CN115055158B - 一种可高效磁分离的金属离子改性沸石的合成方法 - Google Patents

一种可高效磁分离的金属离子改性沸石的合成方法 Download PDF

Info

Publication number
CN115055158B
CN115055158B CN202210684737.4A CN202210684737A CN115055158B CN 115055158 B CN115055158 B CN 115055158B CN 202210684737 A CN202210684737 A CN 202210684737A CN 115055158 B CN115055158 B CN 115055158B
Authority
CN
China
Prior art keywords
zeolite
magnetic
metal ion
ions
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210684737.4A
Other languages
English (en)
Other versions
CN115055158A (zh
Inventor
李建军
王磊
胡嘉琪
胡天玉
周钆瀚
张占群
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui University of Science and Technology
Original Assignee
Anhui University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui University of Science and Technology filed Critical Anhui University of Science and Technology
Priority to CN202210684737.4A priority Critical patent/CN115055158B/zh
Publication of CN115055158A publication Critical patent/CN115055158A/zh
Application granted granted Critical
Publication of CN115055158B publication Critical patent/CN115055158B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/165Natural alumino-silicates, e.g. zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/42Materials comprising a mixture of inorganic materials
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/105Phosphorus compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

本发明公开了一种可高效磁分离的金属离子改性沸石的合成方法,属于新材料领域;一种可高效磁分离的金属离子改性沸石的合成方法,通过湿法共球磨法制备磁性金属离子改性沸石的方法将微米级沸石颗粒、磁性矿粉颗粒与目标金属离子的可溶性盐进行混合,并添加适量的球磨助剂,按照一定的球磨制度进行湿法共球磨;磁分离磁性产物后进行清洗烘干,即可获得强磁性金属离子改性的沸石颗粒,金属离子掺杂浓度在3%‑45%范围内可调。本发明方法不但对沸石赋磁,使其可以高效磁分离,而且实现了沸石中金属离子的可控掺杂和功能化。

Description

一种可高效磁分离的金属离子改性沸石的合成方法
一、技术领域
本发明涉及新材料领域,涉及一种可高效磁分离的金属离子改性沸石的合成方法,具体地说是一种利用湿法共球磨发制备磁性金属离子改性沸石的方法。
二、背景技术
沸石具有均匀性的多孔材料通道和空腔、高比表面积、良好的热稳定性、强离子交换性能等特性,在工业生产和环保产业中广泛用于各种多相催化过程和吸附过程。通过金属元素改性可使分子筛催化剂产生多功能性,金属改性沸石在吸附过程和催化反应中表现出优异的催化活性与选择性。这些优异性能归因于分子筛上B酸位(酸性质子)与金属活性位点(Lewis酸)之间协同作用的结果。因此对沸石进行阳离子掺杂,尤其是过渡族金属、稀土金属的掺杂至关重要。沸石中的阳离子掺杂主要通过离子交换的方式实现,目前主要工艺是化学浸渍法。公开号为CN109772263A的专利通过在金属盐溶液中浸渍的方法实对沸石吸附剂进行阳离子交换改性。公开号为CN110743492A的专利通过分步浸渍的方法对低硅八面沸石进行多价阳离子、锂离子交换制备了混有多价阳离子的锂型低硅八面沸石。公开号为CN110170338A的专利,通过分步浸渍并控制微结晶的方法制备了Zr-Cu改性沸石双功能沸石离子交换剂。虽然浸渍法可实现金属离子在沸石中的掺杂,但其仅利用溶液中金属离子与沸石中A位Na、K、Mg、Ca离子的自由交换作用,因此掺杂效率较低且生产工艺具有显著的缺点。(1)耗时长、工艺复杂。沸石在金属盐溶液中的浸渍在几小时到几十小时,浸渍后需要固液分离、清洗等附加步骤;如需提高掺杂比例则需要更多时间。(2)产品性质不稳定,工业生产困难。浸渍过程的离子交换是可逆过程,因此所得掺杂沸石中的金属离子容易在使用过程中流失,劣化产品性能。(3)化学废液产生量大,环境负荷高。
同时,沸石吸附剂和催化剂在工业生产中通常在液体条件下使用,由于其粒径小,因此很难固液分离,这不仅将严重影响了沸石的循环利用,而且大大推高了生产成本。如果将沸石磁性化,则可以利用磁分离技术实现其高效固液分离。
三、发明内容
本发明是为避免上述浸渍法制备金属离子掺杂沸石的不足,提供一种高效的金属离子掺杂的工艺方法,同时对沸石赋磁,使其可高效磁分离。与掺杂金属离子发生离子交换的是沸石中A位的Na、Mg、K、Ca等离子,由于掺杂离子多为过渡族金属、稀土金属离子,离子半径大,因此离子置换需要较大能量。本发明采用湿法高能球磨的方法对掺杂离子进行赋能,从而提升离子交换效率;在球磨原料中加入磁性矿粉,可同时实现磁性颗粒与沸石的复合。此方法制备的沸石由于金属掺杂离子在沸石分子笼中更加稳定,因此可结构更加安全;再加上可方便的利用磁分离进行固液分离回收,因此可大大提升沸石药剂的循环利用性能。
本发明一种可高效磁分离的金属离子改性沸石的合成方法,
步骤1:将天然沸石或人工沸石烘干后破碎筛分,获得粒径5-200μm的沸石颗粒。将磁性矿粉破碎筛分,获得10-75μm的磁性矿粉颗粒。
步骤2:将目标金属离子的可溶性盐按照设定掺杂比例值的1.2倍与沸石颗粒及磁性矿粉颗粒共混,并加入球磨助剂,混合均匀。
步骤3:在球磨机或砾磨机中,以钢球或石球为球磨介质(大球:中球:小球=(2-4):(8-10):(60-100)),在球料比为(5-12):1的条件下,以150-450r/min湿法共球磨2-16h。
步骤4:利用磁分离技术将球磨产物中的磁性颗粒分离处理,用水或乙醇清洗后烘干,即可获得磁性金属离子掺杂的纳米沸石颗粒。
优选地,所述磁性矿粉是指磁铁矿、粉煤灰磁珠或其它强磁性铁氧体材料的粉体。
优选地,所述金属离子掺杂比例的计算方法:以A(x/q)[(AlO2)x(SiO2)y]n(H2O)为沸石分子式,掺杂比例以金属离子与Al的摩尔比值计算,金属离子真实掺杂比例:二价金属5%-45%;三价离子2%-30%。如果两种金属离子共掺杂,掺杂比例在单金属离子掺杂范围内可调。
优选地,所述球磨助剂是指乙醇、水或二者的混合物,干物料与球磨助剂的质量比例为1:(1.5-3.5)。
技术效果
与已有技术相比,本发明技术方法具有以下优势:
1、离子交换动力强,掺杂效率高,适用于大半径金属离子掺杂,掺杂比例大。
2、金属离子改性和磁性化一步完成,工艺简单,成本低廉,易于工业化生产;本发明方法将沸石的两种改性过程在一步内完成,工艺简单,经简单改造后即可进行工业生产。所得离子掺杂沸石依据掺杂阳离子种类不同可具有选择性吸附、高级氧化催化、化学催化等性能,磁分离效率>98%,在环保、化工、催化合成、温室气体转化等领域具有广泛应用潜力。
3、湿法球磨工艺为物理赋能方法,产生废液少,绿色环保。
四、附图说明
下面结合附图和实施例对本发明进一步说明。
图1为Zr掺杂改性磁性沸石的扫描电镜图和EDS能谱面扫描图。
图2为Zr掺杂改性磁性沸石的XRD谱图。
图3为Zr掺杂改性磁性沸石的室温磁滞回线图。
五、具体实施方式
以下结合附图及实施例对本发明做进一步详细描述。
实施例1:
1、沸石及磁性矿粉的制备与预处理
(1)利用矸石制备NaA沸石。将200目煤矸石在800℃下煅烧2h后与NaOH混合研磨均匀,再在400℃煅烧2h,然后加入一定量的硅酸钠或铝酸钠调节硅铝比。在110℃下水热反应6小时。分离固体产物、洗涤干燥后即得NaA沸石。将NaA沸石进行研磨,使其粒径处于-74μm范围内,密封备用。(2)将磁铁矿粉(磁性物含量>98%)研磨至-74μm,密封备用。
2、磁性Zr离子掺杂沸石的制备
将Na-A沸石、磁铁矿粉(Fe3O4)和氧氯化锆(ZrOCl2·8H2O)以6:2:1的质量比混合,配置为混合物料。将混合物料置于钢罐中,以钢球为球磨介质(大球:中球:小球=4:10:80),在球料比为8:1的条件下,将一定质量的物料与30mL的无水乙醇混合后,通过高能球磨法在200r/min球磨5小时。
3、烘干及后处理
利用手磁块将产物中的磁性颗粒分离出来,用水清洗2遍,在105℃下真空干燥2小时,即得磁性Zr离子掺杂沸石。如图1所示,从图中可以看出,改性沸石颗粒粒径范围在60-200nm,掺杂的Fe3O4和Zr离子都均匀发布于沸石颗粒中。
结合图2和图3所示,图2为Zr掺杂改性磁性沸石的XRD谱,可知球磨过程中Zr离子与沸石中的Na离子发生了离子交换,因此产物中出现了NaCl,清洗后NaCl被完全去除。图3为Zr掺杂改性磁性沸石的室温磁滞回线,可知其具有强磁性,可在磁场中实现高效固液分离。
实施例2:
利用磁性Zr离子掺杂沸石对实验室配置的PO4 3-模拟污水进行吸附处理实验。结果显示,在改性沸石添加量为质量比1‰、慢速搅拌吸附10min的条件下,PO4 3-离子的比吸附量为42.15mg/g,磁分离效率>98%,沸石中吸附的PO4 3-离子解吸附比例大于95%。磁性Zr离子掺杂沸石经5次循环利用后,比吸附量仍大于40.11mg/g,说明其结构与性能非常稳定。
下表为Zr掺杂改性磁性沸石的时间-吸附量磷吸附数据表,其中包含热力学吸附模型的线性数据;
从表中可以看出Zr掺杂改性磁性沸石的磷吸附性能最佳,比吸附量可达沸石颗粒的6倍以上。磷吸附机理为化学吸附,说明掺杂离子在磷吸附过程中起主要作用。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (4)

1.一种可高效磁分离的金属离子改性沸石的合成方法,其特征在于:
步骤1:将天然沸石或人工沸石烘干后破碎筛分,获得粒径5-200μm的沸石颗粒;将磁性矿粉破碎筛分,获得10-75μm的磁性矿粉颗粒;
步骤2:将目标金属离子的可溶性盐按照设定掺杂比例值的1.2倍与沸石颗粒及磁性矿粉颗粒共混,并加入球磨助剂,混合均匀;
将Na-A沸石、磁铁矿粉和氧氯化锆以6:2:1的质量比混合,配置为混合物料;
步骤3:在球磨机或砾磨机中,以钢球或石球为球磨介质,大球:中球:小球=(2-4):(8-10):(60-100),在球料比为(5-12):1的条件下,以150-450 r/min湿法共球磨2-16 h;
球磨过程中Zr离子与沸石中的Na离子发生离子交换,制备的沸石由于金属掺杂离子在沸石分子笼中更加稳定,因此结构更加安全;
步骤4:利用磁分离技术将球磨产物中的磁性颗粒分离处理,用水或乙醇清洗后烘干,即可获得磁性金属离子掺杂的纳米沸石颗粒;
利用磁性金属离子掺杂的纳米沸石颗粒对污水进行吸附处理,磁性金属离子掺杂的纳米沸石颗粒经5次循环利用后,比吸附量仍大于40.11mg/g。
2.根据权利要求1所述的一种可高效磁分离的金属离子改性沸石的合成方法,其特征在于:所述磁性矿粉是指磁铁矿、粉煤灰磁珠或其它强磁性铁氧体材料的粉体。
3.根据权利要求1所述的一种可高效磁分离的金属离子改性沸石的合成方法,其特征在于:所述金属离子掺杂比例的计算方法:以A(x/q)[ (AlO2)x (SiO2)y ] n(H2O)为沸石分子式,掺杂比例以金属离子与Al的摩尔比值计算,金属离子真实掺杂比例:二价金属5%-45%;三价离子2%-30%;如果两种金属离子共掺杂,掺杂比例在单金属离子掺杂范围内可调。
4.根据权利要求1所述的一种可高效磁分离的金属离子改性沸石的合成方法,其特征在于:所述球磨助剂是指乙醇、水或二者的混合物,干物料与球磨助剂的质量比例为1:(1.5-3.5)。
CN202210684737.4A 2022-06-17 2022-06-17 一种可高效磁分离的金属离子改性沸石的合成方法 Active CN115055158B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210684737.4A CN115055158B (zh) 2022-06-17 2022-06-17 一种可高效磁分离的金属离子改性沸石的合成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210684737.4A CN115055158B (zh) 2022-06-17 2022-06-17 一种可高效磁分离的金属离子改性沸石的合成方法

Publications (2)

Publication Number Publication Date
CN115055158A CN115055158A (zh) 2022-09-16
CN115055158B true CN115055158B (zh) 2023-11-21

Family

ID=83202039

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210684737.4A Active CN115055158B (zh) 2022-06-17 2022-06-17 一种可高效磁分离的金属离子改性沸石的合成方法

Country Status (1)

Country Link
CN (1) CN115055158B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102117909A (zh) * 2009-12-30 2011-07-06 比亚迪股份有限公司 一种正极材料及其制备方法
CN106311126A (zh) * 2016-10-14 2017-01-11 安徽理工大学 一种基于镧负载粉煤灰磁珠的磁性磷吸附剂合成方法
CN111298764A (zh) * 2020-03-09 2020-06-19 安徽理工大学 一种利用煤矸石制备磁性吸附剂的方法
CN111318252A (zh) * 2020-03-09 2020-06-23 安徽理工大学 一种两步法制备煤矸石磁性吸附剂的方法
CN113457718A (zh) * 2021-06-25 2021-10-01 复旦大学 一种磁性功能沸石分子筛催化剂及其制备方法
CN113461026A (zh) * 2021-07-09 2021-10-01 盐城工学院 一种用于高盐废液的沸石型除磷剂制备方法与应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8945392B2 (en) * 2012-09-19 2015-02-03 Red Lion Chem Tech, Llc Composite for phosphate and ammonium ion removal

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102117909A (zh) * 2009-12-30 2011-07-06 比亚迪股份有限公司 一种正极材料及其制备方法
CN106311126A (zh) * 2016-10-14 2017-01-11 安徽理工大学 一种基于镧负载粉煤灰磁珠的磁性磷吸附剂合成方法
CN111298764A (zh) * 2020-03-09 2020-06-19 安徽理工大学 一种利用煤矸石制备磁性吸附剂的方法
CN111318252A (zh) * 2020-03-09 2020-06-23 安徽理工大学 一种两步法制备煤矸石磁性吸附剂的方法
CN113457718A (zh) * 2021-06-25 2021-10-01 复旦大学 一种磁性功能沸石分子筛催化剂及其制备方法
CN113461026A (zh) * 2021-07-09 2021-10-01 盐城工学院 一种用于高盐废液的沸石型除磷剂制备方法与应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
La-containing magnetic zeolite synthesized from gangue by ball-milling method;Linlin Song et al.;《Materials Letters》;第303卷;摘要、第2节 *
粉煤灰磁性吸附剂的制备及磷吸附机理;李建军 等;《无机化学学报》;第34卷(第8期);第1456页引言 *
锆改性沸石对水中磷酸盐和铵的吸附特性;林建伟 等;《中国环境科学》;第32卷(第11期);第2023-2031页 *

Also Published As

Publication number Publication date
CN115055158A (zh) 2022-09-16

Similar Documents

Publication Publication Date Title
Chen et al. A review on emerging composite materials for cesium adsorption and environmental remediation on the latest decade
Niu et al. Preparation of sulphate aluminate cement amended bentonite and its use in heavy metal adsorption
Lei et al. Facile fabrication of metakaolin/slag-based zeolite microspheres (M/SZMs) geopolymer for the efficient remediation of Cs+ and Sr2+ from aqueous media
Hu et al. Synthesis of zeolites Na-A and Na-X from tablet compressed and calcinated coal fly ash
Sun et al. Efficient adsorption of Cu (II), Pb (II) and Ni (II) from waste water by PANI@ APTS-magnetic attapulgite composites
CN101370737A (zh) 含纳米材料的水处理组合物
Zhang et al. Coal fly ash/CoFe 2 O 4 composites: a magnetic adsorbent for the removal of malachite green from aqueous solution
CN104437355A (zh) 一种基于粉煤灰的CuO-CeO2/FAU脱硫剂的制备方法
Yuan et al. Morphology-controlled synthesis and sulfur modification of 3D hierarchical layered double hydroxides for gaseous elemental mercury removal
CN111871391B (zh) 聚乙烯醇/氧化石墨烯/二氧化锰吸附剂的制备及应用
CN105854744A (zh) 一种磁性纳米颗粒/SiO2气凝胶及其制备方法以及处理高放废液的方法
KR20220112802A (ko) 나트륨 페라이트 입자 분말 및 그 제조 방법
Uddin et al. Adsorptive removal of pollutants from water using magnesium ferrite nanoadsorbent: a promising future material for water purification
Cheng et al. Efficient and stable removal of phosphate from aqueous solutions by hollow microspheres of MgO/ZrO2 composite oxide
Shichalin et al. Study of adsorption and immobilization of Cs+, Sr2+, Co2+, Pb2+, La3+ ions on Na-Faujasite zeolite transformed in solid state matrices
Li et al. Investigation of the adsorption characteristics of Cr (VI) onto fly ash, pine nut shells, and modified bentonite
CN111318252A (zh) 一种两步法制备煤矸石磁性吸附剂的方法
Kang et al. Renewable conversion of coal gangue to 13-X molecular sieve for Cd2+-containing wastewater adsorption performance
Zhang et al. Alkali-activated cements for photocatalytic degradation of organic dyes
CN100413783C (zh) 4a型沸石分子筛及其制备方法
CN115055158B (zh) 一种可高效磁分离的金属离子改性沸石的合成方法
CN111659339A (zh) 负载LDHs的分层纳米空心微球NiSiO@NiAlFe吸附剂的制备方法及其应用
Mobtaker et al. Magnetic CuHCNPAN nano composite as an efficient adsorbent for strontium uptake
CN111298764A (zh) 一种利用煤矸石制备磁性吸附剂的方法
CN107522276B (zh) 一种水体除氟剂的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant