CN115074582B - 一种具有双峰晶粒组织的亚共晶Al-Ce合金的制备方法 - Google Patents

一种具有双峰晶粒组织的亚共晶Al-Ce合金的制备方法 Download PDF

Info

Publication number
CN115074582B
CN115074582B CN202210697013.3A CN202210697013A CN115074582B CN 115074582 B CN115074582 B CN 115074582B CN 202210697013 A CN202210697013 A CN 202210697013A CN 115074582 B CN115074582 B CN 115074582B
Authority
CN
China
Prior art keywords
alloy
hypoeutectic
grain structure
bimodal grain
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210697013.3A
Other languages
English (en)
Other versions
CN115074582A (zh
Inventor
梁霄鹏
王一浩
李慧中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN202210697013.3A priority Critical patent/CN115074582B/zh
Publication of CN115074582A publication Critical patent/CN115074582A/zh
Application granted granted Critical
Publication of CN115074582B publication Critical patent/CN115074582B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0081Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for slabs; for billets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/002Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metal Rolling (AREA)

Abstract

本发明公开了一种具有双峰晶粒组织的亚共晶Al‑Ce合金的制备方法,属于铝合金材料加工制备技术领域。所述合金组织具有细晶和粗晶混合的特征,其中细晶的尺寸分布为2~15μm,粗晶的尺寸分布为20~50μm。其制备方法为:将铸态亚共晶Al‑Ce合金坯置于炉中,在200~300℃保温后进行热轧,然后进行冷轧;接着进行半固态保温处理;然后淬火,得到具有双峰晶粒组织的亚共晶Al‑Ce合金。本发明可在亚共晶Al‑Ce合金中获得具有球形粗细混合的双峰晶粒组织,实现了亚共晶Al‑Ce合金综合力学性能的大幅度提升。本发明工艺流程简单,对设备要求低,适合工业化生产。

Description

一种具有双峰晶粒组织的亚共晶Al-Ce合金的制备方法
技术领域
本发明涉及一种具有双峰晶粒组织的亚共晶Al-Ce合金的制备方法;属于铝合金材料加工制备技术领域。
背景技术
Al-Ce合金具有优异的热稳定性和可铸造性,是下一代耐热汽车结构件的优选材料,但较差的力学性能使其在与其它铸造合金的竞争中处于劣势。Al-Ce合金的共晶组织由纤维状Al11Ce3相构成,这种纤维状的第二相严重损害了合金的力学性能,并且目前尚未发现存在其它元素能实现对纤维形貌的显著变质。尽管激光增材制造和粉末冶金等方式能够制备具有精细微观结构的Al-Ce合金,但其高昂的制备成本并不利于大规模工业化生产。固溶强化以及析出强化虽然也可提升Al-Ce合金的强度,但却导致延伸率大幅度降低。通过常规手段获得兼具高强度和高延展性的Al-Ce合金目前仍存在较大的难度。
晶粒细化是一种同时提高合金强度和延展性的有效方式,但常规铸造时添加细化剂带来的细化效果有限,常依靠后续塑性变形实现晶粒细化。然而共晶型合金经塑性变形或者再经过再结晶退火后,虽然可以实现晶粒细化,但共晶组织的流线型分布仍会造成材料性能的各向异性。高温下长时间保温虽然可消除各向异性,但是却又会导致晶粒的粗化。等通道挤压及高压扭转等加工方式虽然也可实现共晶合金晶粒细化,但细晶降低了材料的加工硬化能力和变形稳定性,对长期服役的器件不利。双峰晶粒组织实现了保留细晶强度的同时,增强了合金的加工硬化能力,抵抗细晶的变形失稳,是实现强度和延展性综合提升的理想组织。因此,通过适当加工方式及结合后续热处理制备各向同性,且具有双峰晶粒组织的亚共晶Al-Ce合金具有重要的工业价值。
发明内容
本发明针对现有亚共晶Al-Ce合金组织粗大、塑性较差的缺点,本发明提供了一种力学性能优异的具有双峰晶粒组织的亚共晶Al-Ce合金的制备方法。本发明可实现双峰晶粒组织可控,生产效率高,制备的合金力学性能优异。
本发明提供一种具有双峰晶粒组织的亚共晶Al-Ce合金的制备方法,所得合金组织具有细晶和粗晶混合的特征,其中细晶的尺寸分布为2~15μm,粗晶的尺寸分布为20~50μm,且所有晶粒均为等轴球形。
本发明提供一种具有双峰晶粒组织的亚共晶Al-Ce合金的制备方法,所得合金的抗拉强度为125-171MPa、伸长率为12.5~19%;在成分相同时,所得合金相比于铸态产品,其抗拉强度提升20%以上、延伸率提升50%以上,具体到本发明可以提升28%~36%、延伸率提升53~87%。
本发明提供一种具有双峰晶粒组织的亚共晶Al-Ce合金的制备方法,其中亚共晶Al-Ce合金中Ce的质量分数为3~8%、优选为4~8wt%、进一步优选为5~8wt%。当Ce含量低于此区间时共晶组织含量低,合金强度较差;高于此区间时,合金的变形能力差,加工过程易开裂,废品率高,不利于后续冷轧加工,且高Ce含量的合金的凝固区间小,不利于后续确定半固态温度。
本发明提供一种具有双峰晶粒组织的亚共晶Al-Ce合金的制备方法,所得合金组织中粗晶所占体积比为15%-35%,余量为细晶。
本发明提供一种具有双峰晶粒组织的亚共晶Al-Ce合金的制备方法,包括如下步骤:
步骤一
将铸态亚共晶Al-Ce合金坯置于保温炉中,在200~300℃、优选为230~300℃保温后进行多道次等温热轧;得到热轧板;
步骤二
对步骤一所得热轧料进行多道次冷轧;得到冷轧板;
步骤三
对步骤二所得冷轧板进行半固态保温处理;然后淬火;得到具有双峰晶粒组织的亚共晶Al-Ce合金;半固态保温处理的温度为650~655℃,保温时间为15~30min。
作为优选方案,本发明一种具有双峰晶粒组织的亚共晶Al-Ce合金的制备方法;步骤一中热轧的轧制道次不低于5次,总变形量为50~80%。多道次热轧提升了Al-Ce合金的变形能力,促进了组织内部的回复和再结晶,降低了后续工艺中冷轧的变形阻力。
作为优选方案,本发明一种具有双峰晶粒组织的亚共晶Al-Ce合金的制备方法;步骤二中,冷轧的轧制道次不低于5次,总变形量为40~60%。多道次冷轧降低了板材边裂的可能性,且在组织内部存储了足够的变形能。
本发明一种具有双峰晶粒组织的亚共晶Al-Ce合金的制备方法;所得合金的抗拉强度为125-171MPa、伸长率为12.5~19%;在成分相同时,所得合金相比于铸态产品,其抗拉强度提升28%~36%、延伸率提升53~87%。
原理和优势
本发明中亚共晶Al-Ce合金中Ce的质量分数为3~8%,当Ce含量低于此区间时共晶组织含量低,合金强度较差;高于此区间时,合金的变形能力差,加工过程易开裂,废品率高。
本发明采用多道次热轧结合多道次冷轧的方式制备了Al-Ce合金板材,热轧实现了板材的初步成型;冷轧在获得了最终尺寸板材尺寸的同时为组织内部注入了大量的变形储能,这为后续应变诱发熔化激活提供了足够的驱动力。
本发明将冷轧板材在半固态温度区间保温并严格控制保温时间,这使得具有大量储能及较低熔点的共晶组织熔化,部分未熔化的铝基体在表面能的作用下呈现规则球状;在后续淬火过程中,熔化的组织冷却为细小晶粒及共晶组织构成细晶,未熔化的基体铝构成粗晶,从而获得具有双峰晶粒组织的亚共晶Al-Ce合金。
附图说明
图1为实施例1制备的Al-4Ce的SEM显微组织图;
图2为实施例2制备的Al-5Ce的SEM显微组织图;
图3为实施例3制备的Al-7Ce的SEM显微组织图;
图4为实施例4制备的Al-8Ce的SEM显微组织图;
图5为对比例1制备的Al-5Ce的SEM显微组织图;
图6为对比例2制备的Al-8Ce的SEM显微组织图;
图7为对比例3制备的Al-5Ce的板材照片;
图8为对比例4制备的Al-8Ce的SEM显微组织图。
具体实施方式
实施例1
以工业纯铝及Al-20Ce中间合金为原料,采用重力铸造制备Al-4Ce合金锭坯,对锭坯进行铣面切割获得尺寸为100mm×40mm×20mm的粗轧锭坯。将锭坯在230℃保温炉中保温1h,随即进行多道次轧制,其中轧制道次为6次,总变形量为75%。将粗轧板材进行室温多道次冷轧,轧制道次为7次,总变形量为60%,得到厚度为2mm的板材。将冷轧板材在热处理炉中进行保温处理,保温时间为15min,保温温度为650℃,保温结束后淬火,打磨去除表面氧化皮即可获得具有双峰晶粒组织的亚共晶Al-Ce合金。该工艺制备的Al-4Ce合金中细晶的平均晶粒尺寸为12.2μm,粗晶的尺寸分布为37.2μm,粗晶所占体积比约为18%;合金的抗拉强度和伸长率分别为125.6MPa和18.9%,较铸态的92.5MPa及12.3%分别提升35.8%及53.7%。
实施例2
以工业纯铝及Al-20Ce中间合金为原料,采用重力铸造制备Al-5Ce合金锭坯,对锭坯进行铣面切割获得尺寸为100mm×40mm×20mm的粗轧锭坯。将锭坯在250℃保温炉中保温1h,随即进行多道次轧制,其中轧制道次为6次,总变形量为75%。将粗轧板材进行室温多道次冷轧,轧制道次为8次,总变形量为60%,得到厚度为2mm的板材。将冷轧板材在热处理炉中进行保温处理,保温时间为30min,保温温度为655℃,保温结束后淬火,打磨去除表面氧化皮即可获得具有双峰晶粒组织的亚共晶Al-Ce合金。该工艺制备的Al-5Ce合金中细晶的平均晶粒尺寸为6.4μm,粗晶的尺寸分布为35.3μm,粗晶所占体积比约为32%;合金的抗拉强度和伸长率分别为132.6MPa和16.8%,较铸态的103.5MPa及10.7%分别提升28.1%及57%。
实施例3
以工业纯铝及Al-20Ce中间合金为原料,采用重力铸造制备Al-7Ce合金锭坯,对锭坯进行铣面切割获得尺寸为100mm×40mm×20mm的粗轧锭坯。将锭坯在290℃保温炉中保温1h,随即进行多道次轧制,其中轧制道次为7次,总变形量为80%。将粗轧板材进行室温多道次冷轧,轧制道次为10次,总变形量为50%,得到厚度为2mm的板材。将冷轧板材在热处理炉中进行保温处理,保温时间为15min,保温温度为655℃,保温结束后淬火,打磨去除表面氧化皮即可获得具有双峰晶粒组织的亚共晶Al-Ce合金。该工艺制备的Al-7Ce合金中细晶的平均晶粒尺寸为5.7μm,粗晶的尺寸分布为36.5μm,粗晶所占体积比约为30%;合金的抗拉强度和伸长率分别为162.4MPa和13.5%,较铸态的126.1MPa及7.4%分别提升28.8%及82.4%。
实施例4
以工业纯铝及Al-20Ce中间合金为原料,采用重力铸造制备Al-8Ce合金锭坯,对锭坯进行铣面切割获得尺寸为100mm×40mm×20mm的粗轧锭坯。将锭坯在290℃保温炉中保温1h,随即进行多道次轧制,其中轧制道次为9次,总变形量为80%。将粗轧板材进行室温多道次冷轧,轧制道次为12次,总变形量为50%,得到厚度为2mm的板材。将冷轧板材在热处理炉中进行保温处理,保温时间为15min,保温温度为655℃,保温结束后淬火,打磨去除表面氧化皮即可获得具有双峰晶粒组织的亚共晶Al-Ce合金。该工艺制备的Al-8Ce合金中细晶的平均晶粒尺寸为12.3μm,粗晶的尺寸分布为43.4μm,粗晶所占体积比约为23%;合金的抗拉强度和伸长率分别为170.8MPa和12.7%,较铸态的130.9MPa及6.8%分别提升30.5%及86.8%。
对比例1
以工业纯铝及Al-20Ce中间合金为原料,采用重力铸造制备Al-5Ce合金锭坯,对锭坯进行铣面切割获得尺寸为100mm×40mm×20mm的粗轧锭坯。将锭坯在230℃保温炉中保温1h,随即进行多道次轧制,其中轧制道次为6次,总变形量为75%。将粗轧板材进行室温多道次冷轧,轧制道次为7次,总变形量为60%,得到厚度为2mm的板材。将冷轧板材在热处理炉中进行保温处理,保温时间为15min,保温温度为645℃,保温结束后淬火。与实施例2相比,该工艺制备的Al-5Ce合金由于最后面的保温温度为645℃,其共晶组织未能熔化,组织以再结晶后的基体与粗化的Al11Ce3颗粒为主。该合金的抗拉强度和伸长率分别为95.2MPa和14.3%,强度低于铸态合金。
对比例2
以工业纯铝及Al-20Ce中间合金为原料,采用重力铸造制备Al-8Ce合金锭坯,对锭坯进行铣面切割获得尺寸为100mm×40mm×20mm的粗轧锭坯。将锭坯在290℃保温炉中保温1h,随即进行多道次轧制,其中轧制道次为9次,总变形量为80%。将粗轧板材进行室温多道次冷轧,轧制道次为12次,总变形量为50%,得到厚度为2mm的板材。将冷轧板材在热处理炉中进行保温处理,保温时间为5min,保温温度为655℃,保温结束后淬火,打磨去除表面氧化皮即可获得具有双峰晶粒组织的亚共晶Al-Ce合金。该工艺制备的Al-8Ce合金由于最后面的保温温度为655℃且保温时间为5min,导致其共晶组织未能完全熔化,组织以再结晶后的基体与粗化的Al11Ce3颗粒为主。该合金的抗拉强度和伸长率分别为115.4MPa和7.4%,强度低于铸态合金。
对比例3
以工业纯铝及Al-20Ce中间合金为原料,采用重力铸造制备Al-5Ce合金锭坯,对锭坯进行铣面切割获得尺寸为100mm×40mm×20mm的粗轧锭坯。将锭坯进行室温多道次冷轧,轧制道次为14次,总变形量为90%,得到厚度为2mm的板材。由于没有经过热轧粗轧,冷轧变形量大,板材边裂明显,为不合格产品。
对比例4
以工业纯铝及Al-20Ce中间合金为原料,采用重力铸造制备Al-8Ce合金锭坯,对锭坯进行铣面切割获得尺寸为100mm×40mm×20mm的粗轧锭坯。将锭坯在300℃保温炉中保温1h,随即进行多道次轧制,其中轧制道次为12次,总变形量为90%,得到厚度为2mm的板材。将热轧板材在热处理炉中进行保温处理,保温时间为15min,保温温度为655℃,保温结束后淬火,打磨去除表面氧化皮。与实施例4相比,该工艺未经过冷轧,组织内存储的变形能较低,再结晶后的晶粒粗大,共晶区融化缓慢,因此组织以粗晶为主。该工艺制备的Al-8Ce合金中细晶的平均晶粒尺寸为7.8μm,粗晶的尺寸分布为48.4μm,粗晶所占体积比约为86%;合金的抗拉强度和伸长率分别为120.6MPa和6.0%,强度和延伸率均低于铸态合金。

Claims (5)

1.一种具有双峰晶粒组织的亚共晶Al-Ce合金的制备方法,其特征在于:所得合金组织具有细晶和粗晶混合的特征,其中细晶的尺寸分布为2~15μm,粗晶的尺寸分布为20~50μm,且所有晶粒均为等轴球形;亚共晶Al-Ce合金中Ce的质量分数为3~8%;所述具有双峰晶粒组织的亚共晶Al-Ce合金通过下述方法制备:
步骤一
将铸态亚共晶Al-Ce合金坯置于保温炉中,在200~300℃保温后进行多道次等温热轧;得到热轧板;
步骤二
对步骤一所得热轧料进行多道次冷轧;得到冷轧板;
步骤三
对步骤二所得冷轧板进行半固态保温处理;然后淬火;得到具有双峰晶粒组织的亚共晶Al-Ce合金;半固态保温处理的温度为650~655℃,保温时间为15~30min。
2.根据权利要求1所述的一种双峰晶粒组织的亚共晶Al-Ce合金的制备方法,其特征在于:所得合金的抗拉强度为125-171MPa、伸长率为12.5~19%;在成分相同时,所得合金相比于铸态产品,其抗拉强度提升28%~36%、延伸率提升53~87%。
3.根据权利要求1所述的一种双峰晶粒组织的亚共晶Al-Ce合金的制备方法,其特征在于:所得合金组织中粗晶所占体积比为15%-50%,余量为细晶。
4.根据权利要求1所述的一种双峰晶粒组织的亚共晶Al-Ce合金的制备方法,其特征在于:步骤一中热轧的轧制道次不低于5次,总变形量为50~80%。
5.根据权利要求1所述的一种双峰晶粒组织的亚共晶Al-Ce合金的制备方法,其特征在于:步骤二中冷轧的轧制道次不低于5次,总变形量为40~60%。
CN202210697013.3A 2022-06-20 2022-06-20 一种具有双峰晶粒组织的亚共晶Al-Ce合金的制备方法 Active CN115074582B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210697013.3A CN115074582B (zh) 2022-06-20 2022-06-20 一种具有双峰晶粒组织的亚共晶Al-Ce合金的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210697013.3A CN115074582B (zh) 2022-06-20 2022-06-20 一种具有双峰晶粒组织的亚共晶Al-Ce合金的制备方法

Publications (2)

Publication Number Publication Date
CN115074582A CN115074582A (zh) 2022-09-20
CN115074582B true CN115074582B (zh) 2023-07-18

Family

ID=83253409

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210697013.3A Active CN115074582B (zh) 2022-06-20 2022-06-20 一种具有双峰晶粒组织的亚共晶Al-Ce合金的制备方法

Country Status (1)

Country Link
CN (1) CN115074582B (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102641890B (zh) * 2012-04-28 2014-04-02 中南大学 一种粉末冶金超细晶钛铝基合金板材的制备方法
CN105821253B (zh) * 2016-03-25 2017-06-23 中南大学 一种加铁的轻质高导耐热铝导线及其制备工艺
CN109439976B (zh) * 2019-01-09 2019-12-24 广东省材料与加工研究所 一种铸造铝硅合金的复合变质方法
CN114369776B (zh) * 2022-01-14 2022-08-30 合肥工业大学 一种提高(Ce+Yb)复合改性亚共晶Al-Si-Mg-Cu-Cr合金强度的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Microstructure diversity dominated by the interplay between primary intermetallics and eutectics for Al-Ce heat-resistant alloys";Yueling Guo et al.;《Journal of Alloys and Compounds》;第第899卷卷;162914 *
"Microstructure selection map for rapidly solidified Al-rich Al–Ce alloys";Zhonghua Zhang et al.;《Journal of Crystal Growth》;第第260卷卷(第第3-4期期);第557-565页 *
"Thermal stability of aluminum–cerium binary alloys containing the Al–Al11Ce3 eutectic";Frank Czerwinski;《Materials Science and Engineering: A》;第第809卷卷;140973 *

Also Published As

Publication number Publication date
CN115074582A (zh) 2022-09-20

Similar Documents

Publication Publication Date Title
CN108300918B (zh) 一种具有高室温成形性能含钙稀土镁合金板材及制备方法
CN103339276B (zh) 螺栓用铝合金线、螺栓及其制造方法
CN109182857B (zh) 一种高强韧变形镁合金及制备方法
CN104451296A (zh) 一种2系铝合金的制备方法
CN103014510A (zh) 高强度冷挤压模具钢及其加工工艺
CN115125423B (zh) 一种高强高成形性镁锂合金及其制备方法和应用
CN105838928A (zh) 高强度铝合金板
AU759402B2 (en) Aluminium based alloy and method for subjecting it to heat treatment
US11351585B2 (en) Preparation method for a high-strength extruded profile of Mg—Zn—Sn—Mn alloy
CN111074121B (zh) 铝合金及其制备方法
CN113462937A (zh) 一种抗冲击的高强韧铝合金材料及制备方法
CN110468317B (zh) 具有优异室温塑性的镁合金及其制备方法
CN109234592B (zh) 一种低温轧制高强韧变形镁合金及其制备方法
JP7318274B2 (ja) Al-Mg-Si系アルミニウム合金冷延板及びその製造方法並びに成形用Al-Mg-Si系アルミニウム合金冷延板及びその製造方法
CN102965554A (zh) 硬质铝合金铸锭
CN112210703B (zh) 一种高再结晶抗力和高强韧铝锂合金及其制备方法
CN104532091A (zh) 一种2系铝合金
US11186899B2 (en) Magnesium-zinc-manganese-tin-yttrium alloy and method for making the same
CN114277295B (zh) 一种弱基面织构高强度镁锂合金及其制备方法
CN109371301B (zh) 一种室温高塑性镁合金及其制备方法
CN115074582B (zh) 一种具有双峰晶粒组织的亚共晶Al-Ce合金的制备方法
CN108193101B (zh) Er、Zr、Si微合金化Al-Mg-Cu合金及其形变热处理工艺
CN113897567B (zh) 一种快速细化和均匀化铸态铝锂合金的均匀化形变热处理方法
CN113005347B (zh) 一种高塑性Mg-Al-Ca镁合金及其制备方法
CN111254324A (zh) 一种Al-Mg-Si合金板材及其制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant