裂所需能量很高、氢原子在MgH2中扩散系数低、Mg在MgH2表面形核困难和氢原子在Mg表面再结合形成氢分子。为了解决以上存在的问题,目前采取改善Mg基合金吸氢/脱氢动力学途径主要有:添加催化剂、纳米晶化、纳米化和多相复合化,其动力学障碍已基本克服。然而,热力学过于稳定的难题仍有待攻克,目前改善镁基储氢合金热力学性能的措施有合金化、纳米化/薄膜化、亚稳定相等。但其存在储氢容量低、循环稳定性差等缺陷。
发明内容
本发明为解决现有技术的储氢容量低、循环稳定性差的问题,提供一种纳米颗粒镁基复合储氢材料的制备方法,该方法采用高能球磨原位氢化法制备纳米颗粒镁基复合储氢材料,利用高密度相界面以及协同效应,改善热力学性能,同时保持较高的储氢容量和循环性能。
为实现上述目的,本发明采用的技术方案是:
一种纳米颗粒镁基复合储氢材料的制备方法,包括以下步骤:
1)将纳米片状镁与过渡族金属在氢气气氛下进行球磨,得到亚微米尺度的镁/过渡金属复合储氢材料;
2)将亚微米尺度的镁/过渡金属复合储氢材料与金属氟化物在保护气氛下进行球磨,得到纳米颗粒镁基复合储氢材料。
进一步的,保护气氛为氢气或氩气。
进一步的,过渡族金属的重量为纳米片状镁与过渡族金属的总重量的为3-20%。
进一步的,过渡族金属为Ni、铜、钴、钒或Ti。
进一步的,步骤1)中,球磨的转速300-800rpm,球磨的时间4h-14h。
进一步的,金属氟化物为氟化铯、氟化钪、氟化钛、氟化锆、氟化钇或氟化镧。
进一步的,金属氟化物的用量为镁/过渡金属复合储氢材料与金属氟化物总重量的1-10%。
进一步的,步骤2)中,球磨的转速为200-500rpm,球磨的时间为2-5h。
进一步的,纳米片状镁粉通过以下过程制备:将镁粉与有机试剂混合,在惰性气氛保护下进行球磨,获得纳米片状镁粉。
进一步的,惰性气氛为氩气或氦气。
进一步的,有机试剂为乙醇、硬脂酸或烷烃。
进一步的,烷烃为环己烷、正己烷或庚烷;在惰性气氛保护下进行球磨的转速为300-500rpm,时间为2-6h。
本发明与现有技术相比具有以下有益效果:
本发明采用纳米片层镁粉,使过渡金属纳米颗粒均匀分散在片层镁粉表面,并通过原位球磨获得高密度相界面的镁基复合储氢材料。在吸放氢反应过程中,利用相界面能差实现储氢材料热力学和动力学性能改善,克服了现有技术中针对镁基储氢材料热力学过于稳定,动力学性能缓慢的难题。本发明通过多步原位氢化球磨法制备纳米颗粒镁基复合储氢材料,过渡族金属和金属氟化物等无机盐不仅可以作为吸放氢催化剂,而且也可作为润滑剂,在球磨过程中附着在颗粒表面,抑制由于冷焊造成的颗粒团聚,克服了现有技术中针对球磨法制备镁基储氢材料颗粒易于团聚,难于制备纳米尺度粉末的问题。并且球磨时氟化物会和镁粉发生原位反应,生成新相,有利于形核,进而促进氢气吸收。由于本发明中的金属氟化物能够显著降低粉末粒度,所以显著提高了储氢容量,并且在300℃下进行循环性能测试,结果表面储氢容量几乎没有衰减,循环稳定性能好。
附图说明
图1为镁基储氢材料制备过程示意图;
图2为Mg-5 Ni-3CsF复合储氢材料吸氢动力学曲线;
图3为Mg-5 Ni-3CsF复合储氢材料放氢动力学曲线;
图4为Mg-5 Ni-3CsF复合储氢材料循环性能测试结果;
图5为MgH2储氢材料吸氢动力学曲线;
图6为MgH2储氢材料放氢动力学曲线;
图7为Mg-5 Ni-3TiF3复合储氢材料吸氢动力学曲线;
图8为Mg-5 Ni-3TiF3复合储氢材料放氢动力学曲线。
具体实施方式
下面通过附图和实施例对本发明的技术方案作进一步的详细描述。
本发明中的球料比是质量比。
如图1所示,本发明的一种纳米颗粒镁基复合储氢材料的制备方法,包括以下步骤:
步骤一、纳米片状镁粉的制备:将镁粉与一定比例的有机试剂混合,按照一定的球料比在氩气或氦气气氛保护下进行球磨,在手套箱中干燥,获得纳米片状镁粉。其中,镁粉与有机试剂的用量比为10g:10-15mL。
其中,所述有机试剂为乙醇、硬脂酸或烷烃,烷烃为环己烷、正己烷或庚烷,球料比范围为20:1-60:1,球磨时间为2-6h。
步骤二、在手套箱内将纳米片状镁、过渡族金属和钢球按一定比例放入球磨罐内,密封后取出。将球磨罐与充氢装置连接,进行两次洗气后,充入指定氢压,并检查气密性;
其中,所述添加过渡族金属(Ni、铜、钴、钒或Ti)的质量为纳米片状镁与过渡族金属的总重量的为3-20wt%,球料比范围为40:1-120:1,氢压为3-6MPa。
步骤三、将球磨罐固定在高能球磨机上,在设定球磨转速、球磨时间下进行高能球磨,使过渡金属颗粒均匀分布在纳米片层镁粉中,得到亚微米尺度的得到镁/过渡金属复合储氢材料。
其中,所述球磨条件为:球磨转速300-800rpm,球磨时间4h-14h。
步骤四、将步骤三得到的镁/过渡金属复合储氢材料与金属氟化物(添加氟化物可以显著改善吸氢动力学性能)按照一定比例装入球磨罐内,在一定氢压(或氦气气氛)、低能球磨条件下球磨,进行粒径的优化,得到纳米颗粒镁基复合储氢材料。
其中,金属氟化物为氟化铯(CsF)、氟化钪、氟化钛(TiF3)或氟化镧等,金属氟化物的用量为镁/过渡金属复合储氢材料与金属氟化物总重量的1-10wt%,低能球磨球料比为30:1~60:1,球磨转速为200-500rpm,球磨时间为2-5h,氢压为2-4MPa。
本发明的优势之一是采用湿磨制备纳米片层镁粉,然后将纳米过渡金属粉末和纳米片层镁粉混合后球磨,在高能球磨过程中,利用冷焊作用制备多层纳米片层镁基储氢材料,同时在片层之间原位形成新相,形成高密度的相界面,利用界面能以及协同放氢效应实现氢化镁热力学及其动力学的改善,同时保持较高的储氢容量。此外同时CsF、TiF3等金属氟化物可以显著降低粉末粒度,显著提高储氢容量,获得良好的循环性能。
实施例1
本实施例包括以下步骤:
步骤一、纳米片层镁粉制备:称取10g镁粉,10mL正己烷装在球磨罐内,在氩气气氛下,按照球料比30:1、400rpm的条件下球磨4h,将其在手套箱内取出,得到纳米片层镁粉。
步骤二、在手套箱内将纳米片层镁粉2.76g与镍粉0.15g加入球磨罐,球料比80:1,充氢压力4MPa;
步骤三、将球磨罐固定在行星球磨机,设定转速600rpm,球磨2h暂停15min,再继续进行球磨2h,暂停15min,总共球磨时间8h,得到完全氢化的Mg-5Ni复合储氢材料。
步骤四、将0.09g氟化铯和步骤三得到的Mg-5Ni复合储氢材料加入球磨罐内,在球料比50:1、氢压3MPa、转速400rpm条件下球磨3h,得到纳米颗粒Mg-5 Ni-3CsF复合储氢材料。
参见图2和图3,图2中纵坐标为Hydrogen absorption为吸氢容量,横坐标time为时间,图3中纵坐标Hydrogen desorption为放氢容量,横坐标time为时间,可以看出,Mg-5Ni-3CsF复合储氢材料可以在60min内吸氢容量达到7wt%,35min内放氢容量达到7.0wt%。
图4为300℃下循环性能测试结果,图4中,纵坐标Hydrogen absorption capacity为储氢容量,横坐标Cycle number为循环次数,可以看到储氢容量几乎没有衰减。
对比例1
本对比例包括以下步骤:
将3g镁粉与钢球按照球料比80:1、转速600rpm、氢压4MPa下球磨8h得到氢化镁。
参见图5和图6,可以看出,Mg-5 Ni-3CsF复合储氢材料在300℃下的吸放氢容量均达到7wt%以上,且在60min内可以完全脱氢。而纯MgH2在100min内放氢容量为6.4wt%,30min内吸氢容量仅有6.3wt%。相比之下添加催化剂显著改善了其吸放氢动力学曲线。
实施例2
本实施例包括以下步骤:
步骤一、纳米片层镁粉制备:称取10g镁粉,10mL正己烷装在球磨罐内,在氩气气氛下,按照球料比30:1、400rpm的条件下球磨4h,将其在手套箱内取出,得到纳米片层镁粉。
步骤二、在手套箱内将纳米片层镁粉2.76与镍粉0.15加入球磨罐,球料比80:1,充氢压力4MPa;
步骤三、将球磨罐固定在行星球磨机,设定转速600rpm,球磨2h暂停15min,总共球磨时间8h,得到完全氢化的Mg-5Ni复合储氢材料。
步骤四、将0.09氟化钛和步骤三得到的Mg-5Ni复合储氢材料加入球磨罐内,在球料比50:1、氢压3MPa、转速400rpm条件下球磨3h,得到纳米颗粒Mg-5 Ni-3TiF3复合储氢材料。
参见图7和图8,可以看出,Mg-5 Ni-3TiF3复合储氢材料在300℃、30min下吸氢容量达到6.7wt%,40min内的放氢容量达到7wt%。
实施例3
步骤一、纳米片层镁粉制备:称取10g镁粉,15mL庚烷装在球磨罐内,在氩气气氛下,按照球料比20:1、300rpm的条件下球磨6h,将其在手套箱内取出,得到纳米片层镁粉。
步骤二、在手套箱内将纳米片层镁粉与铜粉加入球磨罐,球料比40:1,充氢压力6MPa;其中,铜粉为纳米片层镁粉与铜粉的总重量的3%;
步骤三、将球磨罐固定在行星球磨机,设定转速800rpm,球磨2h暂停15min,再继续进行球磨2h,总共球磨时间4h,得到完全氢化的复合储氢材料。
步骤四、将氟化钪和步骤三得到的复合储氢材料加入球磨罐内,在球料比40:1、氢压4MPa、转速200rpm条件下球磨5h,得到纳米颗粒复合储氢材料。氟化钪的用量为复合储氢材料与金属氟化物总重量的5%,
实施例4
步骤一、纳米片层镁粉制备:称取10g镁粉,12mL乙醇装在球磨罐内,在氦气气氛下,按照球料比50:1、500rpm的条件下球磨2h,将其在手套箱内取出,得到纳米片层镁粉。
步骤二、在手套箱内将纳米片层镁粉与钛粉加入球磨罐,球料比100:1,充氢压力5MPa;其中,钛粉为纳米片层镁粉与钛粉的总重量的20%;
步骤三、将球磨罐固定在行星球磨机,设定转速300rpm,每球磨2h暂停15min,总共球磨时间14h,得到完全氢化的复合储氢材料。
步骤四、将氟化钛和步骤三得到的复合储氢材料加入球磨罐内,在球料比60:1、氢压3MPa、转速500rpm条件下球磨2h,得到纳米颗粒复合储氢材料。氟化钛的用量为复合储氢材料与金属氟化物总重量的10%,
实施例5
步骤一、纳米片层镁粉制备:称取10g镁粉,10mL硬脂酸装在球磨罐内,在氩气气氛下,按照球料比60:1、450rpm的条件下球磨3h,将其在手套箱内取出,得到纳米片层镁粉。
步骤二、在手套箱内将纳米片层镁粉与钒粉加入球磨罐,球料比120:1,充氢压力3MPa;其中,钒粉为纳米片层镁粉与钒粉的总重量的20%;
步骤三、将球磨罐固定在行星球磨机,设定转速500rpm,每球磨2h暂停15min,再继续进行球磨2h,暂停15min,总共球磨时间12h,得到完全氢化的复合储氢材料。
步骤四、将氟化镧和步骤三得到的复合储氢材料加入球磨罐内,在球料比30:1、氦气压力为2MPa、转速300rpm条件下球磨4h,得到纳米颗粒复合储氢材料。其中,氟化镧的用量为复合储氢材料与金属氟化物总重量的1%,
本发明中获得的高密度相界面的镁基复合储氢材料,其中密度是相对于纯镁和镁基复合材料而言,当添加过渡金属后,过渡金属镶嵌在镁基体,此时会形成镁和过渡金属或者新相的界面。
本发明采用纳米复合化来改善镁基储氢材料的热力学性能和动力学性能,同时保持较高的储氢容量和良好的循环性能。
以上所述,仅是本发明的较佳实施例,并非对本发明作任何限制。凡是根据发明技术实质对以上实施例所作的任何简单修改、变更以及等效变化,均仍属于本发明技术方案的保护范围内。

Claims (1)

1.一种纳米颗粒镁基复合储氢材料的制备方法,其特征在于,包括以下步骤:
步骤一、称取10g镁粉,10mL正己烷装在球磨罐内,在氩气气氛下,按照球料比30:1、400rpm的条件下球磨4h,将其在手套箱内取出,得到纳米片层镁粉;
步骤二、在手套箱内将纳米片层镁粉2.76g与镍粉0.15g加入球磨罐,球料比80:1,充氢压力4MPa;
步骤三、将球磨罐固定在行星球磨机,设定转速600rpm,球磨2h暂停15min,再继续进行球磨2h,暂停15min,总共球磨时间8h,得到完全氢化的Mg-5Ni复合储氢材料;
步骤四、将0.09g氟化铯和步骤三得到的Mg-5Ni复合储氢材料加入球磨罐内,在球料比50:1、氢压3MPa、转速400rpm条件下球磨3h,得到纳米颗粒镁基复合储氢材料。
CN202210961669.1A 2022-08-11 2022-08-11 一种纳米颗粒镁基复合储氢材料的制备方法 Active CN115246627B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210961669.1A CN115246627B (zh) 2022-08-11 2022-08-11 一种纳米颗粒镁基复合储氢材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210961669.1A CN115246627B (zh) 2022-08-11 2022-08-11 一种纳米颗粒镁基复合储氢材料的制备方法

Publications (2)

Publication Number Publication Date
CN115246627A CN115246627A (zh) 2022-10-28
CN115246627B true CN115246627B (zh) 2024-02-23

Family

ID=83699519

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210961669.1A Active CN115246627B (zh) 2022-08-11 2022-08-11 一种纳米颗粒镁基复合储氢材料的制备方法

Country Status (1)

Country Link
CN (1) CN115246627B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116143077B (zh) * 2023-04-19 2023-06-27 烟台大学 一种作为氢气储存介质的氢化镁的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101476070A (zh) * 2009-01-16 2009-07-08 南京工业大学 一种镁基储氢合金及其制备方法
CN101549854A (zh) * 2009-05-13 2009-10-07 安徽工业大学 含碱土金属-铝氢化物的镁基复合储氢材料及制备方法
CN102674245A (zh) * 2011-11-01 2012-09-19 南开大学 一种MgH2/Mg过渡金属硼化物复合储氢材料及其制备方法
CN103771337A (zh) * 2013-12-23 2014-05-07 浙江大学 一种掺杂过渡金属氟化物的氢化铝储氢材料及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI526396B (zh) * 2012-09-12 2016-03-21 財團法人工業技術研究院 儲氫複合材料及其形成方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101476070A (zh) * 2009-01-16 2009-07-08 南京工业大学 一种镁基储氢合金及其制备方法
CN101549854A (zh) * 2009-05-13 2009-10-07 安徽工业大学 含碱土金属-铝氢化物的镁基复合储氢材料及制备方法
CN102674245A (zh) * 2011-11-01 2012-09-19 南开大学 一种MgH2/Mg过渡金属硼化物复合储氢材料及其制备方法
CN103771337A (zh) * 2013-12-23 2014-05-07 浙江大学 一种掺杂过渡金属氟化物的氢化铝储氢材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Hydrogenation thermodynamics of melt-spun magnesium rich Mg-Ni nanocrystalline alloys with the addition of multiwalled carbon nanotubes and TiF3;Xiaojiang Hou等;《Journal of Power Sources》;第306卷;第437-447页 *
Nanocrystalline magnesium for hydrogen storage;A. Zaluska等;《Journal of Alloys and Compounds》;19991231;第288卷;第217-225页 *

Also Published As

Publication number Publication date
CN115246627A (zh) 2022-10-28

Similar Documents

Publication Publication Date Title
Ouyang et al. Magnesium-based hydrogen storage compounds: A review
Lu et al. Achieving superior hydrogen storage properties of MgH2 by the effect of TiFe and carbon nanotubes
Fu et al. Effect of in-situ formed Mg2Ni/Mg2NiH4 compounds on hydrogen storage performance of MgH2
Luo et al. Enhanced hydrogen storage/sensing of metal hydrides by nanomodification
Huang et al. Transition metal (Co, Ni) nanoparticles wrapped with carbon and their superior catalytic activities for the reversible hydrogen storage of magnesium hydride
Khafidz et al. The kinetics of lightweight solid-state hydrogen storage materials: A review
Wang et al. Tuning kinetics and thermodynamics of hydrogen storage in light metal element based systems–a review of recent progress
Xie et al. Synergistic catalytic effects of the Ni and V nanoparticles on the hydrogen storage properties of Mg-Ni-V nanocomposite
Liao et al. Enhancing (de) hydrogenation kinetics properties of the Mg/MgH2 system by adding ANi5 (A= Ce, Nd, Pr, Sm, and Y) alloys via ball milling
CN109972010B (zh) 一种纳米镁基复合储氢材料及制备方法
Li et al. Sodium alanate system for efficient hydrogen storage
Zhang et al. Synthesis process and catalytic activity of Nb2O5 hollow spheres for reversible hydrogen storage of MgH2
CN115246627B (zh) 一种纳米颗粒镁基复合储氢材料的制备方法
Huang et al. Synergistic effect of TiF3@ graphene on the hydrogen storage properties of Mg–Al alloy
Ali et al. Influence of K2NbF7 catalyst on the desorption behavior of LiAlH4
Ding et al. Formation of Mg2Ni/Cu phase and de-/hydrogenation behavior of Mg91Ni9-xCux alloy at moderate temperatures
Song et al. Preparation of a Mg-Based alloy with a high hydrogen-storage capacity by adding a polymer CMC via milling in a hydrogen atmosphere
Lu et al. Reversible de/hydriding reactions between two new Mg–In–Ni compounds with improved thermodynamics and kinetics
Ding et al. Activity-tuning of supported co–ni nanocatalysts via composition and morphology for hydrogen storage in MgH2
Yang et al. Improvement of Mg‐Based Hydrogen Storage Materials by Metal Catalysts: Review and Summary
Xie et al. Catalytic effects of decorating AlV3 nanocatalyst on hydrogen storage performance of Mg@ Mg17Al12 nanocomposite: experimental and theoretical study
Zhang et al. Design of LPSO-introduced Mg96Y2Zn2 alloy and its improved hydrogen storage properties catalyzed by in-situ formed YH2
Xie et al. Recoverable Ni2Al3 nanoparticles and their catalytic effects on Mg-based nanocomposite during hydrogen absorption and desorption cycling
Li et al. Effects of adding Nd on the microstructure and dehydrogenation performance of Mg90Al10 alloy
Yao et al. Study on in situ modification mechanism of Mg-Ce-Y based hydrogen storage alloy by ZnF2

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant