CN115235367A - 一种大应变测量范围的高精度双频光频域反射仪 - Google Patents

一种大应变测量范围的高精度双频光频域反射仪 Download PDF

Info

Publication number
CN115235367A
CN115235367A CN202210886933.XA CN202210886933A CN115235367A CN 115235367 A CN115235367 A CN 115235367A CN 202210886933 A CN202210886933 A CN 202210886933A CN 115235367 A CN115235367 A CN 115235367A
Authority
CN
China
Prior art keywords
frequency
optical
light
continuous light
wavelength division
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210886933.XA
Other languages
English (en)
Other versions
CN115235367B (zh
Inventor
杨强
谢玮霖
董毅
杨将
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Technology BIT
Original Assignee
Beijing Institute of Technology BIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Technology BIT filed Critical Beijing Institute of Technology BIT
Priority to CN202210886933.XA priority Critical patent/CN115235367B/zh
Publication of CN115235367A publication Critical patent/CN115235367A/zh
Application granted granted Critical
Publication of CN115235367B publication Critical patent/CN115235367B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • G01B11/161Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge by interferometric means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35383Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using multiple sensor devices using multiplexing techniques
    • G01D5/35387Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using multiple sensor devices using multiplexing techniques using wavelength division multiplexing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本发明公开了一种大应变测量范围的高精度双频光频域反射仪,包括:光调制模块,用于将连续光合束,并将双频连续光调制为扫频连续光;光干涉模块,用于将待测光纤发出的后向散射光与扫频连续光进行干涉,并可调整后向散射光的偏振态,得到干涉光;光电转换模块,用于将所述干涉光转换为电信号;采集与处理模块,与光电转换模块连接,用于采集数据,对数据进行分析与处理。本双频光频域反射仪利用两个频率光波的相位差进行应变测量,解决了扫频重复频率和施加应变振动频率不变的情况下,单频光***可测的最大动态应变受到光频率限制的问题,并且保持了高精度测量。

Description

一种大应变测量范围的高精度双频光频域反射仪
技术领域
本专利属于光纤传感领域,具体是一种大应变测量范围的高精度双频光频域反射仪。
背景技术
分布式光纤传感技术具有抗电磁干扰、灵敏度高和易于实施等优势,已经广泛应用于周界安防、结构健康监测和地震波探测等领域。当待测光纤受到外部环境的扰动(如动态应变)时,光纤的长度、芯径和折射率特性将会发生变化,从而引起光纤中瑞利散射光振幅和相位的改变;通过对扰动事件前后的瑞利散射信号进行分析,进而实现对扰动信号的探测。在早期的传感***中,人们仅根据瑞利散射信号强度的相对变化来实现扰动事件的定位,无法实现定量测量。进一步的研究表明,瑞利散射信号相位的变化量与施加在光纤上的应变大小呈线性关系,因此可以通过解调探测光的相位变化来定量测量动态应变的大小。
在诸多探测方式中,相位敏感光频域反射仪因其具有高分辨率和高灵敏度等优势受到广泛关注。光频域反射技术利用调频连续波作为探测光,其空间分辨率取决于扫频范围,解决了脉冲探测方式中空间分辨率与探测距离相互制约的问题。相位敏感光频域反射仪通过解调瑞利散射信号的相位谱,对应变事件前后进行相位差分来获取相位变化的大小,从而解调出光纤上施加的动态应变。
利用相位敏感光频域反射仪测量动态应变的过程中,需要利用解缠绕算法将相位测量值展开,以使相位连续。然而,使用解缠绕算法正确解调的前提条件是相邻测量点的相位变化的绝对值不能超过π(π阈值条件),这一条件限制了可测动态应变的最大范围。假设施加的动态应变是一个单频正弦信号,根据π阈值条件,可得出***可测量的动态应变为:
Figure BDA0003766085510000021
式中,fp为光频域反射仪的扫频重复频率,fε为施加应变的振动频率。在目前的技术中,相位敏感光频域反射***采用光波长在1550nm(光频率~193.5THz)附近的单频光进行探测,由上式可知,在扫频重复频率和施加应变振动频率不变的情况下,可测的最大动态应变受到光频率ν的限制。
发明内容
为了克服扫频重复频率和施加应变振动频率不变的情况下,可测的最大动态应变受到光频率ν限制的问题,本发明提出了一种高精度双频光频域反射仪,利用两个频率光波的相位差进行应变测量。这种方式等效于在测量***中形成了一个低频载波,增大了应变的测量范围;测量***采用傅里叶相位谱进行解调,借助双频光之间的相位差,引导单频光相位解缠绕,实现了大动态应变范围的高精度测量。
为实现上述目的,本发明提供了如下方案:一种大应变测量范围的高精度双频光频域反射仪,包括:
光调制模块,用于将激光器发出的连续光合束成双频连续光,并将所述双频连续光调制为扫频连续光;
光干涉模块,用于将待测光纤发出的后向散射光与所述扫频连续光进行干涉,并可调整后向散射光的偏振态,得到干涉光;
光电转换模块,用于将所述干涉光转换为电信号;
采集与处理模块,与所述光电转换模块连接,用于对所述电信号进行分析与处理。
优选地,所述光调制模块与所述光干涉模块通过第一光耦合器连接;
所述光干涉模块与所述光电转换模块通过第二光耦合器连接;
所述第一光耦合器、第二光耦合器用于将光分路。
优选地,所述光调制模块包括合束单元、转换单元;
所述合束单元用于将连续光合束成双频连续光;
所述转换单元用于将双频连续光调制为扫频连续光。
优选地,所述合束单元包括窄线宽激光器、第一波分复用器;
所述窄线宽激光器包括第一窄线宽激光器、第二窄线宽激光器;
所述第一窄线宽激光器用于发出第一光频的连续光;
所述第二窄线宽激光器用于发出第二光频的连续光;
所述第一波分复用器用于将所述第一光频的连续光和所述第二光频的连续光合束。
优选地,所述转换单元包括任意波形发生器、射频放大器、调制器;
所述任意波形发生器用于发出扫频信号;
所述射频放大器,与所述任意波形发生器连接,用于将扫频信号放大;
所述调制器,与所述射频放大器连接,用于将双频连续光调制为扫频连续光。
优选地,所述光干涉模块包括第一光耦合器、光放大器、待测光纤、光环形器、偏振控制器、第二光耦合器;
所述第一光耦合器,用于将光波分束,一路为探测路,一路为参考路;
所述光放大器,与第一光耦合器连接,用于增大入纤光功率;
所述待测光纤,用于产生后向瑞利散射光;
所述光环形器,分别与所述光放大器、所述待测光纤、所述偏振控制器连接,用于将光波注入待测光纤,接收待测光纤产生的后向瑞利散射光,再出射到所述偏振控制器;
所述偏振控制器用于调整偏振态。
所述第二光耦合器,用于将探测路和参考路的光波合束进行干涉。
优选地,所述光电转换模块包括第二波分复用器、第三波分复用器、第一光电探测器、第二光电探测器;
所述第二波分复用器、第三波分复用器,与所述第二光耦合器连接,用于波分解复用;
所述第一光电探测器,分别与所述第二波分复用器、第三波分复用器连接,用于接收第一光频的拍频信号;
所述第二光电探测器,分别与所述第二波分复用器、第三波分复用器连接,用于接收第二光频的拍频信号。
本发明公开了以下技术效果:
1、本发明为相位敏感光频域反射仪,可以调节扫频范围,获得高空间分辨率,克服了脉冲探测方式中空间分辨率与探测距离无法兼顾的问题;且采用频域傅里叶相位进行解调,具有高灵敏度的优势。
2、采用本发明提出的双频测量***,利用两个频率之间的相位差进行解调,相比于传统单频光探测方式,大大提升了动态应变的测量范围。利用频率为第一频率和第二频率的连续光进行探测,双频测量***的可测动态应变大小提升为单频测量***下的第一频率除以频率差倍(或单频测量***下的第二频率除以频率差倍)。
3、为了提升测量精度,本发明在相位解调时,借助双频光之间的相位差,引导单频光相位进行解缠绕,将双频光***的测量精度提升至单频光***水平。利用本发明提出的高精度双频光频域反射仪,为大应变、高振动频率的应用场景提供了有效探测手段。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例的双频光频域反射仪的***结构示意图;
图中:1第一窄线宽激光器、2第二窄线宽激光器、3第一波分复用器、4调制器、5任意波形发生器、6射频放大器、7第一光耦合器、8光放大器、9光环形器、10待测光纤、11偏振控制器、12第二光耦合器、13第二波分复用器、14第三波分复用器、15第一光电探测器、16第二光电探测器、17数据采集与处理器。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
如图1所示,本发明提供了一种大应变测量范围的高精度双频光频域反射仪,其***结构如下:第一窄线宽激光器1和第二窄线宽激光器2分别发出频率为ν1和ν2的连续光,通过第一波分复用器3合束,第一波分复用器3连接调制器4的光输入端口;任意波形发生器5连接射频放大器6,射频放大器6输出端连接调制器4射频输入端,将合束光调制为扫频连续光,调制器4光输出端口连接第一光耦合器7,第一光耦合器7分为两路,其中一路为探测路,依次连接光放大器8和光环形器9端口a,光环形器9端口b连接待测光纤10,端口c连接偏振控制器11;第一光耦合器7输出的另一路作为参考路。探测路和参考路连接第二光耦合器12,第二光耦合器12的两个输出端口分别连接第二波分复用器13和第三波分复用器14,两个波分复用器将频率为ν1和ν2的连续光分开,再分别连接第一光电探测器15和第二光电探测器16,将光信号转换为电信号后,接入数据采集与处理器17。
进一步地优化方案,第一窄线宽激光器的光频率ν1和第二窄线宽激光器的光频率ν2可相差数百GHz至数THz。
进一步地优化方案,第一光耦合器7的分光比为90:10或者80:20;第二光耦合器12的分光比为50:50。
进一步地优化方案,待测光纤10可以为普通单模光纤、保偏光纤、FBG光纤、瑞利散射增强光纤等。
进一步地优化方案,信号的解调方法如下:
第一步,将各扫频周期采集到的时域拍频信号通过傅立叶变换至频域进行分析,拍频频率大小反映了光纤的位置信息,某频率下的傅里叶相位则反映了对应位置处的相位信息;
第二步,分别在两单频下,提取各扫频周期内频域信号的傅里叶相位信息,通过距离轴和慢变时间轴上的差分,求得每时刻两单频下由应变引起的相位变化的缠绕值分别为
Figure BDA0003766085510000071
Figure BDA0003766085510000072
第三步,求两个单频光下的相位差
Figure BDA0003766085510000073
为:
Figure BDA0003766085510000074
式中,n为光纤折射率,κ为光纤应变系数,L为应变区域长度,ε为应变大小,c为真空中的光速。其中Δν=ν12,为两光波的频率差。由上式可知,相比于单频光,双频测量***中由相同应变大小引起的相位变化
Figure BDA0003766085510000081
减小,因而可以测量更大范围的动态应变。利用频率为ν1和ν2的连续光进行探测时,双频测量***的可测动态应变大小提升为单频ν1测量***下的ν1/Δν倍(或单频ν2测量***下的ν2/Δν倍);
第四步,为了提升双频***下的测量精度,借助双频光之间的相位差
Figure BDA0003766085510000084
引导单频光相位解缠绕。以频率ν1下的单频光为例,由应变引起的单频光解缠绕后的相位变化
Figure BDA0003766085510000085
为缠绕相位
Figure BDA0003766085510000086
加2π的整数倍,即
Figure BDA0003766085510000083
解缠绕转化为求缠绕整数k1的值;令比例因子M1=ν1/Δν,根据式
Figure BDA0003766085510000082
求得整数k1的值,进而解调得到
Figure BDA0003766085510000087
的值,保持了单频光测量下的精度;
第五步,根据相位变化和应变之间的线性关系求得应变大小ε,将每个时刻解调得到的应变大小ε对应在慢变时间轴上,得到由振动引起的随时间变化的应变曲线。
以上所述的实施例仅是对本发明的优选方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。

Claims (7)

1.一种大应变测量范围的高精度双频光频域反射仪,其特征在于,包括:
光调制模块,用于将激光器发出的连续光合束成双频连续光,并将所述双频连续光调制为扫频连续光;
光干涉模块,用于将待测光纤发出的后向散射光与所述扫频连续光进行干涉,并可调整后向散射光的偏振态,得到干涉光;
光电转换模块,用于将所述干涉光转换为电信号;
采集与处理模块,与所述光电转换模块连接,用于对所述电信号进行分析与处理。
2.根据权利要求1所述的大应变测量范围的高精度双频光频域反射仪,其特征在于,
所述光调制模块与所述光干涉模块通过第一光耦合器连接;
所述光干涉模块与所述光电转换模块通过第二光耦合器连接。
3.根据权利要求1所述的大应变测量范围的高精度双频光频域反射仪,其特征在于,
所述光调制模块包括合束单元、转换单元;
所述合束单元用于将连续光合束成双频连续光;
所述转换单元用于将双频连续光调制为扫频连续光。
4.根据权利要求3所述的大应变测量范围的高精度双频光频域反射仪,其特征在于,
所述合束单元包括窄线宽激光器、第一波分复用器;
所述窄线宽激光器包括第一窄线宽激光器、第二窄线宽激光器;
所述第一窄线宽激光器用于发出第一光频的连续光;
所述第二窄线宽激光器用于发出第二光频的连续光;
所述第一波分复用器用于将所述第一光频的连续光和所述第二光频的连续光合束。
5.根据权利要求3所述的大应变测量范围的高精度双频光频域反射仪,其特征在于,
所述转换单元包括任意波形发生器、射频放大器、调制器;
所述任意波形发生器用于发出扫频信号;
所述射频放大器,与所述任意波形发生器连接,用于将扫频信号放大;
所述调制器,与所述射频放大器连接,用于将双频连续光调制为扫频连续光。
6.根据权利要求1所述的大应变测量范围的高精度双频光频域反射仪,其特征在于,
所述光干涉模块包括第一光耦合器、光放大器、待测光纤、光环形器、偏振控制器、第二光耦合器;
所述第一光耦合器,用于将光波分束,一路为探测路,一路为参考路;
所述光放大器,与第一光耦合器连接,用于增大入纤光功率;
所述待测光纤,用于产生后向瑞利散射光;
所述光环形器,分别与所述光放大器、所述待测光纤、所述偏振控制器连接,用于将光波注入待测光纤,接收待测光纤产生的后向瑞利散射光,再出射到所述偏振控制器;
所述偏振控制器用于调整偏振态;
所述第二光耦合器,用于将探测路和参考路的光波合束进行干涉。
7.根据权利要求1所述的大应变测量范围的高精度双频光频域反射仪,其特征在于,
所述光电转换模块包括第二波分复用器、第三波分复用器、第一光电探测器、第二光电探测器;
所述第二波分复用器、第三波分复用器,与所述第二光耦合器连接,用于波分解复用;
所述第一光电探测器,分别与所述第二波分复用器、第三波分复用器连接,用于接收第一光频的拍频信号;
所述第二光电探测器,分别与所述第二波分复用器、第三波分复用器连接,用于接收第二光频的拍频信号。
CN202210886933.XA 2022-07-26 2022-07-26 一种大应变测量范围的高精度双频光频域反射仪 Active CN115235367B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210886933.XA CN115235367B (zh) 2022-07-26 2022-07-26 一种大应变测量范围的高精度双频光频域反射仪

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210886933.XA CN115235367B (zh) 2022-07-26 2022-07-26 一种大应变测量范围的高精度双频光频域反射仪

Publications (2)

Publication Number Publication Date
CN115235367A true CN115235367A (zh) 2022-10-25
CN115235367B CN115235367B (zh) 2023-04-25

Family

ID=83674754

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210886933.XA Active CN115235367B (zh) 2022-07-26 2022-07-26 一种大应变测量范围的高精度双频光频域反射仪

Country Status (1)

Country Link
CN (1) CN115235367B (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1145927A (en) * 1981-10-23 1983-05-10 Marc Bage Method and apparatus for optical fiber fault location
JPH09218130A (ja) * 1996-02-09 1997-08-19 Nippon Telegr & Teleph Corp <Ntt> 周波数掃引誤差検出方法および回路、光周波数掃引光源、ならびに光周波数領域反射測定回路
US20070171402A1 (en) * 2004-05-01 2007-07-26 Sensornet Limited Direct measurement of brillouin frequency in destributed optical sensing systems
CN103984184A (zh) * 2014-05-19 2014-08-13 上海交通大学 光脉冲压缩反射装置
CN205453695U (zh) * 2016-01-05 2016-08-10 上海交通大学 基于频率合成的光频域反射装置
CN107990997A (zh) * 2017-11-20 2018-05-04 大连理工大学 一种双光源自校正式光纤分布温度快速测量***及方法
CN110375779A (zh) * 2019-07-29 2019-10-25 武汉隽龙科技股份有限公司 提高ofdr频域采样率的装置和方法
CN110914645A (zh) * 2017-07-26 2020-03-24 特拉15私人有限公司 分布式光学感测***和方法
CN113654679A (zh) * 2021-07-30 2021-11-16 太原理工大学 一种分布式光纤温度与应变同时传感***
US20210364385A1 (en) * 2020-05-25 2021-11-25 Aragon Photonics Labs S.L.U. Method and system for interrogating optical fibers
US20220149934A1 (en) * 2019-02-12 2022-05-12 Nippon Telegraph And Telephone Corporation Device for measuring optical frequency reflection and measurement method thereof

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1145927A (en) * 1981-10-23 1983-05-10 Marc Bage Method and apparatus for optical fiber fault location
JPH09218130A (ja) * 1996-02-09 1997-08-19 Nippon Telegr & Teleph Corp <Ntt> 周波数掃引誤差検出方法および回路、光周波数掃引光源、ならびに光周波数領域反射測定回路
US20070171402A1 (en) * 2004-05-01 2007-07-26 Sensornet Limited Direct measurement of brillouin frequency in destributed optical sensing systems
CN103984184A (zh) * 2014-05-19 2014-08-13 上海交通大学 光脉冲压缩反射装置
CN205453695U (zh) * 2016-01-05 2016-08-10 上海交通大学 基于频率合成的光频域反射装置
CN110914645A (zh) * 2017-07-26 2020-03-24 特拉15私人有限公司 分布式光学感测***和方法
CN107990997A (zh) * 2017-11-20 2018-05-04 大连理工大学 一种双光源自校正式光纤分布温度快速测量***及方法
US20220149934A1 (en) * 2019-02-12 2022-05-12 Nippon Telegraph And Telephone Corporation Device for measuring optical frequency reflection and measurement method thereof
CN110375779A (zh) * 2019-07-29 2019-10-25 武汉隽龙科技股份有限公司 提高ofdr频域采样率的装置和方法
US20210364385A1 (en) * 2020-05-25 2021-11-25 Aragon Photonics Labs S.L.U. Method and system for interrogating optical fibers
CN113654679A (zh) * 2021-07-30 2021-11-16 太原理工大学 一种分布式光纤温度与应变同时传感***

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
A.H.HARTOG: "The use of multi-frequency acquisition to aignificantly improve the quality of fibre-optic-distributed vibration sensing" *
WEIWEN ZOU: "Range Elongation of Distributed Discrimination of Strain and Temperature in Brillouin Optical Correlation-Domain Analysis Based on Dual Frequency Modulations" *
董毅: "延迟自外差锁相控制的激光线性扫频技术及其应用" *

Also Published As

Publication number Publication date
CN115235367B (zh) 2023-04-25

Similar Documents

Publication Publication Date Title
US7859654B2 (en) Frequency-scanned optical time domain reflectometry
CN206496768U (zh) 一种基于线性调频脉冲的相位敏感光时域反射计
CN101764646B (zh) 利用波长编码的光时域反射测试装置对光纤链路进行的测量方法
CN110132329B (zh) 应力、温度和振动复合检测光纤传感器及信号处理方法
CN106052842B (zh) 可消衰落噪声的分布式光纤振动传感***及其解调方法
CN108663138B (zh) 一种分布式光纤温度及振动的传感***及方法
EP3207340B1 (en) Distributed brillouin sensing using correlation
CN106643832A (zh) 一种基于线性调频脉冲的相位敏感光时域反射计及测量方法
CN102865914B (zh) 分布式光纤振动传感器
CN106768277B (zh) 一种分布式光纤振动传感装置的解调方法
CN104180833A (zh) 温度和应变同时传感的光时域反射计
CN113447110A (zh) 一种分布式光纤振动传感***及其相位载波解调方法
CN111609875B (zh) 基于啁啾连续光的数字域可调分布式光纤传感***及方法
US20230125375A1 (en) Few-mode rayleigh-based distributed fiber sensor for simultaneous temperature and strain sensing
Li et al. Distributed weak fiber Bragg grating vibration sensing system based on 3× 3 fiber coupler
CN116295778A (zh) 分布式声波传感***及其解调方法
CN110806259A (zh) 一种用于光纤传感高频扰动定位与检测的装置
CN115824378A (zh) 高频响分布式光纤声波传感器的振动检测方法
Xiao et al. Frequency response enhancement of Φ-OTDR using interval-sweeping pulse equivalent sampling based on compressed sensing
CN113654679A (zh) 一种分布式光纤温度与应变同时传感***
CN107687939B (zh) 一种干涉型光纤水听器传感臂光纤检测装置及方法
CN217716444U (zh) 一种频率复用和解复用的多通道光栅解调装置
CN107631814B (zh) 光自相干传感光路结构、频移变化检测方法和传感装置
CN115235367A (zh) 一种大应变测量范围的高精度双频光频域反射仪
Meng et al. Distributed optical fiber sensing system based on bidirectional sensing structure and filtering effect of unbalanced Mach–Zehnder interferometer

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant