CN115069097A - 一种界面聚合法制备纳米材料复合膜的方法 - Google Patents

一种界面聚合法制备纳米材料复合膜的方法 Download PDF

Info

Publication number
CN115069097A
CN115069097A CN202210834313.1A CN202210834313A CN115069097A CN 115069097 A CN115069097 A CN 115069097A CN 202210834313 A CN202210834313 A CN 202210834313A CN 115069097 A CN115069097 A CN 115069097A
Authority
CN
China
Prior art keywords
nano
membrane
preparing
interfacial polymerization
phase solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210834313.1A
Other languages
English (en)
Other versions
CN115069097B (zh
Inventor
郭越新
王书桓
胡亚丛
张旭
马亚飞
陈永浩
李慧莹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China University of Science and Technology
Original Assignee
North China University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China University of Science and Technology filed Critical North China University of Science and Technology
Priority to CN202210834313.1A priority Critical patent/CN115069097B/zh
Publication of CN115069097A publication Critical patent/CN115069097A/zh
Application granted granted Critical
Publication of CN115069097B publication Critical patent/CN115069097B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明公开一种界面聚合法制备纳米材料复合膜的方法,本方法将界面聚合反应的水相溶液与氧化石墨烯混悬液、纳米颗粒混悬液混合,在基膜上通过真空抽滤层层自组装得到纳米材料初生膜,进一步的将烘干后的初生膜浸入界面聚合油相溶液中进行聚合反应,从而得到稳定的纳米材料复合膜。本发明提供的复合膜具有良好的水通量,并且与传统的氧化石墨烯膜相比具有较低的溶胀度。本方法操作简单、控制参数少且反应条件温和,可用于水中污染物的去除。

Description

一种界面聚合法制备纳米材料复合膜的方法
技术领域
本发明属于功能膜材料技术领域,具体涉及一种界面聚合法制备纳米材料复合膜的方法。
背景技术
随着城市化和工业化的发展,水资源污染已成为全球关注的话题。传统工业废水、医药工业废水中含有的氟化物、重金属、高浓度的酚类以及抗生素等指标仍然较高。膜技术作为一种新型分离技术,在水处理和净水产业生产过程中得到了越来越广泛的应用。膜分离技术具有能耗低、易于操作、环境友好等优点。
氧化石墨烯(Graphene oxide,GO)表面分散有羟基、羧基、环氧基等基团,具有较好的分散性和易于功能化等优点,可以作为活性位点,成为优良的吸附材料。沸石骨架中的交换性阳离子可以与水中的重金属进行交换,其较大的比表面积对重金属具有独特的吸附作用。金属有机框架(Metal-organic frameworks, MOFs)也称为多孔配位聚合物,是由有机配体和金属离子/簇组成的具有周期性网状拓扑结构的多孔晶体。具有比表面积大、孔径可调、孔隙率高、结构组成多样性及化学可修饰性等优点,在水体无机污染物、有机染料的去除等方面被广泛研究。
公开号CN111821867A的中国专利公开了一种自支撑还原氧化石墨烯纳滤膜及其制备方法和应用,该方法将氧化石墨烯溶液均匀涂覆在基膜上,进一步将氧化石墨烯还原用于水处理,但该方法制备的氧化石墨烯膜较为致密,水通量仅为6 L·m-2·h-1,且氧化石墨烯膜极易溶胀,易从基膜上脱落。
公开号为CN113441016A的中国专利公开了一种基于分步旋涂法的界面聚合制备复合纳滤膜的方法,该方法采用聚偏氟乙烯微孔滤膜为基膜,使用含多胺类单体的水相与含多酰氯单体的有机相,在分步旋涂的条件下进行界面聚合反应制备聚酰胺分离层,应用于有机染料的分离。但旋涂法较为浪费材料,且不适用于大面积膜制备。
公开号为CN106076132A的中国专利公开了一种氧化石墨烯改性聚酰胺复合纳滤膜及其制备方法,该制备方法以超滤膜为基膜,将氧化石墨烯或改性氧化石墨烯加入油相溶液中,经界面聚合法制膜,但超薄聚酰胺层与氧化石墨烯层结合不紧密,且GO负载量较低,吸附作用较低。
目前制备方法得到的氧化石墨烯膜相对致密,水通量较低;此外氧化石墨烯膜浸入水或盐溶液时,容易吸收水分子,导致膜溶胀而发生损坏。本方法利用界面聚合原理制备得到新型吸附功能膜。
发明内容
本发明的目的在于克服传统氧化石墨烯膜易溶胀等缺点,设计一种通量较高、具有较强稳定性的氧化石墨烯复合膜。本发明将纳米颗粒嵌入GO层中,采用界面聚合法将GO与纳米颗粒通过外在化学反应牢固的结合在一起,制得GO复合膜,并用于水中污染物的去除。
本发明采用以下技术方案:一种界面聚合法制备纳米材料复合膜的方法,其特征在于,包含以下步骤:
步骤一:配制氧化石墨烯混悬液、纳米颗粒混悬液用于制备复合膜;
步骤二:配制界面聚合反应的水相溶液与油相溶液;
步骤三:将氧化石墨烯混悬液、纳米颗粒混悬液与水相溶液混合,采用真空抽滤层层自组装法制备纳米材料初生膜。
步骤四:将纳米材料初生膜浸入油相溶液中进行聚合反应,取出晾干,得到稳定的界面聚合纳米材料复合膜;步骤一中纳米颗粒为NaY沸石以及UiO、ZIF、MIL、PCN系列金属有机框架中的一种或几种。
进一步的,所述步骤一中氧化石墨烯与纳米颗粒混悬液质量比为0.1-1:0.1-5。
进一步的,所述步骤二中,水相溶液为哌嗪、间苯二胺、对苯二胺中的一种或几种,浓度为2-10wt%;油相溶液为均苯三甲酰氯、对苯二甲酰氯、间苯二甲酰氯、环己烷三酰氯中的一种或几种,浓度为0.01-10 wt%。
进一步的,所述步骤三中,吸附剂氧化石墨烯混悬液、纳米颗粒混悬液与水相溶液的体积比为0.1-1:0.1-5:0.1-5。
进一步的,所述步骤四中,将纳米材料初生膜在油相溶液中浸泡2~60min,充分反应后取出晾干。
与现有技术相比,本发明的有益效果如下:
本发明的膜中嵌入了纳米颗粒,增加了GO层间距,与纯GO膜相比水通量增大了约20倍,同时界面聚合原理使得GO与ZaY结合更加紧密,达到抑制膜溶胀的效果。与传统的高成本氧化石墨烯膜相比,纳米颗粒的加入降低了氧化石墨烯的用量,从而降低了成本。UiO-66-NH2复合膜中纳米材料本身的-NH2进行界面聚合反应,相比其他混合基质膜UiO-66-NH2复合膜具有更大的吸附材料利用率。本方法制备工艺简便、条件温和、不需要复杂的仪器设备即可制备。
附图说明
图1是 GO/NaY/Nylon复合膜表面电镜图;
图2是GO/NaY/Nylon复合膜截面电镜图;
图3是GO/NaY/Nylon复合膜红外图;
图4是GO/NaY/Nylon复合膜水通量随时间变化的曲线图;
图5是GO/NaY/Nylon复合膜与GO膜在不同溶液中的溶胀度示意图。
具体实施方式
下面通过具体实施方式来进一步说明本发明的技术方案。本领域技术人员应该明了,所述实施例仅仅是帮助理解本发明,不应视为对本发明的具体限制。水相溶液为哌嗪、间苯二胺、对苯二胺中的一种或几种,油相溶液为均苯三甲酰氯、对苯二甲酰氯、间苯二甲酰氯、环己烷三酰氯中的一种或几种。
实施例1:GO/NaY/Nylon复合膜的制备
准确量取1 mL GO混悬液(10 mg·mL-1)、1 mL NaY混悬液(10 mg·mL-1)和3 mL哌嗪溶液(2 wt%)于烧杯中,超声15 min混合,得到GO、NaY质量比为1:1的混合液。将膜过滤装置置于真空泵上,以尼龙膜为支撑层,采用逐层过滤的方式进行抽滤,得到氧化石墨烯初生膜。将初生膜放入60°C烘箱中,烘干2 h,得到稳定且干燥的初生膜。随后将初生膜完全浸入0.15 wt%均苯三甲酰氯溶液中,聚合反应1 h后取出,放于室温条件下晾干,得到稳定的氧化石墨烯复合膜。
实施例2:GO/ZIF-8/Nylon复合膜的制备
准确量取1 mL GO混悬液(10 mg·mL-1)、5 mL ZIF-8混悬液(10 mg·mL-1)和3 mL哌嗪溶液(2 wt%)于烧杯中,超声20 min混合,得到GO、ZIF-8质量比为1:5的混合液。将膜过滤装置置于真空泵上,以尼龙膜为支撑层,采用逐层过滤的方式进行抽滤,得到氧化石墨烯初生膜。将初生膜放入55°C烘箱中,烘干2 h,得到稳定且干燥的初生膜。随后将初生膜完全浸入0.15 wt%均苯三甲酰氯溶液中,聚合反应1 h后取出,放于室温条件下晾干2 h,得到稳定的氧化石墨烯复合膜。
实施例3:GO/UiO-66-NH2/Nylon复合膜的制备
准确称取0.5 g UiO-66-NH2粉末,分散于50mL去离子水中,超声20 min混合均匀得到UiO纳米颗粒混悬液(10 mg·mL-1)。准确量取1 mL GO混悬液(10 mg·mL-1)、3 mLUiO-66-NH2混悬液和3 mL哌嗪溶液(2 wt%)于烧杯中,超声20 min混合均匀,得到GO、UiO-66-NH2质量比为1:3的混合液。将膜过滤装置置于真空泵上,以尼龙膜为支撑层,采用逐层过滤的方式进行抽滤,得到纳米材料初生膜。将初生膜放入55°C烘箱中,烘干2h,得到稳定且干燥的初生膜。随后将初生膜完全浸入0.15 wt%均苯三甲酰氯溶液中,聚合反应1h后取出,放于室温条件下晾干,得到纳米材料复合膜。
实施例4:GO/MIL-101/Nylon复合膜的制备
准确称取0.5 g MIL-101粉末,分散于50mL去离子水中,超声20 min混合均匀得到MIL纳米颗粒混悬液(10 mg·mL-1)。准确量取1 mL GO混悬液(10 mg·mL-1)、4 mL MIL-101混悬液和3 mL哌嗪溶液(2 wt%)于烧杯中,超声20 min混合均匀,得到GO、MIL-101质量比为1:4的混合液。将膜过滤装置置于真空泵上,以尼龙膜为支撑层,采用逐层过滤的方式进行抽滤,得到纳米材料初生膜。将初生膜放入55°C烘箱中,烘干2h,得到稳定且干燥的初生膜。随后将初生膜完全浸入0.15 wt%均苯三甲酰氯溶液中,聚合反应1h后取出,放于室温条件下晾干,得到纳米材料复合膜。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (5)

1.一种界面聚合法制备纳米材料复合膜的方法,其特征在于,包含以下步骤:
步骤一:配制氧化石墨烯混悬液、纳米颗粒混悬液用于制备复合膜;
步骤二:配制界面聚合反应的水相溶液与油相溶液;
步骤三:将氧化石墨烯混悬液、纳米颗粒混悬液与水相溶液混合,采用真空抽滤层层自组装法制备纳米材料初生膜;
步骤四:将纳米材料初生膜浸入油相溶液中进行聚合反应,取出晾干,得到稳定的界面聚合纳米材料复合膜;
所述步骤一中纳米颗粒为NaY沸石以及UiO、ZIF、MIL、PCN系列金属有机框架中的一种或几种。
2.根据权利要求1所述的一种界面聚合法制备纳米材料复合膜的方法,其特征在于,所述步骤一中氧化石墨烯与纳米颗粒质量比为0.1-1:0.1-5。
3.根据权利要求1所述的一种界面聚合法制备纳米材料复合膜的方法,其特征在于,所述步骤二中,水相溶液为哌嗪、间苯二胺、对苯二胺中的一种或几种,浓度为2-10wt%;油相溶液为均苯三甲酰氯、对苯二甲酰氯、间苯二甲酰氯、环己烷三酰氯中的一种或几种,浓度为0.01-10 wt%。
4.根据权利要求1所述的一种界面聚合法制备纳米材料复合膜的方法,其特征在于,所述步骤三中,氧化石墨烯混悬液、纳米颗粒混悬液与水相溶液的体积比为0.1-1:0.1-5:0.1-5。
5.根据权利要求1所述的一种界面聚合法制备纳米材料复合膜的方法,其特征在于,所述步骤四中,将纳米材料初生膜在油相溶液中浸泡2~60 min,充分反应后取出晾干。
CN202210834313.1A 2022-07-16 2022-07-16 一种界面聚合法制备纳米材料复合膜的方法 Active CN115069097B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210834313.1A CN115069097B (zh) 2022-07-16 2022-07-16 一种界面聚合法制备纳米材料复合膜的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210834313.1A CN115069097B (zh) 2022-07-16 2022-07-16 一种界面聚合法制备纳米材料复合膜的方法

Publications (2)

Publication Number Publication Date
CN115069097A true CN115069097A (zh) 2022-09-20
CN115069097B CN115069097B (zh) 2022-11-15

Family

ID=83260247

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210834313.1A Active CN115069097B (zh) 2022-07-16 2022-07-16 一种界面聚合法制备纳米材料复合膜的方法

Country Status (1)

Country Link
CN (1) CN115069097B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105642133A (zh) * 2016-02-03 2016-06-08 河北工业大学 一种聚酰胺/COFs杂化纳滤复合膜及其制备方法
US20180207591A1 (en) * 2017-01-25 2018-07-26 University Of South Carolina Thin Film Composites Having Graphene Oxide Quantum Dots
CN110152503A (zh) * 2019-03-29 2019-08-23 浙江工业大学 一种氧化石墨烯与自具微孔聚合物复合的耐溶剂纳滤膜的制备方法
CN112210081A (zh) * 2020-09-29 2021-01-12 西安建筑科技大学 磺化氧化石墨烯负载金属有机框架改性正渗透纳米复合膜及其制备方法
CN113522038A (zh) * 2021-07-27 2021-10-22 华北理工大学 一种用于去除水中污染物的复合膜制备方法及应用
CN114073898A (zh) * 2021-11-18 2022-02-22 江南大学 一种二维MOFs作中间层的正渗透膜及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105642133A (zh) * 2016-02-03 2016-06-08 河北工业大学 一种聚酰胺/COFs杂化纳滤复合膜及其制备方法
US20180207591A1 (en) * 2017-01-25 2018-07-26 University Of South Carolina Thin Film Composites Having Graphene Oxide Quantum Dots
CN110152503A (zh) * 2019-03-29 2019-08-23 浙江工业大学 一种氧化石墨烯与自具微孔聚合物复合的耐溶剂纳滤膜的制备方法
CN112210081A (zh) * 2020-09-29 2021-01-12 西安建筑科技大学 磺化氧化石墨烯负载金属有机框架改性正渗透纳米复合膜及其制备方法
CN113522038A (zh) * 2021-07-27 2021-10-22 华北理工大学 一种用于去除水中污染物的复合膜制备方法及应用
CN114073898A (zh) * 2021-11-18 2022-02-22 江南大学 一种二维MOFs作中间层的正渗透膜及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NA SONG ET AL.: "Doping MIL-101(Cr)@GO in polyamide nanocomposite membranes with improved water flux", 《DESALINATION》 *

Also Published As

Publication number Publication date
CN115069097B (zh) 2022-11-15

Similar Documents

Publication Publication Date Title
Meng et al. A high-flux mixed matrix nanofiltration membrane with highly water-dispersible MOF crystallites as filler
Liu et al. Thin film nanocomposite reverse osmosis membrane incorporated with UiO-66 nanoparticles for enhanced boron removal
Zhao et al. In-situ growth of polyvinylpyrrolidone modified Zr-MOFs thin-film nanocomposite (TFN) for efficient dyes removal
Li et al. Metal–organic frameworks based membranes for liquid separation
Wang et al. Ceramic tubular MOF hybrid membrane fabricated through in situ layer‐by‐layer self‐assembly for nanofiltration
Fu et al. Enhanced flux and fouling resistance forward osmosis membrane based on a hydrogel/MOF hybrid selective layer
CN102794116B (zh) 介孔二氧化硅球-聚合物纳米复合纳滤膜及其制备方法
Xing et al. MOFs self-assembled molecularly imprinted membranes with photoinduced regeneration ability for long-lasting selective separation
Qu et al. A review of graphene-oxide/metal–organic framework composites materials: characteristics, preparation and applications
CN104209021A (zh) 一种zif-8型金属-有机骨架材料改性的芳香族聚酰胺膜的制备方法
CN111744367A (zh) 一种纳米材料和mof共同改性有机膜的制备方法及应用
CN108816058B (zh) 一种大黄素分子印迹二氧化钛纳米粒子复合膜及其制备方法与应用
CN109603563B (zh) 一种锌配位有机纳米粒子杂化聚酰胺膜的制备方法
Xiao et al. MOFs-mediated nanoscale Turing structure in polyamide membrane for enhanced nanofiltration
CN111282405A (zh) 一种改性金属有机骨架纳米片及其制备方法
CN111921387A (zh) 聚多巴胺修饰咪唑基纳米粒子复合纳滤膜的制备方法
CN110961132A (zh) 一种c3n4改性有机膜的制备方法及应用
Yin et al. Preparation of Metal–organic framework/polyvinylidene fluoride mixed matrix membranes for water treatment
Dong et al. Mesoporous hollow nanospheres with amino groups for reverse osmosis membranes with enhanced permeability
Mahmoud et al. Water-stable metal-organic framework/amine-modified silica/poly (piperazine-cresol) hybrids for efficient uptake of La (III) ions
Wang et al. Preparation of egg white@ zeolitic imidazolate framework-8@ polyacrylic acid aerogel and its adsorption properties for organic dyes
Ji et al. Organic solvent-free constructing of stable zeolitic imidazolate framework functional layer enhanced by halloysite nanotubes and polyvinyl alcohol on polyvinylidene fluoride hollow fiber membranes for treating dyeing wastewater
Dai et al. Innovative construction of nano-wrinkled polyamide membranes using covalent organic framework nanoflowers for efficient desalination and antibiotic removal
CN114016285A (zh) 一种用于海水淡化的功能纳米纤维膜的制备方法
Lei et al. The metal organic framework of UiO-66-NH2 reinforced nanofiltration membrane for highly efficient ion sieving

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant