CN115198272A - 一种钕铁硼表面直接电镀铜形成复合镀层的方法 - Google Patents

一种钕铁硼表面直接电镀铜形成复合镀层的方法 Download PDF

Info

Publication number
CN115198272A
CN115198272A CN202210699532.3A CN202210699532A CN115198272A CN 115198272 A CN115198272 A CN 115198272A CN 202210699532 A CN202210699532 A CN 202210699532A CN 115198272 A CN115198272 A CN 115198272A
Authority
CN
China
Prior art keywords
copper
plating
layer
iron boron
neodymium iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210699532.3A
Other languages
English (en)
Other versions
CN115198272B (zh
Inventor
王丽兵
刘健
许宝文
周维娜
周保平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baotou INST Magnetic New Material Co Ltd
Original Assignee
Baotou INST Magnetic New Material Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baotou INST Magnetic New Material Co Ltd filed Critical Baotou INST Magnetic New Material Co Ltd
Priority to CN202210699532.3A priority Critical patent/CN115198272B/zh
Publication of CN115198272A publication Critical patent/CN115198272A/zh
Application granted granted Critical
Publication of CN115198272B publication Critical patent/CN115198272B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/001Magnets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Abstract

本发明提供了一种钕铁硼表面直接电镀铜形成复合镀层的方法,将电镀铜分为两步进行:预镀铜和加厚镀铜。两步法镀铜都采用无氰碱铜工艺,镀铜溶液含有铜离子(Cu2+)、HEDP为主要络合剂,碳酸钾为导电盐。其中预镀铜的温度为15‑25℃,pH值为9‑12,预镀铜层厚度为0.8‑1.5微米。预镀铜槽液中含有有机胺类的辅助剂,能有效抑制铁和铜的置换反应或降低镀层的内应力,确保镀铜层与钕铁硼基材之间良好的结合力。通过本发明的方法可在钕铁硼基材表面镀覆一层致密且与基材结合力良好的无氰碱铜镀层。在该铜层上再沉积一层致密的化学镍磷合金层,使得在总镀层厚度较小的情况下,保护钕铁硼基材不受环境腐蚀。

Description

一种钕铁硼表面直接电镀铜形成复合镀层的方法
技术领域
本发明涉及材料表面处理技术领域,具体涉及一种钕铁硼表面直接电镀铜形成复合镀层的方法。
背景技术
钕铁硼磁体是在电子器件领域广泛应用的功能材料。其化学性质活泼,易被腐蚀,目前多采用表面电镀镍层进行保护。为提高镀层与基体界面结合力,并减少电镀镍时析氢反应对磁体的损伤,一般需要先在表面电镀铜底层。但是,由于铜的电位相比钕铁硼一般要更高,铜离子有置换钕和铁离子的趋势,容易在表面形成置换铜层,降低镀层的界面结合力。
从钕铁硼磁体本身的特点可以得知,钕铁硼基材中含有质量分数约为65%的Fe元素,Cu2+/Cu的标准电极电势(+0.342V)高于Fe2+/Fe(-0.440V),在电沉积过程中,很易发生置换反应:Cu2++Fe→Fe2++Cu。由此产生的置换铜层是导致铜层结合力不良的一个重要原因。
由于镀层和基材的晶格不匹配,界面应力和镀层的内应力也是镀层结合力不好的一个原因。
通过化学方法来抑制置换反应或降低内应力,是提高镀层与基材的结合力,从而提高良品率的一个重要且有效的手段。因此需要采用类似的方法提升钕铁硼表面电镀铜层之间的结合力。
鉴于此,特提出本发明。
发明内容
鉴于上述现有技术中存在镀层与基材之间结合力的问题,本发明提供了一种钕铁硼表面直接电镀铜形成复合镀层的方法,通过在钕铁硼基材上直接电镀铜,并把镀铜分为预镀和加厚镀两个步骤。在会发生置换反应导致镀层结合力差的预镀阶段,通过向镀铜溶液中添加有机胺类化合物,能够抑制铜铁之间的置换反应,保证镀层之间的结合力。
为实现上述目的,本发明提供了一种钕铁硼表面直接电镀铜形成复合镀层的方法,包括以下步骤:
(1)将钕铁硼基材置于第一镀铜溶液中,进行预镀铜,在所述钕铁硼基材表面形成预镀铜层,所述第一镀铜溶液中含有有机胺类化合物;
优选地,预镀铜之前对所述钕铁硼基材进行前处理,包括以下步骤:采用质量分数为1-6%的硝酸水溶液,对所述基材清洗20-80秒;在超声波条件下采用纯水,对所述基材清洗20-80秒;将所述基材在质量浓度为0.5-3%的硫酸水溶液中活化10-60秒,最后纯水清洗5-20秒。
优选地,所述第一镀铜溶液中,各化学成分的质量浓度如下:
铜离子:1.5-2.5g/L;
HEDP:80-150g/L;
碳酸钾:20-80g/L;
氢氧化钾:20-100g/L;
有机胺类化合物:0.001-10g/L,优选为0.1-2.0g/L。
优选地,所述铜离子通过配液时溶解含铜无机盐获得,所述含铜无机盐选自硫酸铜、醋酸铜、碳酸铜中的至少一种。
所述HEDP作为螯合剂,能与金属离子生成稳定络合物,全名为羟基乙叉二膦酸。
优选地,所述有机胺类化合物选自脂环胺类化合物和聚乙烯亚胺中的一种或两种。所述脂环胺类化合物选自三亚乙基二胺和二亚乙基三胺中的一种或两种。所述聚乙烯亚胺的分子式为(C2H8N2·C2H5N)n,其具有支化链(Branched),分子量为600-1800克/摩尔。上述有机胺类化合物作为辅助剂,能有效抑制铁和铜的置换反应或降低镀层的内应力,确保镀铜层与钕铁硼基材之间良好的结合力。
优选地,所述预镀铜的温度为10-25℃,pH值为9-12,阳极电极为磷铜阳极或无氧铜阳极。如采用滚镀,电流密度为0.1-0.3A/平方分米;如采用挂镀,电流密度为0.2-1.0A/平方分米。
优选地,步骤(1)结束后,所述预镀铜层的厚度dCu1=0.5-2.5微米。
(2)将预镀铜后的钕铁硼基材置于第二镀铜溶液中,进行加厚镀铜,在所述预镀铜层表面形成加厚镀铜层;
优选地,所述第二镀铜溶液中,各化学成分的质量浓度如下:
铜离子:6-12g/L;
HEDP:80-200g/L;
碳酸钾:20-80g/L;
氢氧化钾:20-100g/L;
光亮剂:5~15ml/L,优选为二氧化硒;
辅助剂:5~15ml/L,优选为丁炔二醇。
优选地,所述加厚镀铜的温度为40-60℃,pH值为8-10,阳极电极为磷铜阳极或无氧铜阳极。如采用滚镀,电流密度为0.1-2.0A/平方分米;如采用挂镀,电流密度为0.5-4.0A/平方分米。
优选地,步骤(2)结束后,所述加厚镀铜层的厚度dCu2=1-10微米,优选dCu2=1-3微米。
(3)将加厚镀铜后的钕铁硼基材置于化学镀镍溶液中,进行镀镍,在所述加厚镀铜层表面形成镍磷合金层;
优选地,所述化学镀镍溶液中含有硫酸镍、次亚磷酸钠、柠檬酸和苹果酸,所述化学镀镍溶液的温度为75-90℃,pH值为4.6-5.0。
优选地,所述化学镀镍溶液中,各化学成分的质量浓度如下:
硫酸镍:20-25g/L;
次亚磷酸钠:25-30g/L;
柠檬酸:10-15g/L;
苹果酸:8-12g/L;
乳酸:8-10g/L;
氨水:10-15ml/L;
稳定剂:1-5mg/L,所述稳定剂优选为锑酸钠。
优选地,步骤(3)结束后,所述镍磷合金层的厚度dNiP=1-10微米,优选d NiP=1-3微米,所述镍磷合金层中磷元素的质量分数>10%。
优选地,所述镀层总厚度≤6微米,即所述总厚度d=dCu1+dCu2+dNiP=dCu+dNiP≤6微米情况下,镀层结合力优良,整个复合镀层无脱落,无起泡,100%通过百格测试。该情况下镀层耐腐蚀性优良,100%通过至少24小时中性盐雾测试,镀层不起泡,不发生任何腐蚀。
技术效果
本发明提供了一种钕铁硼表面直接电镀铜形成复合镀层的方法。为了保证铜层与钕铁硼基材表面具有良好结合力,将电镀铜分为两步进行:预镀铜和加厚镀铜。
两步法镀铜都采用无氰碱铜工艺,镀铜溶液含有铜离子(Cu2+)、HEDP为主要络合剂,碳酸钾为导电盐。其中预镀铜的温度为15-25℃,pH值为9-12,预镀铜层厚度为0.8-1.5微米。预镀铜槽液中含有有机胺类的辅助剂,能有效抑制铁和铜的置换反应或降低镀层的内应力,确保镀铜层与钕铁硼基材之间良好的结合力。
加厚镀铜溶液的温度为40-60℃,pH值为9-12,使得总的铜层厚度为4-5微米。通过本发明的方法可在钕铁硼基材表面镀覆一层致密且与基材结合力良好的无氰碱铜镀层。在该铜层上再沉积一层致密的化学镍磷合金层(厚度≤3微米,磷元素的质量分数>10%),使得在总镀层厚度较小的情况下,保护钕铁硼基材不受环境腐蚀。
附图说明
图1为本发明实施例3的镀铜钕铁硼工件的百格测试照片。
图2为本发明对比例1的镀铜钕铁硼工件的百格测试照片。
图3为本发明对比例2的镀铜钕铁硼工件的百格测试照片。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将对本发明的技术方案进行详细的描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所得到的所有其它实施方式,都属于本发明所保护的范围。
实施例
钕铁硼表面直接电镀铜形成复合镀层的方法,包括以下步骤:
(1)对工件进行前处理
电镀实施过程都是在100L的试验槽中进行的。基材工件为烧结钕铁硼片,尺寸为26.5×2.9×0.38(mm)。工件进入镀槽前,对工件要进行清洗和适当活化处理,称为前处理。前处理的条件如下:
将工件在质量浓度为4%的硝酸水溶液中清洗40秒后,在超声波条件下纯水清洗40秒,然后在质量浓度为1%的硫酸水溶液中活化20秒,最后纯水清洗10秒。
(2)将钕铁硼工件置于第一镀铜溶液中,进行预镀铜,在所述钕铁硼基材表面形成预镀铜层。预镀铜的温度为19℃,pH值为10.4,阳极电极为磷铜阳极。采用滚镀,电流密度为0.2A/平方分米。铁离子浓度(模拟污染)为100ppm。
第一镀铜溶液中,各化学成分的质量浓度如下:
硫酸铜:1.9g/L;
HEDP:105g/L;
碳酸钾:50g/L;
氢氧化钾30g/L;
向第一镀铜溶液中添加有机胺类化合物,以Ya表示。其中,
实施例1:Ya1=1.0g(三亚乙基二胺)/L+1.0g(二亚乙基三胺)/L;
实施例2:Ya2=0.2g(三亚乙基二胺)/L+0.5g(二亚乙基三胺)/L+0.05g(聚乙烯亚胺)/L;其中聚乙烯亚胺为支化链,分子量为~600;
实施例3:Ya3=0.25g(三亚乙基二胺)/L+0.3g(二亚乙基三胺)/L+0.1g(聚乙烯亚胺)/L;其中聚乙烯亚胺为支化链,分子量为1800;
实施例4:Ya4=0.1g(二亚乙基三胺)/L+0.05g(聚乙烯亚胺)/L;其中聚乙烯亚胺为支化链,分子量为600。
步骤(3)和步骤(4)试验过程中,实施例1-4和对比例的加厚镀铜和化学镀镍工艺参数保持不变。
(3)将钕铁硼基材置于第二镀铜溶液中,进行加厚镀铜,在预镀铜层表面形成加厚镀铜层;
其中,第二镀铜溶液中,各化学成分的质量浓度如下:
硫酸铜:9.5g/L;
HEDP:150g/L;
碳酸钾:55g/L;
氢氧化钾:35g/L;
光亮剂为二氧化硒:8ml/L;
辅助剂为丁炔二醇:7ml/L。
加厚镀铜的温度为50℃,pH值为8.8,阳极电极为磷铜阳极。采用滚镀,电流密度为0.3A/平方分米,电镀时间为120分钟。
(4)将钕铁硼基材置于化学镀镍溶液中,进行镀镍,在加厚镀铜层表面形成镍磷合金层。
化学镀镍溶液中,各化学成分的质量浓度如下:
硫酸镍(六水):22g/L;
次亚磷酸钠30g/L;
柠檬酸:13g/L;
苹果酸:8g/L;
乳酸:8g/L;
氨水:10ml/L;
稳定剂为锑酸钠:2mg/L;
化学镀镍溶液的温度为86℃,pH值为4.6,电镀时间为30分钟。
加厚镀铜结束后,每滚蓝随机抽查100片样品,进行百格测试。实验标准为:ASTMD3002 D3359 DIN EN ISO 2409测试,判定标准为:4B,即切口的相交处有小片剥落,划格区域内实际破损不超过5%。
抽取测试样品后,继续进行化学镀镍。镀镍结束后,每滚蓝随机抽查100片样品,做中性盐雾测试,实验标准为:GT/T 24.23.17-2008/IEC 60068-2-11:1981。
对比例1
步骤(1)、(3)和(4)同实施例,步骤(2)的第一镀铜溶液中,各化学成分的质量浓度如下:
硫酸铜:1.9g/L;
HEDP:105g/L;
碳酸钾:50g/L;
氢氧化钾30g/L,未加入有机胺作为添加剂。
预镀铜的温度为19℃,pH值为10.4,阳极电极为磷铜阳极。采用滚镀,电流密度为0.2A/平方分米。铁离子浓度(模拟污染)为100ppm。
对比例2
步骤(1)、(3)和(4)同实施例,步骤(2)的第一镀铜溶液中,各化学成分的质量浓度如下:
碱式碳酸铜:5.5g/L;
柠檬酸钠:76g/L;
N,N-二乙基二乙烯基三胺:12g/L;
赤藻糖酸钠:8g/L;
氯化钠:28g/L;
氢氧化钾:0.09g/L;
2-乙基己基硫酸钠:0.7g/L;
预镀铜的温度为35℃,阳极电极为磷铜阳极。采用滚镀,电流密度为0.2A/平方分米。
对比例3
步骤(1)、(3)和(4)同实施例,步骤(2)的第一镀铜溶液中,各化学成分的质量浓度如下:
硫酸铜:7g/L;
柠檬酸:80g/L;
N,N-二乙基二乙二胺:9g/L;
葡萄糖酸钠:6g/L;
硫酸钠:28g/L;
氢氧化钠:0.11g/L;
硫脲:1.0g/L;
预镀铜的温度为35℃,阳极电极为磷铜阳极。采用滚镀,电流密度为0.2A/平方分米。
实施例和对比例的结果对比如表1和表2所示:
表1:镀层参数测试结果对比
Figure BDA0003703460560000081
Figure BDA0003703460560000091
表2:功能性测试结果对比
Figure BDA0003703460560000092
表1和表2的测试结果说明,在实施例和对比例的预镀铜层、加厚镀铜层和镍磷合金层厚度相近的前提下,实施例1-4添加本发明的有机胺化合物,对比例1未添加有机胺化合物,对比例2和对比例3使用其它类型的有机胺类化合物和多羟基羧酸化合物作为络合剂,并改变铜盐来源及电镀液体系。实施例1与对比例2和对比例3相比,完全通过百格测试和盐雾测试,说明采用本发明的方法获得的镀铜层具有良好的结合力和耐腐蚀性能。
另外用于正常生产中的预镀铜溶液,由于直接与钕铁硼基材接触,会有微量铁离子杂质进入,铁离子含量达到50ppm以上时,镀层结合力会明显下降。上述实施例预镀铜溶液中的铁离子浓度(模拟污染)均为100ppm,说明本发明可以使预镀铜溶液在铁离子杂质具有较高含量的条件下,抑制基材中的铁元素与溶液中的铜元素发生置换反应,防止置换铜层产生。
图1为实施例3镀铜钕铁硼工件的百格测试照片,表面无镀层剥落。图2为对比例1的工件的百格测试照片,表面镀层剥落的百分比为40%~50%。图3为对比例2的工件的百格测试照片,表面镀层剥落的百分比为5%~10%。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (10)

1.一种钕铁硼表面直接电镀铜形成复合镀层的方法,其特征在于,包括以下步骤:
(1)将钕铁硼基材置于第一镀铜溶液中,进行预镀铜,在所述钕铁硼基材表面形成预镀铜层,所述第一镀铜溶液中含有有机胺类化合物;
(2)将预镀铜后的所述钕铁硼基材置于第二镀铜溶液中,进行加厚镀铜,在所述预镀铜层表面形成加厚镀铜层;
(3)将加厚镀铜后的所述钕铁硼基材置于化学镀镍溶液中,进行镀镍,在所述加厚镀铜层表面形成镍磷合金层。
2.根据权利要求1所述的方法,其特征在于,所述步骤(1)中,所述第一镀铜溶液中各化学成分的质量浓度如下:
Figure FDA0003703460550000011
3.根据权利要求2所述的方法,其特征在于,所述铜离子通过配液时溶解含铜无机盐获得,所述含铜无机盐选自硫酸铜、醋酸铜、碳酸铜中的至少一种。
4.根据权利要求2所述的方法,其特征在于,所述有机胺类化合物选自脂环胺类化合物和聚乙烯亚胺中的一种或两种,所述脂环胺类化合物选自三亚乙基二胺和二亚乙基三胺中的一种或两种,所述聚乙烯亚胺的分子式为(C2H8N2·C2H5N)n,分子量为600-1800克/摩尔。
5.根据权利要求1所述的方法,其特征在于,所述步骤(1)中,所述预镀铜的温度为10-25℃,pH值为9-12,阳极电极为磷铜阳极或无氧铜阳极;如采用滚镀,电流密度为0.1-0.3A/平方分米;如采用挂镀,电流密度为0.2-1.0A/平方分米。
6.根据权利要求1所述的方法,其特征在于,所述步骤(2)中,所述第二镀铜溶液中各化学成分的质量浓度如下:
Figure FDA0003703460550000021
7.根据权利要求1所述的方法,其特征在于,所述步骤(2)中,所述加厚镀铜的温度为40-60℃,pH值为8-10,阳极电极为磷铜阳极或无氧铜阳极;如采用滚镀,电流密度为0.1-2.0A/平方分米;如采用挂镀,电流密度为0.5-4.0A/平方分米。
8.根据权利要求1所述的方法,其特征在于,所述步骤(3)中,所述化学镀镍溶液中,各化学成分的质量浓度如下:
Figure FDA0003703460550000022
优选地,所述化学镀镍溶液的温度为75-90℃,pH值为4.6-5.0。
9.根据权利要求1至8任一项所述的方法,其特征在于,步骤(1)结束后,所述预镀铜层的厚度dCu1=0.5-2.5微米;
步骤(2)结束后,所述加厚镀铜层的厚度dCu2=1-10微米,优选dCu2=1-3微米;
步骤(3)结束后,所述镍磷合金层的厚度dNiP=1-10微米,优选dNiP=1-3微米。
10.根据权利要求9所述的方法,其特征在于,所述镀层总厚度d=dCu1+dCu2+dNiP≤6微米。
CN202210699532.3A 2022-06-20 2022-06-20 一种钕铁硼表面直接电镀铜形成复合镀层的方法 Active CN115198272B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210699532.3A CN115198272B (zh) 2022-06-20 2022-06-20 一种钕铁硼表面直接电镀铜形成复合镀层的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210699532.3A CN115198272B (zh) 2022-06-20 2022-06-20 一种钕铁硼表面直接电镀铜形成复合镀层的方法

Publications (2)

Publication Number Publication Date
CN115198272A true CN115198272A (zh) 2022-10-18
CN115198272B CN115198272B (zh) 2023-11-07

Family

ID=83576606

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210699532.3A Active CN115198272B (zh) 2022-06-20 2022-06-20 一种钕铁硼表面直接电镀铜形成复合镀层的方法

Country Status (1)

Country Link
CN (1) CN115198272B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1873058A (zh) * 2005-03-31 2006-12-06 Tdk株式会社 镀敷液、导电性材料和导电性材料的表面处理方法
JP2007039784A (ja) * 2004-08-10 2007-02-15 Neomax Co Ltd 銅めっき被膜を表面に有する希土類系永久磁石
CN102400144A (zh) * 2010-09-10 2012-04-04 北京中科三环高技术股份有限公司 一种钕铁硼永磁材料的机械镀锌镍的表面处理方法
CN104152951A (zh) * 2014-07-17 2014-11-19 广东致卓精密金属科技有限公司 无氰碱性溶液镀光亮铜电镀液及工艺
CN109137004A (zh) * 2018-10-17 2019-01-04 天津京磁电子元件制造有限公司 烧结钕铁硼磁体电镀镍铜镍的方法
CN110029374A (zh) * 2019-04-29 2019-07-19 广东达志环保科技股份有限公司 一种无氰碱性镀铜电镀液及电镀工艺

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007039784A (ja) * 2004-08-10 2007-02-15 Neomax Co Ltd 銅めっき被膜を表面に有する希土類系永久磁石
CN1873058A (zh) * 2005-03-31 2006-12-06 Tdk株式会社 镀敷液、导电性材料和导电性材料的表面处理方法
CN102400144A (zh) * 2010-09-10 2012-04-04 北京中科三环高技术股份有限公司 一种钕铁硼永磁材料的机械镀锌镍的表面处理方法
CN104152951A (zh) * 2014-07-17 2014-11-19 广东致卓精密金属科技有限公司 无氰碱性溶液镀光亮铜电镀液及工艺
CN109137004A (zh) * 2018-10-17 2019-01-04 天津京磁电子元件制造有限公司 烧结钕铁硼磁体电镀镍铜镍的方法
CN110029374A (zh) * 2019-04-29 2019-07-19 广东达志环保科技股份有限公司 一种无氰碱性镀铜电镀液及电镀工艺

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
占稳等: "聚乙烯亚胺添加剂对碱性镀铜电沉积行为的影响", 材料保护, vol. 43, no. 2 *

Also Published As

Publication number Publication date
CN115198272B (zh) 2023-11-07

Similar Documents

Publication Publication Date Title
EP1716949B1 (en) Immersion method
JP5665136B2 (ja) 接合可能なウェハ表面のための応力が低減されたNi−P/Pd積層を調製するための方法
JP6466837B2 (ja) めっき材の製造方法及びめっき材
WO2014199547A1 (ja) めっき積層体の製造方法及びめっき積層体
CN111364074B (zh) 一种复合配位低浓度一价金无氰镀金电镀液的制备方法
CN108823554B (zh) 一种化学镀钯液、其制备方法和其使用方法以及应用
JP5548725B2 (ja) 金−パラジウム合金電気めっき液およびその調製方法と電気めっき方法
TWI567234B (zh) A reduction type electroless gold plating solution and an electroless gold plating method using the gold plating solution
CN106661735A (zh) 钯镀液和使用该钯镀液得到的钯覆膜
TW200902757A (en) Electroless gold plating bath, electroless gold plating method and electronic parts
KR101270770B1 (ko) 인쇄회로기판의 도금방법
US11946144B2 (en) Electroless palladium plating solution
TW202315981A (zh) 用於在鎳鍍層上電鍍金的鍍液以及在鎳鍍層上電鍍金的方法與鍍金件
TWI582266B (zh) 用於鈷合金無電沈積之鹼性鍍浴
CN108866548B (zh) 一种金属镀层及其制备方法和应用
RU2398049C2 (ru) Усовершенствованные стабилизация и рабочие характеристики автокаталитических способов нанесения покрытия методом химического восстановления
US20160108254A1 (en) Zinc immersion coating solutions, double-zincate method, method of forming a metal plating film, and semiconductor device
CN110195244B (zh) 一种用于抑制印制电路板电镀锡锡须生长的方法
CN105051254B (zh) 供无电电镀的铜表面活化的方法
CN115198272B (zh) 一种钕铁硼表面直接电镀铜形成复合镀层的方法
CN108823555B (zh) 一种还原型化学镀金液及其制备方法和使用方法以及应用
TWI829653B (zh) 無電解鈀鍍敷液及無電解鈀鍍敷被膜
JP2004323963A (ja) 金めっき液
JP7316250B2 (ja) 無電解金めっき浴および無電解金めっき方法
KR101197987B1 (ko) 주석 합금 형성용 도금액 및 이를 이용한 주석 합금 피막의 형성방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant