CN115167424A - 一种智能农机的路径跟踪控制方法 - Google Patents

一种智能农机的路径跟踪控制方法 Download PDF

Info

Publication number
CN115167424A
CN115167424A CN202210814305.0A CN202210814305A CN115167424A CN 115167424 A CN115167424 A CN 115167424A CN 202210814305 A CN202210814305 A CN 202210814305A CN 115167424 A CN115167424 A CN 115167424A
Authority
CN
China
Prior art keywords
state
parameter
constraint
estimation
parameters
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210814305.0A
Other languages
English (en)
Inventor
袁永军
郑靖科
戴海峰
陈金干
李忠俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Zhiyun New Energy Technology Co ltd
Original Assignee
Shanghai Zhiyun New Energy Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Zhiyun New Energy Technology Co ltd filed Critical Shanghai Zhiyun New Energy Technology Co ltd
Priority to CN202210814305.0A priority Critical patent/CN115167424A/zh
Publication of CN115167424A publication Critical patent/CN115167424A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0223Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving speed control of the vehicle
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • G05D1/0278Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using satellite positioning signals, e.g. GPS

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本发明公开了一种智能农机的路径跟踪控制方法,包括以下步骤:步骤一,设计控制***架构;步骤二,设计智能农机动力学模型;步骤三,设计上层控制器架构;步骤四,基于双无迹卡尔曼滤波的带约束智能农机横向动力学参数估计的实现;步骤五,基于动力学模型的自适应模型预测控制;相较于现有的路径跟踪控制方法,本发明通过结合带约束的双无迹卡尔曼滤波与自适应模型跟踪控制,提高了智能农机路径跟踪的精度,从而实现了对农机作业效率、作业质量以及经济效益的提高;本发明所提出的路径跟踪控制***可在实际的农机中部署,在实现良好跟踪精度的前提下,做到了嵌入式***的可靠性、实时性与成本要求的兼顾。

Description

一种智能农机的路径跟踪控制方法
技术领域
本发明涉及智能农机技术领域,具体为一种智能农机的路径跟踪控制方法。
背景技术
路径跟踪误差定义为车辆当前位置与期望路径之间的最短距离,良好的路径跟踪的控制器应保证尽可能小的车辆实际的行驶路径和期望路径之间的平均偏差和最大偏差,自动农用车精确的路径跟踪是提高农业生产效率和质量的有效途径之一。例如手动或自动喷洒农药的喷雾机,由于不精确的路径跟踪而导致实际作业区域发生间隙或重叠,部分作物农药量过量,部分作物农药量不足,进而导致作物产量和质量的降低。由于农用车工作环境复杂,存在未知的噪声和干扰,实现农用车精确的路径跟踪是具有挑战性的。
现有的路径跟踪方法可分为三大类:几何方法、运动控制律和最优控制,它们在精度、成本等方面都有各自的问题;现有的智能农机的路径跟踪控制方法,如基于模糊逻辑在线整定控制参数的PID控制方法、基于模糊PID控制与线性二次调节器(LQR)的纵横向动力学控制方法,然而它们都只是在某种特定条件下实现良好的跟踪性能,不是基于能够更加充分考虑农机动力学特性,有助于提高路径跟踪精度的动力学模型的路径跟踪控制方法;还有的是基于运动学的模型预测控制(MPC)方法、鲁棒模型预测控制(RMPC)方法,虽然考虑到了动力学模型,但仅仅在仿真环境里面检验了控制算法的有效性,并没有在实际的农田里检验控制器的实时性、鲁棒性和路径跟踪性能,也就是说,现有的一些可实施的路径跟踪控制方法精度较差,而另一些可以实现高精度路径跟踪的算法又受到了嵌入式***性能、成本的限制,暂不可部署到真实的农机上。
发明内容
本发明的目的在于提供一种智能农机的路径跟踪控制方法,以解决上述背景技术中提出的问题。
为实现上述目的,本发明提供如下技术方案:一种智能农机的路径跟踪控制方法,包括以下步骤:步骤一,设计控制***架构;步骤二,设计智能农机动力学模型;步骤三,设计上层控制器架构;步骤四,基于双无迹卡尔曼滤波的带约束智能农机横向动力学参数估计的实现;步骤五,基于动力学模型的自适应模型预测控制;
其中在上述步骤一中,上层控制器获取传感器采集到的农机当前状态信息,并进行状态估计,再根据路径规划器生成的农田全覆盖路径,计算生成农机的目标速度和转角,由车速控制器和转向控制器这些下层控制器最终执行相应的动作,控制***传感器的配置采用实时动态GPS(RTK-GPS)+惯性导航***(IMU),两个RTK-GPS接收器分别布置在车头和车尾,惯性导航单元(IMU)布置在平台质心附近;
其中在上述步骤二中,设计智能农机动力学模型包括以下步骤:
1)横向运动和横摆运动建模:由于农机行驶速度较低,非线性动力学特性表现不明显,因此可只考虑其横向运动和横摆运动,这两个运动用线性二自由度模型来描述;横向运动和横摆运动可由如下的微分方程描述:
Figure BDA0003741609830000021
其中,m为喷雾机质量,Iz为喷雾机yaw inertia moment,u为纵向速度,β为质心侧偏角,γ为横摆角速度,δf为前轮转角,δr为后轮转角,Cf为前轮侧偏刚度,Cr为后轮侧偏刚度,lf为质心到前轴距离,lr为质心到后轴距离;
2)转向***建模:农机采用以液压推杆和连杆为主要部件的转向机构,在合理的控制器的设计下,转向控制器和转向***的闭环响应可近似为一个一阶***的闭环响应,因此包括控制器在内的整个转向***可以建模为:
Figure BDA0003741609830000031
其中,δ为前轮或后轮转角,δe为前轮或后轮的期望转角,τδ为转向***的时间延迟常数;
其中在上述步骤三中,上层控制器结构由一个DUKF估计器和一个AMPC组成,估计器融合提供于不同传感器的车辆状态信息,来自于传感器或估计器的车辆状态和参数以及由路径规划器生成的参考路径作为AMPC的输入,参与到控制量,即期望前轮转角δf,e的计算中,期望前轮转角输入到下层控制器实现转向机构的动作,整个过程按照一定的周期在线进行;
其中在上述步骤四中,采用两个无迹卡尔曼滤波器分别用于估计参数和状态,对应了两个独立的状态空间表达式,当估计出一组较好的参数后,则可以暂时关闭参数估计器,以减小上层控制器的计算负担,当当前估计的状态不可信时,则可以重启参数估计器,以实现精确的状态估计;同时,由于估计变量较多,而可用的传感器测量量相对较少,仅凭DUKF估计器实现对农机状态和参数的精确估计是很困难的,可能会导致得到没有物理意义的估计值,因此采用pdf截断方法,实现带约束的DUKF,此处为提高计算效率,仅对待估计的参数施加约束;具体为:
1)获取参数估计和状态估计的离散状态空间表达式:利用一阶向前欧拉公式将式(1)分别变换为用于参数估计和状态估计的离散状态空间表达式;
参数估计状态空间表达式为:
xp(k+1)=xp(k)+wp(k)
zp(k)=hp(xp(k))+vp(k); (3)
其中,xp=[Cf Cr]T,zp=[βγ]T,wp和vp分别为参数估计的过程噪声和观测噪声;
状态估计状态空间表达式:
xs(k+1)=fs(xs(k))+ws(k)
zs(k)=xs(k)+vs(k); (4)
其中,xs=[βγ]T,zs=[βγ]T,ws和vs分别为状态估计的过程噪声和观测噪声;
2)对待估计的参数施加约束:假设在k时刻存在一个对m个参数的无迹卡尔曼滤波估计xp(k|k),其均值为
Figure BDA0003741609830000041
协方差为Pp(k|k),相应地,有m个标量状态约束:
Figure BDA0003741609830000043
其中,LBki≤UBki,θki为第i个元素为1,其余元素为0的m个元素的列向量;在此条件下,去截断高斯
Figure BDA0003741609830000042
进而找到被截断的pdf的均值
Figure BDA0003741609830000051
和协方差
Figure BDA0003741609830000052
即带约束的参数估计的均值和协方差,定义
Figure BDA0003741609830000053
为执行了前i个约束后的状态估计,
Figure BDA0003741609830000054
Figure BDA0003741609830000055
的协方差;
3)采用估计器对智能农机状态和参数的实时估计;
其中在上述步骤六中,定义A为车辆所在点,B为车辆距离参考轨迹最近的点,航向误差
Figure BDA0003741609830000059
为A点航向和B点航向(路径切线方向)之差,横向误差Δy为A点和B点之间的距离,在给定的期望路径下,航向误差
Figure BDA00037416098300000510
和横向误差Δy满足:
Figure BDA0003741609830000056
假设航向误差和侧偏角始终较小,则有
Figure BDA0003741609830000057
Vy≈Vxβ,则上式可以简化为:
Figure BDA0003741609830000058
其中,γ为喷雾机横摆角速度,Vx为行驶速度,β为质心侧偏角,ρ为期望路径的曲率;
结合式(1)、(2)、(26),利用一阶向前欧拉公式,得到离散时间***的状态方程:
x(k+1)=Akx(k)+Bku(k)+d(k)
y(k)=Cx(k); (27)
该技术方案下的智能农机转向方式为协调转向,可认为前轮转角与后轮转角大小相等方向相反,即δr=-δf,因此***的状态变量
Figure BDA0003741609830000061
控制量为期望的前轮转角δf,e,即u=δf,e,输出量
Figure BDA0003741609830000062
矩阵A为:
Figure BDA0003741609830000063
矩阵B为:
Figure BDA0003741609830000064
空间参数d(k)为:
Figure BDA0003741609830000065
矩阵C为:
Figure BDA0003741609830000071
为了避免控制量突变,影响喷雾机路径跟踪的精度和稳定性,因此采用期望的前轮转角增量作为***的控制量,则***的状态方程可改写为:
Figure BDA0003741609830000072
其中,
Figure BDA0003741609830000073
根据上述的状态和参数的估计可获得k时刻的状态
Figure BDA0003741609830000074
以及参数
Figure BDA0003741609830000075
结合式(28),则带空间参数的约束MPC的优化问题可描述为:
Figure BDA0003741609830000076
满足动力学(i=0,1,…,Np)
Figure BDA0003741609830000077
满足时域约束:
umin(k+i)≤u(k+i)≤umax(k+i),i=0,1,…,Nc-1
Figure BDA0003741609830000078
其中,
Figure BDA0003741609830000081
上面的优化问题中,Ωy和Ωu是加权矩阵,给定为:
Figure BDA0003741609830000082
Figure BDA0003741609830000083
Figure BDA0003741609830000084
为控制增量序列,作为约束优化问题的独立变量,定义为:
Figure BDA0003741609830000085
Y(k+1|k)是k时刻基于***(28)预测的Np步控制输出,定义为:
Figure BDA0003741609830000086
为避免在求解过程中出现无解的情况,因此在式(29)中引入松弛因子ε,λ为给定常数;联立式(28)、(29),可得***预测的Np步控制输出:
Figure BDA0003741609830000087
其中,
Figure BDA0003741609830000091
Figure BDA0003741609830000092
Figure BDA0003741609830000093
Figure BDA0003741609830000094
由于约束条件存在,一般情况下,无法得到优化问题的解析解,因此,需要采用数值求解方法,也就是需要将约束优化问题转化为二次规划问题描述;
二次规划问题的目标函数的标准形式为:
Figure BDA0003741609830000095
变换式(29)为标准形式,忽略与
Figure BDA0003741609830000096
无关项,得
Figure BDA0003741609830000097
Figure BDA0003741609830000101
求解上式,并将
Figure BDA0003741609830000102
的第一个元素作为控制量,每个周期重复上述过程,实现完整的路径跟踪。
优选的,所述步骤一中,平台的路径规划器、上层控制器、下层控制器、RTK-GPS以及IMU之间均通过CAN通信。
优选的,所述步骤三中,车辆状态信息包括来自于RTK-GPS的质心侧偏角测量值βm和车速V,来自于IMU的横摆角速度测量值γm,以及来自于霍尔角度传感器的前轮转角δf,待估计的参数为前轴和后轴等效的侧偏刚度Cf和Cr,待估计的状态为质心侧偏角β和横摆角速度γ。
优选的,所述步骤三中,期望的车辆速度是由操作者设定,并由下层控制器操作执行机构实现,而提出的上层控制器与速度无关,故控制器在不同车速下,可以自适应地实现精确的路径跟踪。
优选的,所述步骤四3)中,DUKF估计器的运行步骤如下:
3.1)设定初值
Figure BDA0003741609830000103
Figure BDA0003741609830000104
3.2)参数预测
构造2n+1个样本点:
Figure BDA0003741609830000111
计算参数预测样本点:
Figure BDA0003741609830000112
计算参数预测样本点的均值和方差:
Figure BDA0003741609830000113
Figure BDA0003741609830000114
3.3)状态预测
构造2n+1个样本点:
Figure BDA0003741609830000115
将步骤2中参数预测值带入式(25)计算状态预测样本点:
Figure BDA0003741609830000116
计算状态预测样本点的均值和方差:
Figure BDA0003741609830000117
Figure BDA0003741609830000118
3.4)状态矫正
当获得新的测量值zs(k)后,对状态均值和方差进行更新:
Figure BDA0003741609830000121
Figure BDA0003741609830000122
Figure BDA0003741609830000123
其中,
Figure BDA0003741609830000124
Figure BDA0003741609830000125
Figure BDA0003741609830000126
3.5)参数矫正
当获得新的测量值zp(k),即
Figure BDA0003741609830000127
后,对参数均值和方差进行更新:
Figure BDA0003741609830000128
Figure BDA0003741609830000129
Figure BDA00037416098300001210
其中,
Figure BDA00037416098300001211
Figure BDA00037416098300001212
Figure BDA00037416098300001213
3.6)pdf截断;
3.7)重复上述步骤3.2-3.6,即可实现对智能农机状态和参数的实时估计。优选的,所述步骤3.6)pdf截断,具体包括以下步骤:
3.6.1)初始化
i=0;
Figure BDA0003741609830000131
Figure BDA0003741609830000132
其中,
Figure BDA0003741609830000133
被定义为执行了前i个约束后的参数估计,相应的协方差为
Figure BDA0003741609830000134
3.6.2)令i=1,对
Figure BDA0003741609830000135
进行Jordan标准分解得到正交矩阵Tki和对角矩阵Wki,即:
Figure BDA0003741609830000136
3.6.3)利用Gram-Schmidt正交化计算m×m的正交矩阵ψki,其满足:
Figure BDA0003741609830000137
定义ψki是由行向量ψki,j(j=1,…,m)构成,即:
ψki=[ψki,1…ψki,m]T; (9)
则ψki的第一行由如下公式计算:
Figure BDA0003741609830000138
对于j=2,…,m,执行如下操作:
Figure BDA0003741609830000141
其中,ej是单位向量,即ej是一个m个元素的除第j个元素为1之外全为0的列向量;
若上式计算的ψki,j为0,则用下式替代:
Figure BDA0003741609830000142
再正则化ψki,j
Figure BDA0003741609830000143
3.6.4)定义vki为:
Figure BDA0003741609830000144
由式(3)-(5)可知,vki的均值为0,协方差矩阵为恒等(单位);
变换式(1)下界LBki和上界UBki,得到:
Figure BDA0003741609830000145
Figure BDA0003741609830000146
得到标准化后的标量约束:
aki≤[1 0…0]vki≤bki; (17)
由此可见,在执行约束之前,vki的第一个元素的分布为N(0,1),但是约束要求vki必须位于aki和bki之间;
3.6.5)定义随机变量vk,i+1为pdf被截断后的vki,即:
pdf(vk,i+1)=truncated pdf(vki); (18)
执行第一个约束后的转换参数估计的均值和方差为:
Figure BDA0003741609830000151
Figure BDA0003741609830000152
其中,
Figure BDA0003741609830000153
Figure BDA0003741609830000154
Figure BDA0003741609830000155
则执行第一个约束后参数估计的均值和方差为:
Figure BDA0003741609830000156
Figure BDA0003741609830000157
将i增加1,并重复步骤6.2-6.5的过程,以获得执行下一个约束后的参数估计;注意,
Figure BDA0003741609830000161
是时间k处的无约束参数估计,
Figure BDA0003741609830000162
是执行第一个约束后在时间k处的参数状态,
Figure BDA0003741609830000163
是执行前两个约束后在时间k处的参数状态,以此类推,经过这个过程m次(每个约束一次)后,得到了最终的约束状态估计和时间k的协方差:
Figure BDA0003741609830000164
Figure BDA0003741609830000165
与现有技术相比,本发明的有益效果是:相较于现有的路径跟踪控制方法,本发明通过结合带约束的双无迹卡尔曼滤波与自适应模型跟踪控制,提高了智能农机路径跟踪的精度,从而实现了对农机作业效率、作业质量以及经济效益的提高;本发明所提出的路径跟踪控制***可在实际的农机中部署,在实现良好跟踪精度的前提下,做到了嵌入式***的可靠性、实时性与成本要求的兼顾。
附图说明
图1为本发明的方法流程图;
图2为控制***架构图;
图3为农机二自由度动力学模型图;
图4为上层控制器架构图;
图5为横向误差与航向误差曲线图;
图6为前轮转角实际值曲线图;
图7为横摆角速度对比曲线图;
图8为质心侧偏角对比曲线图;
图9为前后轮侧偏刚度估计曲线图;
图10为转换到UTM坐标系下的农机路径图;
图11为农机行驶过程中的横向误差曲线图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1-5,本发明提供的一种实施例:一种智能农机的路径跟踪控制方法,包括以下步骤:步骤一,设计控制***架构;步骤二,设计智能农机动力学模型;步骤三,设计上层控制器架构;步骤四,基于双无迹卡尔曼滤波的带约束智能农机横向动力学参数估计的实现;步骤五,基于动力学模型的自适应模型预测控制;
其中在上述步骤一中,上层控制器获取传感器采集到的农机当前状态信息,并进行状态估计,再根据路径规划器生成的农田全覆盖路径,计算生成农机的目标速度和转角,由车速控制器和转向控制器这些下层控制器最终执行相应的动作,控制***传感器的配置采用实时动态GPS(RTK-GPS)+惯性导航***(IMU),两个RTK-GPS接收器分别布置在车头和车尾,惯性导航单元(IMU)布置在平台质心附近,平台的路径规划器、上层控制器、下层控制器、RTK-GPS以及IMU之间均通过CAN通信;
其中在上述步骤二中,设计智能农机动力学模型包括以下步骤:
1)横向运动和横摆运动建模:由于农机行驶速度较低,非线性动力学特性表现不明显,因此可只考虑其横向运动和横摆运动,这两个运动用线性二自由度模型来描述;横向运动和横摆运动可由如下的微分方程描述:
Figure BDA0003741609830000181
其中,m为喷雾机质量,Iz为喷雾机yaw inertia moment,u为纵向速度,β为质心侧偏角,γ为横摆角速度,δf为前轮转角,δr为后轮转角,Cf为前轮侧偏刚度,Cr为后轮侧偏刚度,lf为质心到前轴距离,lr为质心到后轴距离;
2)转向***建模:农机采用以液压推杆和连杆为主要部件的转向机构,在合理的控制器的设计下,转向控制器和转向***的闭环响应可近似为一个一阶***的闭环响应,因此包括控制器在内的整个转向***可以建模为:
Figure BDA0003741609830000182
其中,δ为前轮或后轮转角,δe为前轮或后轮的期望转角,τδ为转向***的时间延迟常数;
其中在上述步骤三中,上层控制器结构由一个DUKF估计器和一个AMPC组成,估计器融合提供于不同传感器的车辆状态信息,车辆状态信息包括来自于RTK-GPS的质心侧偏角测量值βm和车速V,来自于IMU的横摆角速度测量值γm,以及来自于霍尔角度传感器的前轮转角δf,待估计的参数为前轴和后轴等效的侧偏刚度Cf和Cr,待估计的状态为质心侧偏角β和横摆角速度γ,来自于传感器或估计器的车辆状态和参数以及由路径规划器生成的参考路径作为AMPC的输入,参与到控制量,即期望前轮转角δf,e的计算中,期望前轮转角输入到下层控制器实现转向机构的动作,整个过程按照一定的周期在线进行,期望的车辆速度是由操作者设定,并由下层控制器操作执行机构实现,而提出的上层控制器与速度无关,故控制器在不同车速下,可以自适应地实现精确的路径跟踪;
其中在上述步骤四中,采用两个无迹卡尔曼滤波器分别用于估计参数和状态,对应了两个独立的状态空间表达式,当估计出一组较好的参数后,则可以暂时关闭参数估计器,以减小上层控制器的计算负担,当当前估计的状态不可信时,则可以重启参数估计器,以实现精确的状态估计;同时,由于估计变量较多,而可用的传感器测量量相对较少,仅凭DUKF估计器实现对农机状态和参数的精确估计是很困难的,可能会导致得到没有物理意义的估计值,因此采用pdf截断方法,实现带约束的DUKF,此处为提高计算效率,仅对待估计的参数施加约束;具体为:
1)获取参数估计和状态估计的离散状态空间表达式:利用一阶向前欧拉公式将式(1)分别变换为用于参数估计和状态估计的离散状态空间表达式;
参数估计状态空间表达式为:
xp(k+1)=xp(k)+wp(k)
zp(k)=hp(xp(k))+vp(k); (3)
其中,xp=[Cf Cr]T,zp=[βγ]T,wp和vp分别为参数估计的过程噪声和观测噪声;
状态估计状态空间表达式:
xs(k+1)=fs(xs(k))+ws(k)
zs(k)=xs(k)+vs(k); (4)
其中,xs=[βγ]T,zs=[βγ]T,ws和vs分别为状态估计的过程噪声和观测噪声;
2)对待估计的参数施加约束:假设在k时刻存在一个对m个参数的无迹卡尔曼滤波估计xp(k|k),其均值为
Figure BDA0003741609830000201
协方差为Pp(k|k),相应地,有m个标量状态约束:
Figure BDA0003741609830000202
其中,LBki≤UBki,θki为第i个元素为1,其余元素为0的m个元素的列向量;在此条件下,去截断高斯
Figure BDA0003741609830000203
进而找到被截断的pdf的均值
Figure BDA0003741609830000204
和协方差
Figure BDA0003741609830000205
即带约束的参数估计的均值和协方差,定义
Figure BDA0003741609830000206
为执行了前i个约束后的状态估计,
Figure BDA0003741609830000207
Figure BDA0003741609830000208
的协方差;
3)采用估计器对智能农机状态和参数的实时估计,具体包括以下步骤:
3.1)设定初值
Figure BDA0003741609830000209
Figure BDA00037416098300002010
3.2)参数预测
构造2n+1个样本点:
Figure BDA0003741609830000211
计算参数预测样本点:
Figure BDA0003741609830000212
计算参数预测样本点的均值和方差:
Figure BDA0003741609830000213
Figure BDA0003741609830000214
3.3)状态预测
构造2n+1个样本点:
Figure BDA0003741609830000215
将步骤2中参数预测值带入式(25)计算状态预测样本点:
Figure BDA0003741609830000216
计算状态预测样本点的均值和方差:
Figure BDA0003741609830000217
Figure BDA0003741609830000218
3.4)状态矫正
当获得新的测量值zs(k)后,对状态均值和方差进行更新:
Figure BDA0003741609830000221
Figure BDA0003741609830000222
Figure BDA0003741609830000223
其中,
Figure BDA0003741609830000224
Figure BDA0003741609830000225
Figure BDA0003741609830000226
3.5)参数矫正
当获得新的测量值zp(k),即
Figure BDA0003741609830000227
后,对参数均值和方差进行更新:
Figure BDA0003741609830000228
Figure BDA0003741609830000229
Figure BDA00037416098300002210
其中,
Figure BDA00037416098300002211
Figure BDA00037416098300002212
Figure BDA00037416098300002213
3.6)pdf截断,具体包括以下步骤:
3.6.1)初始化
i=0;
Figure BDA0003741609830000231
Figure BDA0003741609830000232
其中,
Figure BDA0003741609830000233
被定义为执行了前i个约束后的参数估计,相应的协方差为
Figure BDA0003741609830000234
3.6.2)令i=1,对
Figure BDA0003741609830000235
进行Jordan标准分解得到正交矩阵Tki和对角矩阵Wki,即:
Figure BDA0003741609830000236
3.6.3)利用Gram-Schmidt正交化计算m×m的正交矩阵ψki,其满足:
Figure BDA0003741609830000237
定义ψki是由行向量ψki,j(j=1,…,m)构成,即:
ψki=[ψki,1…ψki,m]T; (9)
则ψki的第一行由如下公式计算:
Figure BDA0003741609830000238
对于j=2,…,m,执行如下操作:
Figure BDA0003741609830000241
其中,ej是单位向量,即ej是一个m个元素的除第j个元素为1之外全为0的列向量;
若上式计算的ψki,j为0,则用下式替代:
Figure BDA0003741609830000242
再正则化ψki,j
Figure BDA0003741609830000243
3.6.4)定义vki为:
Figure BDA0003741609830000244
由式(3)-(5)可知,vki的均值为0,协方差矩阵为恒等(单位);
变换式(1)下界LBki和上界UBki,得到:
Figure BDA0003741609830000245
Figure BDA0003741609830000246
得到标准化后的标量约束:
aki≤[1 0…0]vki≤bki; (17)
由此可见,在执行约束之前,vki的第一个元素的分布为N(0,1),但是约束要求vki必须位于aki和bki之间;
3.6.5)定义随机变量vk,i+1为pdf被截断后的vki,即:
pdf(vk,i+1)=truncated pdf(vki); (18)
执行第一个约束后的转换参数估计的均值和方差为:
Figure BDA0003741609830000251
Figure BDA0003741609830000252
其中,
Figure BDA0003741609830000253
Figure BDA0003741609830000254
Figure BDA0003741609830000255
则执行第一个约束后参数估计的均值和方差为:
Figure BDA0003741609830000256
Figure BDA0003741609830000257
将i增加1,并重复步骤6.2-6.5的过程,以获得执行下一个约束后的参数估计;注意,
Figure BDA0003741609830000261
是时间k处的无约束参数估计,
Figure BDA0003741609830000262
是执行第一个约束后在时间k处的参数状态,
Figure BDA0003741609830000263
是执行前两个约束后在时间k处的参数状态,以此类推,经过这个过程m次(每个约束一次)后,得到了最终的约束状态估计和时间k的协方差:
Figure BDA0003741609830000264
Figure BDA0003741609830000265
3.7)重复上述步骤3.2-3.6,即可实现对智能农机状态和参数的实时估计;
其中在上述步骤六中,定义A为车辆所在点,B为车辆距离参考轨迹最近的点,航向误差
Figure BDA0003741609830000266
为A点航向和B点航向(路径切线方向)之差,横向误差Δy为A点和B点之间的距离,在给定的期望路径下,航向误差
Figure BDA00037416098300002612
和横向误差Δy满足:
Figure BDA0003741609830000267
Figure BDA0003741609830000268
假设航向误差和侧偏角始终较小,则有
Figure BDA0003741609830000269
Vy≈Vxβ,则上式可以简化为:
Figure BDA00037416098300002610
Figure BDA00037416098300002611
其中,γ为喷雾机横摆角速度,Vx为行驶速度,β为质心侧偏角,ρ为期望路径的曲率;
结合式(1)、(2)、(26),利用一阶向前欧拉公式,得到离散时间***的状态方程:
x(k+1)=Akx(k)+Bku(k)+d(k)
y(k)=Cx(k); (27)
该技术方案下的智能农机转向方式为协调转向,可认为前轮转角与后轮转角大小相等方向相反,即δr=-δf,因此***的状态变量
Figure BDA0003741609830000273
控制量为期望的前轮转角δf,e,即u=δf,e,输出量
Figure BDA0003741609830000274
矩阵A为:
Figure BDA0003741609830000271
矩阵B为:
Figure BDA0003741609830000272
空间参数d(k)为:
Figure BDA0003741609830000281
矩阵C为:
Figure BDA0003741609830000282
为了避免控制量突变,影响喷雾机路径跟踪的精度和稳定性,因此采用期望的前轮转角增量作为***的控制量,则***的状态方程可改写为:
Figure BDA0003741609830000283
Figure BDA0003741609830000284
其中,
Figure BDA0003741609830000285
根据上述的状态和参数的估计可获得k时刻的状态
Figure BDA0003741609830000286
以及参数
Figure BDA0003741609830000287
结合式(28),则带空间参数的约束MPC的优化问题可描述为:
Figure BDA0003741609830000288
满足动力学(i=0,1,…,Np)
Figure BDA0003741609830000289
Figure BDA00037416098300002810
Figure BDA00037416098300002811
y(k|k)=y(k);
满足时域约束:
umin(k+i)≤u(k+i)≤umax(k+i),i=0,1,…,Nc-1
Figure BDA0003741609830000297
其中,
Figure BDA0003741609830000291
上面的优化问题中,Ωy和Ωu是加权矩阵,给定为:
Figure BDA0003741609830000292
Figure BDA0003741609830000293
Figure BDA0003741609830000294
为控制增量序列,作为约束优化问题的独立变量,定义为:
Figure BDA0003741609830000295
Y(k+1|k)是k时刻基于***(28)预测的Np步控制输出,定义为:
Figure BDA0003741609830000296
为避免在求解过程中出现无解的情况,因此在式(29)中引入松弛因子ε,λ为给定常数;联立式(28)、(29),可得***预测的Np步控制输出:
Figure BDA0003741609830000301
其中,
Figure BDA0003741609830000302
Figure BDA0003741609830000303
Figure BDA0003741609830000304
Figure BDA0003741609830000305
由于约束条件存在,一般情况下,无法得到优化问题的解析解,因此,需要采用数值求解方法,也就是需要将约束优化问题转化为二次规划问题描述;
二次规划问题的目标函数的标准形式为:
Figure BDA0003741609830000306
变换式(29)为标准形式,忽略与
Figure BDA0003741609830000311
无关项,得
Figure BDA0003741609830000312
求解上式,并将
Figure BDA0003741609830000313
的第一个元素作为控制量,每个周期重复上述过程,实现完整的路径跟踪。
将上述实施例中所提出的方法运用在实际的农机中进行试验,并采用“S”型路径作为农机路径跟踪的参考路径;试验结果见图6-11,其中,图7-9反映了带约束的状态和参数估计器的工作情况,由于初始不知道侧偏刚度真实值,因此前后轮侧偏刚度从一个指定的初始值出发,随着农机的行驶,估计的前后轮侧偏刚度逐渐收敛到真实值,同时估计的质心侧偏角也逐渐收敛到了真实值;结果表明,所设计的带约束的状态和参数估计器可以实时估计出农机真实的动力学状态和参数,为基于动力学模型的模型预测控制提供了可靠的保障;图10和图11反映了农机实际的行驶路径以及与期望路径之间的偏差,可以看到,在农机行驶的整个过程,其最大横向偏差不超过0.03m,表明控制器可以实现智能农机的高精度路径跟踪,进而可以提高作业的质量与效率。
基于上述,本发明提出了智能农机路径跟踪控制方法,通过结合PDF截断的双无迹卡尔曼滤波(DUKF)和带空间参数的自适应MPC,设计了一个适用于智能农机路径跟踪的控制器,可以有效提高智能农机路径跟踪的精度,该方法可运用在实际的农机中,在保证良好跟踪精度的前提下,做到了嵌入式***的可靠性,实时性与成本要求的兼顾。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。

Claims (6)

1.一种智能农机的路径跟踪控制方法,包括以下步骤:步骤一,设计控制***架构;步骤二,设计智能农机动力学模型;步骤三,设计上层控制器架构;步骤四,基于双无迹卡尔曼滤波的带约束智能农机横向动力学参数估计的实现;步骤五,基于动力学模型的自适应模型预测控制;其特征在于:
其中在上述步骤一中,上层控制器获取传感器采集到的农机当前状态信息,并进行状态估计,再根据路径规划器生成的农田全覆盖路径,计算生成农机的目标速度和转角,由车速控制器和转向控制器这些下层控制器最终执行相应的动作,控制***传感器的配置采用实时动态GPS(RTK-GPS)+惯性导航***(IMU),两个RTK-GPS接收器分别布置在车头和车尾,惯性导航单元(IMU)布置在平台质心附近;
其中在上述步骤二中,设计智能农机动力学模型包括以下步骤:
1)横向运动和横摆运动建模:由于农机行驶速度较低,非线性动力学特性表现不明显,因此可只考虑其横向运动和横摆运动,这两个运动用线性二自由度模型来描述;横向运动和横摆运动可由如下的微分方程描述:
Figure FDA0003741609820000011
其中,m为喷雾机质量,Iz为喷雾机yaw inertia moment,u为纵向速度,β为质心侧偏角,γ为横摆角速度,δf为前轮转角,δr为后轮转角,Cf为前轮侧偏刚度,Cr为后轮侧偏刚度,lf为质心到前轴距离,lr为质心到后轴距离;
2)转向***建模:农机采用以液压推杆和连杆为主要部件的转向机构,在合理的控制器的设计下,转向控制器和转向***的闭环响应可近似为一个一阶***的闭环响应,因此包括控制器在内的整个转向***可以建模为:
Figure FDA0003741609820000021
其中,δ为前轮或后轮转角,δe为前轮或后轮的期望转角,τδ为转向***的时间延迟常数;
其中在上述步骤三中,上层控制器结构由一个DUKF估计器和一个AMPC组成,估计器融合提供于不同传感器的车辆状态信息,来自于传感器或估计器的车辆状态和参数以及由路径规划器生成的参考路径作为AMPC的输入,参与到控制量,即期望前轮转角δf,e的计算中,期望前轮转角输入到下层控制器实现转向机构的动作,整个过程按照一定的周期在线进行;
其中在上述步骤四中,采用两个无迹卡尔曼滤波器分别用于估计参数和状态,对应了两个独立的状态空间表达式,当估计出一组较好的参数后,则可以暂时关闭参数估计器,以减小上层控制器的计算负担,当当前估计的状态不可信时,则可以重启参数估计器,以实现精确的状态估计;同时,由于估计变量较多,而可用的传感器测量量相对较少,仅凭DUKF估计器实现对农机状态和参数的精确估计是很困难的,可能会导致得到没有物理意义的估计值,因此采用pdf截断方法,实现带约束的DUKF,此处为提高计算效率,仅对待估计的参数施加约束;具体为:
1)获取参数估计和状态估计的离散状态空间表达式:利用一阶向前欧拉公式将式(1)分别变换为用于参数估计和状态估计的离散状态空间表达式;
参数估计状态空间表达式为:
xp(k+1)=xp(k)+wp(k)
zp(k)=hp(xp(k))+vp(k); (3)
其中,xp=[Cf Cr]T,zp=[β γ]T,wp和vp分别为参数估计的过程噪声和观测噪声;
状态估计状态空间表达式:
xs(k+1)=fs(xs(k))+ws(k)
zs(k)=xs(k)+vs(k); (4)
其中,xs=[β γ]T,zs=[β γ]T,ws和vs分别为状态估计的过程噪声和观测噪声;
2)对待估计的参数施加约束:假设在k时刻存在一个对m个参数的无迹卡尔曼滤波估计xp(k|k),其均值为
Figure FDA0003741609820000031
协方差为Pp(k|k),相应地,有m个标量状态约束:
Figure FDA0003741609820000032
其中,LBki≤UBki,θki为第i个元素为1,其余元素为0的m个元素的列向量;在此条件下,去截断高斯pdf
Figure FDA0003741609820000033
进而找到被截断的pdf的均值
Figure FDA0003741609820000034
和协方差
Figure FDA0003741609820000035
即带约束的参数估计的均值和协方差,定义
Figure FDA0003741609820000036
为执行了前i个约束后的状态估计,
Figure FDA0003741609820000037
Figure FDA0003741609820000038
的协方差;
3)采用估计器对智能农机状态和参数的实时估计;
其中在上述步骤六中,定义A为车辆所在点,B为车辆距离参考轨迹最近的点,航向误差
Figure FDA0003741609820000041
为A点航向和B点航向(路径切线方向)之差,横向误差Δy为A点和B点之间的距离,在给定的期望路径下,航向误差
Figure FDA0003741609820000042
和横向误差Δy满足:
Figure FDA0003741609820000043
Figure FDA0003741609820000044
假设航向误差和侧偏角始终较小,则有
Figure FDA0003741609820000045
Vy≈Vxβ,则上式可以简化为:
Figure FDA0003741609820000046
Figure FDA0003741609820000047
其中,γ为喷雾机横摆角速度,Vx为行驶速度,β为质心侧偏角,ρ为期望路径的曲率;
结合式(1)、(2)、(26),利用一阶向前欧拉公式,得到离散时间***的状态方程:
x(k+1)=Akx(k)+Bku(k)+d(k)
y(k)=Cx(k); (27)
该技术方案下的智能农机转向方式为协调转向,可认为前轮转角与后轮转角大小相等方向相反,即δr=-δf,因此***的状态变量
Figure FDA0003741609820000048
控制量为期望的前轮转角δf,e,即u=δf,e,输出量
Figure FDA0003741609820000051
矩阵A为:
Figure FDA0003741609820000052
矩阵B为:
Figure FDA0003741609820000053
空间参数d(k)为:
Figure FDA0003741609820000054
矩阵C为:
Figure FDA0003741609820000055
为了避免控制量突变,影响喷雾机路径跟踪的精度和稳定性,因此采用期望的前轮转角增量作为***的控制量,则***的状态方程可改写为:
Figure FDA0003741609820000061
Figure FDA0003741609820000062
其中,
Figure FDA0003741609820000063
根据上述的状态和参数的估计可获得k时刻的状态
Figure FDA0003741609820000064
以及参数
Figure FDA0003741609820000065
结合式(28),则带空间参数的约束MPC的优化问题可描述为:
Figure FDA0003741609820000066
满足动力学(i=0,1,…,Np)
Figure FDA0003741609820000067
Figure FDA0003741609820000068
Figure FDA0003741609820000069
y(k|k)=y(k);
满足时域约束:
umin(k+i)≤u(k+i)≤umax(k+i),i=0,1,…,Nc-1
Figure FDA00037416098200000610
其中,
Figure FDA00037416098200000611
上面的优化问题中,Ωy和Ωu是加权矩阵,给定为:
Figure FDA0003741609820000071
Figure FDA0003741609820000072
Figure FDA0003741609820000073
为控制增量序列,作为约束优化问题的独立变量,定义为:
Figure FDA0003741609820000074
Y(k+1|k)是k时刻基于***(28)预测的Np步控制输出,定义为:
Figure FDA0003741609820000075
为避免在求解过程中出现无解的情况,因此在式(29)中引入松弛因子ε,λ为给定常数;联立式(28)、(29),可得***预测的Np步控制输出:
Figure FDA0003741609820000076
其中,
Figure FDA0003741609820000077
Figure FDA0003741609820000081
Figure FDA0003741609820000082
Figure FDA0003741609820000083
由于约束条件存在,一般情况下,无法得到优化问题的解析解,因此,需要采用数值求解方法,也就是需要将约束优化问题转化为二次规划问题描述;
二次规划问题的目标函数的标准形式为:
Figure FDA0003741609820000084
变换式(29)为标准形式,忽略与
Figure FDA0003741609820000085
无关项,得
Figure FDA0003741609820000086
求解上式,并将
Figure FDA0003741609820000087
的第一个元素作为控制量,每个周期重复上述过程,实现完整的路径跟踪。
2.根据权利要求1所述的一种智能农机的路径跟踪控制方法,其特征在于:所述步骤一中,平台的路径规划器、上层控制器、下层控制器、RTK-GPS以及IMU之间均通过CAN通信。
3.根据权利要求1所述的一种智能农机的路径跟踪控制方法,其特征在于:所述步骤三中,车辆状态信息包括来自于RTK-GPS的质心侧偏角测量值βm和车速V,来自于IMU的横摆角速度测量值γm,以及来自于霍尔角度传感器的前轮转角δf,待估计的参数为前轴和后轴等效的侧偏刚度Cf和Cr,待估计的状态为质心侧偏角β和横摆角速度γ。
4.根据权利要求1所述的一种智能农机的路径跟踪控制方法,其特征在于:所述步骤三中,期望的车辆速度是由操作者设定,并由下层控制器操作执行机构实现,而提出的上层控制器与速度无关,故控制器在不同车速下,可以自适应地实现精确的路径跟踪。
5.根据权利要求1所述的一种智能农机的路径跟踪控制方法,其特征在于:所述步骤四3)中,DUKF估计器的运行步骤如下:
3.1)设定初值
Figure FDA0003741609820000091
Figure FDA0003741609820000092
3.2)参数预测
构造2n+1个样本点:
Figure FDA0003741609820000101
计算参数预测样本点:
Figure FDA0003741609820000102
计算参数预测样本点的均值和方差:
Figure FDA0003741609820000103
Figure FDA0003741609820000104
3.3)状态预测
构造2n+1个样本点:
Figure FDA0003741609820000105
将步骤2中参数预测值带入式(25)计算状态预测样本点:
Figure FDA0003741609820000106
计算状态预测样本点的均值和方差:
Figure FDA0003741609820000107
Figure FDA0003741609820000108
3.4)状态矫正
当获得新的测量值zs(k)后,对状态均值和方差进行更新:
Figure FDA0003741609820000111
Figure FDA0003741609820000112
Figure FDA0003741609820000113
其中,
Figure FDA0003741609820000114
Figure FDA0003741609820000115
Figure FDA0003741609820000116
3.5)参数矫正
当获得新的测量值zp(k),即
Figure FDA0003741609820000117
后,对参数均值和方差进行更新:
Figure FDA0003741609820000118
Figure FDA0003741609820000119
Figure FDA00037416098200001110
其中,
Figure FDA00037416098200001111
Figure FDA00037416098200001112
Figure FDA00037416098200001113
3.6)pdf截断;
3.7)重复上述步骤3.2-3.6,即可实现对智能农机状态和参数的实时估计。
6.根据权利要求5所述的一种智能农机的路径跟踪控制方法,其特征在于:所述步骤3.6)pdf截断,具体包括以下步骤:
3.6.1)初始化
i=0;
Figure FDA0003741609820000121
Figure FDA0003741609820000122
其中,
Figure FDA0003741609820000123
被定义为执行了前i个约束后的参数估计,相应的协方差为
Figure FDA0003741609820000124
3.6.2)令i=1,对
Figure FDA0003741609820000125
进行Jordan标准分解得到正交矩阵Tki和对角矩阵Wki,即:
Figure FDA0003741609820000126
3.6.3)利用Gram-Schmidt正交化计算m×m的正交矩阵ψki,其满足:
Figure FDA0003741609820000127
定义ψki是由行向量ψki,j(j=1,…,m)构成,即:
ψki=[ψki,1…ψki,m]T; (9)
则ψki的第一行由如下公式计算:
Figure FDA0003741609820000128
对于j=2,…,m,执行如下操作:
Figure FDA0003741609820000131
其中,ej是单位向量,即ej是一个m个元素的除第j个元素为1之外全为0的列向量;
若上式计算的ψki,j为0,则用下式替代:
Figure FDA0003741609820000132
再正则化ψki,j
Figure FDA0003741609820000133
3.6.4)定义vki为:
Figure FDA0003741609820000134
由式(3)-(5)可知,vki的均值为0,协方差矩阵为恒等(单位)
变换式(1)下界LBki和上界UBki,得到:
Figure FDA0003741609820000135
Figure FDA0003741609820000136
得到标准化后的标量约束:
aki≤[1 0…0]vki≤bki; (17)
由此可见,在执行约束之前,vki的第一个元素的分布为N(0,1),但是约束要求vki必须位于aki和bki之间;
3.6.5)定义随机变量vk,i+1为pdf被截断后的vki,即:
pdf(vk,i+1)=truncated pdf(vki); (18)
执行第一个约束后的转换参数估计的均值和方差为:
Figure FDA0003741609820000141
Figure FDA0003741609820000142
其中,
Figure FDA0003741609820000143
Figure FDA0003741609820000144
Figure FDA0003741609820000145
则执行第一个约束后参数估计的均值和方差为:
Figure FDA0003741609820000146
Figure FDA0003741609820000147
将i增加1,并重复步骤6.2-6.5的过程,以获得执行下一个约束后的参数估计;注意,
Figure FDA0003741609820000151
是时间k处的无约束参数估计,
Figure FDA0003741609820000152
是执行第一个约束后在时间k处的参数状态,
Figure FDA0003741609820000153
是执行前两个约束后在时间k处的参数状态,以此类推,经过这个过程m次(每个约束一次)后,得到了最终的约束状态估计和时间k的协方差:
Figure FDA0003741609820000154
Figure FDA0003741609820000155
CN202210814305.0A 2022-07-12 2022-07-12 一种智能农机的路径跟踪控制方法 Pending CN115167424A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210814305.0A CN115167424A (zh) 2022-07-12 2022-07-12 一种智能农机的路径跟踪控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210814305.0A CN115167424A (zh) 2022-07-12 2022-07-12 一种智能农机的路径跟踪控制方法

Publications (1)

Publication Number Publication Date
CN115167424A true CN115167424A (zh) 2022-10-11

Family

ID=83494085

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210814305.0A Pending CN115167424A (zh) 2022-07-12 2022-07-12 一种智能农机的路径跟踪控制方法

Country Status (1)

Country Link
CN (1) CN115167424A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118131633A (zh) * 2024-05-08 2024-06-04 安徽大学 基于LQR和Kalman滤波的无人自行车自平衡控制方法
CN118131633B (zh) * 2024-05-08 2024-07-16 安徽大学 基于LQR和Kalman滤波的无人自行车自平衡控制方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118131633A (zh) * 2024-05-08 2024-06-04 安徽大学 基于LQR和Kalman滤波的无人自行车自平衡控制方法
CN118131633B (zh) * 2024-05-08 2024-07-16 安徽大学 基于LQR和Kalman滤波的无人自行车自平衡控制方法

Similar Documents

Publication Publication Date Title
Alcalá et al. Autonomous racing using linear parameter varying-model predictive control (LPV-MPC)
Fang et al. Trajectory tracking control of farm vehicles in presence of sliding
Kayacan et al. Towards agrobots: Identification of the yaw dynamics and trajectory tracking of an autonomous tractor
Kayacan et al. Robust tube-based decentralized nonlinear model predictive control of an autonomous tractor-trailer system
CN107415939B (zh) 一种分布式驱动电动汽车转向稳定性控制方法
Kraus et al. Moving horizon estimation and nonlinear model predictive control for autonomous agricultural vehicles
CN110989577B (zh) 自动驾驶决策方法及车辆的自动驾驶装置
Wang et al. Adaptive turning control for an agricultural robot tractor
US10599151B1 (en) Transformer (modifier) design for controlling articulated vehicles smoothly
CN114967475B (zh) 一种无人驾驶车辆轨迹跟踪与稳定性鲁棒控制方法及***
Kim et al. Path tracking for a skid-steer vehicle using model predictive control with on-line sparse gaussian process
Yin et al. Trajectory tracking based on adaptive sliding mode control for agricultural tractor
CN112693449A (zh) 一种无人车辆极限工况下横纵向耦合控制方法
CN113126623A (zh) 一种考虑输入饱和的自适应动态滑模自动驾驶车辆路径跟踪控制方法
CN111189454A (zh) 基于秩卡尔曼滤波的无人车slam导航方法
Wang et al. Observer-based finite frequency H∞ state-feedback control for autonomous ground vehicles
Ji et al. Path tracking of unmanned agricultural tractors based on a novel adaptive second-order sliding mode control
CN111736598B (zh) 基于自适应神经网络的收获机路径跟踪控制方法和***
Hill et al. Online gain setting method for path tracking using CMA-ES: Application to off-road mobile robot control
CN117360544A (zh) 一种基于drl-mpc的自动驾驶车辆横向控制方法
CN116819973A (zh) 一种轨迹跟踪控制方法
JP2018084899A (ja) 自律走行車両、コントローラ、コンピュータプログラム、自律走行車両の制御方法
CN115167424A (zh) 一种智能农机的路径跟踪控制方法
Wang et al. Lateral displacement control for agricultural tractor based on cascade control structure
Gauthier-Clerc et al. Online velocity fluctuation of off-road wheeled mobile robots: A reinforcement learning approach

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination