CN115053914B - 一种Fe3O4@SiO2@mTiO2@Ag-四环素的制备方法 - Google Patents

一种Fe3O4@SiO2@mTiO2@Ag-四环素的制备方法 Download PDF

Info

Publication number
CN115053914B
CN115053914B CN202210200753.1A CN202210200753A CN115053914B CN 115053914 B CN115053914 B CN 115053914B CN 202210200753 A CN202210200753 A CN 202210200753A CN 115053914 B CN115053914 B CN 115053914B
Authority
CN
China
Prior art keywords
sio
mtio
tetracycline
preparation
steps
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210200753.1A
Other languages
English (en)
Other versions
CN115053914A (zh
Inventor
郭少波
李琛
卢久富
徐海涛
史娟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi University of Technology
Original Assignee
Shaanxi University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Technology filed Critical Shaanxi University of Technology
Priority to CN202210200753.1A priority Critical patent/CN115053914B/zh
Publication of CN115053914A publication Critical patent/CN115053914A/zh
Application granted granted Critical
Publication of CN115053914B publication Critical patent/CN115053914B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N37/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
    • A01N37/18Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing the group —CO—N<, e.g. carboxylic acid amides or imides; Thio analogues thereof
    • A01N37/22Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing the group —CO—N<, e.g. carboxylic acid amides or imides; Thio analogues thereof the nitrogen atom being directly attached to an aromatic ring system, e.g. anilides
    • A01N37/24Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing the group —CO—N<, e.g. carboxylic acid amides or imides; Thio analogues thereof the nitrogen atom being directly attached to an aromatic ring system, e.g. anilides containing at least one oxygen or sulfur atom being directly attached to the same aromatic ring system
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N55/00Biocides, pest repellants or attractants, or plant growth regulators, containing organic compounds containing elements other than carbon, hydrogen, halogen, oxygen, nitrogen and sulfur
    • A01N55/02Biocides, pest repellants or attractants, or plant growth regulators, containing organic compounds containing elements other than carbon, hydrogen, halogen, oxygen, nitrogen and sulfur containing metal atoms
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Compounds Of Iron (AREA)

Abstract

本发明公开了一种Fe3O4@SiO2@mTiO2@Ag‑四环素的制备方法,解决有机抗生素耐药问题,以有机抗生素特有的大分子结构中含有的氨基和羟基官能团为配体,用纳米Ag可与氨基和羟基发生配位的原理制备高效且不产生耐药的抑菌剂Fe3O4@SiO2@mTiO2@Ag‑四环素。与现有技术相比,本发明以磁性四氧化三铁为核,在外磁场作用下易回收,且Fe3O4、SiO2、mTiO2具有更高的生物相容性,介孔结构可为Ag与四环素配位复合提供更多的结合位点,具有推广应用的价值。

Description

一种Fe3O4@SiO2@mTiO2@Ag-四环素的制备方法
技术领域
本发明涉及一种无机协同有机复合抑菌材料,尤其涉及一种Fe3O4@SiO2@mTiO2@Ag-四环素的制备方法。
背景技术
有机抑菌剂四环素由于对革兰氏阳性菌、阴性菌、病毒等都具有强的抑制活性,且价格低、作用范围广、副作用小、靶向性强等优点被广泛用于临床和养殖业等领域。四环素作为重要四环素类抑菌剂其抑菌机制为:其作为多羟基化合物由于分子量小于600D可通过离子通道蛋白进入细胞内部与核糖体作用,特异性的结合核糖体70S中的30S亚基上16sRNA的A部位(氨酰基部位),使氨酰-tRNA的反密码子不能在A部位和mRNA结合,可有效阻断肽链的延长而具有强的杀菌性。但随着四环素的泛滥使用诱导细菌质粒中抗性基因表达而产生大量的耐药菌,致使四环素的药用价值和行业发展受到一定的制约。目前解决方案之一是结合具有不产生耐药性的无机抑菌剂来提高四环素的药用价值。
纳米银(Ag NPs)作为重要的杀菌剂因具有广谱抑菌且不产生耐药的特性被广泛应用于生物和医用材料等领域。纳米Ag的抑菌机制概括为:(1)细菌细胞壁中的磷壁酸和脂多糖中含有大量的羧基和酚羟基,构成细菌细胞壁的空间结构且带有大量的负电荷,纳米Ag在介质中释放电子产生Ag+,Ag+通过静电吸附在细菌细胞壁表面,破坏了细胞壁的空间结构;(2)Ag+可通过铜离子通道蛋白(Ag+和Cu+由于d轨道相似),结合通道蛋白中的硫铁簇,破坏细菌的离子通道;(3)细菌离子通道蛋白中部分通道蛋白允许小于3nm的纳米Ag通过,进入细菌内部,Ag和细胞质结合产生活性氧簇(ROS)和Ag+,ROS具有强氧化性可破坏细菌重要细胞器,且Ag+游离在细胞质中破坏细胞内外的渗透压平衡,或特异性结合含巯基蛋白或氨基酸,破坏蛋白质的二级结构,以上均可对细菌产生不可逆损伤且不产生耐药。但Ag NPs的抑菌活性和比表面积有关,原则上比表面积越大,抑菌活性越强,但表面能越高,越易团聚,且回收难等缺点限制其发展。为此我们以Fe3O4为核,用SiO2对其表面进行修饰,用具有较高生物相容性的介孔TiO2(mTiO2)包覆Fe3O4@SiO2,将约为4nm Ag负载在Fe3O4@SiO2@mTiO2表面合成磁性核壳型Fe3O4@SiO2@mTiO2@Ag复合材料,协同市售四环素研究其抑菌活性和机制。现有技术的四环素抑菌剂,抑菌活性低,回收难,复合其他有机抗生素协同用药在临床领域,其结果易产生耐药菌。
发明内容
本发明的目的就在于为了解决上述问题而提供一种Fe3O4@SiO2@mTiO2@Ag-四环素的制备方法。解决有机抗生素耐药问题,以有机抗生素特有的大分子结构中含有的氨基和羟基官能团为配体,用纳米Ag可与氨基和羟基发生配位的原理制备高效且不产生耐药的抑菌剂Fe3O4@SiO2@mTiO2@Ag-四环素。
本发明通过以下技术方案来实现上述目的:
本发明包括以下步骤:
S1:Fe3O4的制备:氯化铁加入到乙二醇中形成透明溶液,随后NaAc和柠檬酸钠加到上述透明溶液中超声分散均匀,把混合液转移至不锈钢高压釜的聚四氟乙烯内胆里,反应得到Fe3O4,反应结束后,把反应釜在室温下冷却,产物黑色固体用超纯水和乙醇洗涤数次,然后真空干燥;
S2:Fe3O4@SiO2的制备:Fe3O4溶解在超纯水中和乙醇中超声,再加入氨水搅拌成混合溶液,正硅酸乙酯加入上述混合溶液中反应合成Fe3O4@SiO2,产物用超纯水和乙醇洗涤数次,真空干燥箱中干燥;
S3:Fe3O4@SiO2@TiO2的制备:取干燥的Fe3O4@SiO2分散在乙醇和乙腈,超声分散均匀,在滴加去离子水、甲胺,搅拌后逐滴加入钛酸异丙酯反应后,用去离子水洗涤,真空干燥得到核壳型复合材料Fe3O4@SiO2@TiO2
S4:Fe3O4@SiO2@mTiO2的制备:取Fe3O4@SiO2@TiO2加入到超纯水中,再依次加入乙醇和氨水超声分散均匀,将混合液转移至不锈钢高压釜的聚四氟乙烯内胆里,反应得到Fe3O4@SiO2@mTiO2,产物用蒸馏水和乙醇洗涤数次,烘干备用;
S5:Ag溶胶的制备:AgNO3和柠檬酸钠等体积混合配成溶液,搅拌后再入硼氢化钠,溶液变成亮黄色为产物Ag溶胶;
S6:Fe3O4@SiO2@mTiO2表面修饰:取Fe3O4@SiO2@mTiO2加入到异丙醇中搅拌,随后加入三氨丙基三甲氧基硅烷回流,等冷却至室温后用超纯水洗涤5次备用;
S7:Fe3O4@SiO2@mTiO2@Ag的制备:步骤S6修饰过的Fe3O4@SiO2@mTiO2加入蒸馏水,在加入Ag溶胶,超声后静置吸附,重复数次,得到产物Fe3O4@SiO2@mTiO2@Ag,将产物用蒸馏水洗涤数次,在真空干燥箱中干燥;
S8:Fe3O4@SiO2@mTiO2@Ag-四环素的制备:取Fe3O4@SiO2@mTiO2@Ag加入到盐酸四环素中超声,陈化后用得到Fe3O4@SiO2@mTiO2@Ag-四环素,用超纯水洗涤,烘干备用。
本发明的有益效果在于:
本发明是一种Fe3O4@SiO2@mTiO2@Ag-四环素的制备方法,与现有技术相比,本发明以磁性四氧化三铁为核,在外磁场作用下易回收,且Fe3O4、SiO2、mTiO2具有更高的生物相容性,介孔结构可为Ag与四环素配位复合提供更多的结合位点,具有推广应用的价值。
附图说明
图1是Fe3O4@SiO2@mTiO2@Ag-四环素透射电镜分析结果;
图2是Fe3O4@SiO2@mTiO2@Ag-四环素X射线衍射分析结果;
图3是Fe3O4@SiO2@mTiO2@Ag-四环素光电子能谱分析结果;
图4是Fe3O4@SiO2@mTiO2@Ag-四环素磁饱和强度光谱结果;
图5是Fe3O4@SiO2@mTiO2@Ag-四环素紫外吸收光谱结果;
图6是材料Fe3O4@SiO2@mTiO2@Ag-四环素浓度为20μg/mL,0/2/5/10/20/40min时菌落计数抑菌结果;
图7是材料在浓度在2μg/mL,5μg/mL,10μg/mL,20μg/mL,40μg/mL和80μg/mL时对耐四环素药菌沙门氏菌抑菌结果。
具体实施方式
下面结合附图对本发明作进一步说明:
本发明包括以下步骤:
Fe3O4的制备:3.2mM的氯化铁加入到乙二醇中形成透明溶液,随后NaAc和柠檬酸钠0.6g加到上述溶液中超声分散均匀,把混合液转移至25mL不锈钢高压釜的聚四氟乙烯内胆里,200℃反应12h得到Fe3O4,反应结束后,把反应釜在室温下冷却,产物黑色固体用超纯水和乙醇洗涤数次,然后在70℃真空干燥箱中干燥10h。
Fe3O4@SiO2的制备:100mg的Fe3O4溶解在10mL超纯水中和30mL乙醇中超声20min,再加入0.4mL氨水搅拌20min,0.3mL的正硅酸乙酯加入上述溶液中反应2h合成Fe3O4@SiO2,产物用超纯水和乙醇洗涤数次,70℃真空干燥箱中干燥8h
Fe3O4@SiO2@TiO2的制备:取150mg干燥的Fe3O4@SiO2分散在120mL的乙醇和80mL的乙腈,超声分散均匀,在滴加0.72mL的去离子水,0.21mL的甲胺,搅拌20min后逐滴加入1.775mL的钛酸异丙酯反应2h后,用去离子水洗涤3次,50℃真空干燥10h得到核壳型复合材料Fe3O4@SiO2@TiO2
Fe3O4@SiO2@mTiO2的制备:取250mg of Fe3O4@SiO2@TiO2加入到34mL超纯水中,再依次加入67mL乙醇和0.6mL氨水超声20min分散均匀,将混合液转移至不锈钢高压釜的聚四氟乙烯内胆里,160℃反应10h得到Fe3O4@SiO2@mTiO2,产物用蒸馏水和乙醇洗涤数次,烘干备用。
6nm的Ag溶胶的制备:0.5mM的AgNO3和0.5mM的柠檬酸钠等体积混合配成溶液,搅拌10min后再入3mL 10mM的硼氢化钠,30s后溶液变成亮黄色为产物Ag溶胶。
Fe3O4@SiO2@mTiO2表面修饰:取50mg的Fe3O4@SiO2@mTiO2加入到80mL的异丙醇中搅拌30min,随后加入0.4mL三氨丙基三甲氧基硅烷70℃回流,等冷却至室温后用超纯水洗涤5次备用。
Fe3O4@SiO2@mTiO2@Ag的制备:把上述修饰过的Fe3O4@SiO2@mTiO2加入10mL蒸馏水,在加入10mL Ag溶胶,超声20min后静置吸附30min,重复数次,得到产物Fe3O4@SiO2@mTiO2@Ag,将产物用蒸馏水洗涤数次,在50℃真空干燥箱中干燥10h.
Fe3O4@SiO2@mTiO2@Ag-四环素的制备:取Fe3O4@SiO2@mTiO2@Ag 50mg加入到50mL1mg/mL的盐酸四环素中超声30min,陈化8h后用得到Fe3O4@SiO2@mTiO2@Ag-四环素,用超纯水洗涤4次,50℃烘干备用。
抑菌实验:
材料的抑菌活性用耐四环素沙门氏菌等来监测,耐药沙门氏菌为37℃下活化的指数期细菌,所用的LB培养基超纯水、生理盐水、磷酸缓冲液等生物材料均在高压灭菌锅(121℃,20min)下灭菌,均在37℃的生化培养箱中培养。
滤纸片扩散实验:
用无菌的纳米材料分散在灭过菌的超纯水中,制备成浓度为2μg/mL,5μg/mL,10μg/mL,20μg/mL,40μg/mL,80μg/mL的梯度的溶液。将隔夜活化好的细菌用无菌生理盐水稀释成5×107CFU(colony-forming units)/mL,取100μL均匀涂在灭过菌的固体LB培养基上,取8μL沾有不同材料的抑菌液放置在接过菌的LB培养基上培养12h,平行做6组观察结果。得到最佳抑菌浓度后,以市售波尔多液抑菌活性为参照,对比复合材料的抑菌活性。
菌落计数法实验:
将纳米材料加入到5×105CFU/mL菌悬液中,最终质量浓度为20g/mL,分别混合0min、2min、5min、10min、20min、40min、,磁分离取上层液10μL均匀涂在灭过菌的固体LB培养基上培养12h,平行做6组观察结果[18],抑菌效率(n)为
式中:n代表抑菌效率,B0为参照中菌落个数,B是含有不同材料的抑菌结果菌落数。
细菌生长曲线监测法实验
未检测材料对细菌生长阶段的具体影响,我们用微量热分析检测细菌在适应期,对数期。稳定期和衰退期的释放热量强度的变化来分析材料的抑菌活性,细菌释放热量越多,说明细菌生长活性越强。为此将材料和接过菌的液体LB培养基混合配成5mL溶液,最终细菌浓度为5×107CFU,材料浓度为300μg/mL,37℃下监测细菌的生长和热量释放强度。
细菌PI染色法实验
为了测试细菌细胞细胞膜破坏的完整程度,使用碘化丙啶(PI)作为DNA染色剂。正常的细菌,由于细胞膜完整,不允许PI渗透而没有颜色,另外,如果出现红色,代表细菌受损或者死亡,细胞膜被破坏,PI染色剂进入细菌内部和DNA作用而显示红色荧光。为此,将上述混合液加入50μg/mL的碘化丙啶(PI)50μL黑暗环境下混合15min,在13000r/min的离心机下,用磷酸缓冲液洗涤3次,在荧光倒置显微镜下观察细菌的损伤情况。
哺乳细胞的毒理性实验:
10%的标准胎牛血清的HDMEM,且培养基每天更换,细胞在二氧化碳浓度为5%、湿度为95%的37℃环境中培养。具体实验如下,把正常浓度为2000个/孔的***细胞加入到96孔板中隔夜粘附培养,除去培养基并加入100μL含有不同浓度的材料的培养基,培养3天后,加入25μL的MTT溶液(5mg/mL in PBS)培养2h,移出上清液并加入100μL的DMSO溶解Formazan结晶,将培养基密封,隔夜培养,用分光光度计监测吸收峰评估材料对细胞的毒理性w。计算公式为:w=OD(实验组)/OD(对照组)*100%
图1-3为材料的透射电镜结果,证明Fe3O4@SiO2@mTiO2@Ag-四环素为单分散性的球形材料,X射线衍射证明材料为非晶的SiO2、mTiO2和立方相Ag,X射线光电子能谱证明材料含有Fe3O4,SiO2、mTiO2和单质Ag,以及四环素中的C和N,图4-5磁饱和强度结果显示材料具有较强的磁性,UV-vis显示Fe3O4@SiO2@mTiO2@Ag和四环素复合构成Fe3O4@SiO2@mTiO2@Ag-四环素。图6时间抑菌结果证明,材料在20min内抑菌率为100%,图7抑菌结果显示材料在20μg/mL时对耐四环素沙门氏菌具有强的抑菌活性,80μg/mL时的抑菌活性是同浓度四环素的2.5倍,
以上显示和描述了本发明的基本原理和主要特征及本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (9)

1.一种Fe3O4@SiO2@mTiO2@Ag-四环素的制备方法,其特征在于,包括以下步骤:
S1:Fe3O4的制备:氯化铁加入到乙二醇中形成透明溶液,随后NaAc和柠檬酸钠加到上述透明溶液中超声分散均匀,把混合液转移至不锈钢高压釜的聚四氟乙烯内胆里,反应得到Fe3O4,反应结束后,把反应釜在室温下冷却,产物黑色固体用超纯水和乙醇洗涤数次,然后真空干燥;
S2:Fe3O4@SiO2的制备:Fe3O4溶解在超纯水中和乙醇中超声,再加入氨水搅拌成混合溶液,正硅酸乙酯加入上述混合溶液中反应合成Fe3O4@SiO2,产物用超纯水和乙醇洗涤数次,真空干燥箱中干燥;
S3:Fe3O4@SiO2@TiO2的制备:取干燥的Fe3O4@SiO2分散在乙醇和乙腈,超声分散均匀,在滴加去离子水、甲胺,搅拌后逐滴加入钛酸异丙酯反应后,用去离子水洗涤,真空干燥得到核壳型复合材料Fe3O4@SiO2@TiO2
S4:Fe3O4@SiO2@mTiO2的制备:取Fe3O4@SiO2@TiO2加入到超纯水中,再依次加入乙醇和氨水超声分散均匀,将混合液转移至不锈钢高压釜的聚四氟乙烯内胆里,反应得到Fe3O4@SiO2@mTiO2,产物用蒸馏水和乙醇洗涤数次,烘干备用;
S5:Ag溶胶的制备:AgNO3和柠檬酸钠等体积混合配成溶液,搅拌后再入硼氢化钠,溶液变成亮黄色为产物Ag溶胶;
S6:Fe3O4@SiO2@mTiO2表面修饰:取Fe3O4@SiO2@mTiO2加入到异丙醇中搅拌,随后加入三氨丙基三甲氧基硅烷回流,等冷却至室温后用超纯水洗涤5次备用;
S7:Fe3O4@SiO2@mTiO2@Ag的制备:步骤S6修饰过的Fe3O4@SiO2@mTiO2加入蒸馏水,在加入Ag溶胶,超声后静置吸附,重复数次,得到产物Fe3O4@SiO2@mTiO2@Ag,将产物用蒸馏水洗涤数次,在真空干燥箱中干燥;
S8:Fe3O4@SiO2@mTiO2@Ag-四环素的制备:取Fe3O4@SiO2@mTiO2@Ag加入到盐酸四环素中超声,陈化后用得到Fe3O4@SiO2@mTiO2@Ag-四环素,用超纯水洗涤,烘干备用。
2.根据权利要求1所述的Fe3O4@SiO2@mTiO2@Ag-四环素的制备方法,其特征在于:所述步骤S1中氯化铁为3.2mM,NaAc和柠檬酸钠均为0.6g,不锈钢高压釜的聚四氟乙烯内胆为25mL,反应温度200℃,反应时间12h,真空干燥温度70℃,干燥时间10h。
3.根据权利要求1所述的Fe3O4@SiO2@mTiO2@Ag-四环素的制备方法,其特征在于:所述步骤S2中Fe3O4为100mg,超纯水用量为10mL,乙醇用量为30mL,超声时间20min,氨水用量0.4mL,搅拌就20min,正硅酸乙酯用量0.3mL,反应时间2h,真空干燥温度70℃,干燥时间8h。
4.根据权利要求1所述的Fe3O4@SiO2@mTiO2@Ag-四环素的制备方法,其特征在于:所述步骤S3中Fe3O4@SiO2为150mg且干燥,乙醇和乙腈均为80mL,去离子水位0.72mL,甲胺为0.21mL,搅拌时间20min,钛酸异丙酯为1.775mL,反应时间2h,去离子水洗涤3次,真空干燥温度为50℃,干燥时间10h。
5.根据权利要求1所述的Fe3O4@SiO2@mTiO2@Ag-四环素的制备方法,其特征在于:所述步骤S4中Fe3O4@SiO2@TiO2为250mg,超纯水34mL,乙醇67mL,氨水0.6mL,超声时间20min,反应温度160℃,反应时间10h。
6.根据权利要求1所述的Fe3O4@SiO2@mTiO2@Ag-四环素的制备方法,其特征在于:所述步骤S5中Ag溶胶为6nm,AgNO3为0.5mM,柠檬酸钠为0.5mM,搅拌时间10min,硼氢化钠为3mL10mM。
7.根据权利要求1所述的Fe3O4@SiO2@mTiO2@Ag-四环素的制备方法,其特征在于:所述步骤S6中Fe3O4@SiO2@mTiO2为50mg,异丙醇为80mL,搅拌时间30min,三氨丙基三甲氧基硅烷0.4mL,回流温度70℃,洗涤次数5次。
8.根据权利要求1所述的Fe3O4@SiO2@mTiO2@Ag-四环素的制备方法,其特征在于:所述步骤S7中蒸馏水、Ag溶胶均为10mL,超声时间20min,吸附时间30min,真空干燥温度50℃,干燥时间10h。
9.根据权利要求1所述的Fe3O4@SiO2@mTiO2@Ag-四环素的制备方法,其特征在于:所述步骤S8中Fe3O4@SiO2@mTiO2@Ag为50mg,盐酸四环素为1mg/mL,用量为50mL,超声时间30min,陈化时间8h,超纯水洗涤4次,烘干温度50℃。
CN202210200753.1A 2022-04-19 2022-04-19 一种Fe3O4@SiO2@mTiO2@Ag-四环素的制备方法 Active CN115053914B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210200753.1A CN115053914B (zh) 2022-04-19 2022-04-19 一种Fe3O4@SiO2@mTiO2@Ag-四环素的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210200753.1A CN115053914B (zh) 2022-04-19 2022-04-19 一种Fe3O4@SiO2@mTiO2@Ag-四环素的制备方法

Publications (2)

Publication Number Publication Date
CN115053914A CN115053914A (zh) 2022-09-16
CN115053914B true CN115053914B (zh) 2023-08-29

Family

ID=83197385

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210200753.1A Active CN115053914B (zh) 2022-04-19 2022-04-19 一种Fe3O4@SiO2@mTiO2@Ag-四环素的制备方法

Country Status (1)

Country Link
CN (1) CN115053914B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102658178A (zh) * 2012-05-14 2012-09-12 中国石油大学(华东) 一种磁性纳米胶囊结构光催化剂及其制备方法和应用
CN112007621A (zh) * 2020-06-23 2020-12-01 广东工业大学 四环素类抗生素多模板分子印迹磁性复合材料的制备及应用方法
CN112516956A (zh) * 2020-11-12 2021-03-19 蚌埠学院 一种磁性复合纳米材料的制备方法及其应用
CN113477220A (zh) * 2021-07-02 2021-10-08 北京科技大学 基于磁性金属有机骨架的贵金属离子吸附材料及制备方法
CN113940361A (zh) * 2021-11-18 2022-01-18 陕西理工大学 一种核壳型磁性纳米Fe3O4/Cu/CuO@Ag复合材料制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102658178A (zh) * 2012-05-14 2012-09-12 中国石油大学(华东) 一种磁性纳米胶囊结构光催化剂及其制备方法和应用
CN112007621A (zh) * 2020-06-23 2020-12-01 广东工业大学 四环素类抗生素多模板分子印迹磁性复合材料的制备及应用方法
CN112516956A (zh) * 2020-11-12 2021-03-19 蚌埠学院 一种磁性复合纳米材料的制备方法及其应用
CN113477220A (zh) * 2021-07-02 2021-10-08 北京科技大学 基于磁性金属有机骨架的贵金属离子吸附材料及制备方法
CN113940361A (zh) * 2021-11-18 2022-01-18 陕西理工大学 一种核壳型磁性纳米Fe3O4/Cu/CuO@Ag复合材料制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Fe3O4@TiO2@SiO2@Ag光催化剂的制备及其光催化活性研究";沈启慧 等,;《化学试剂》;第43卷(第4期);405-411 *

Also Published As

Publication number Publication date
CN115053914A (zh) 2022-09-16

Similar Documents

Publication Publication Date Title
Aunkor et al. Antibacterial activity of graphene oxide nanosheet against multidrug resistant superbugs isolated from infected patients
Wang et al. Bacterial species-identifiable magnetic nanosystems for early sepsis diagnosis and extracorporeal photodynamic blood disinfection
Saqib et al. Organometallic assembling of chitosan‐Iron oxide nanoparticles with their antifungal evaluation against Rhizopus oryzae
Fallatah et al. Antibacterial effect of graphene oxide (GO) nano-particles against Pseudomonas putida biofilm of variable age
Leung et al. Antibacterial activity of ZnO nanoparticles with a modified surface under ambient illumination
Zhang et al. Visible light-induced antibacterial effect of MoS2: Effect of the synthesis methods
Patra et al. Ciprofloxacin conjugated zinc oxide nanoparticle: A camouflage towards multidrug resistant bacteria
Liu et al. Enhanced antibacterial activity and mechanism studies of Ag/Bi2O3 nanocomposites
Wang et al. Vancomycin-modified Fe3O4@ SiO2@ Ag microflowers as effective antimicrobial agents
Ahmed et al. Studying the bactericidal ability and biocompatibility of gold and gold oxide nanoparticles decorating on multi-wall carbon nanotubes
Wang et al. Band structure engineering enables to UV-Visible-NIR photocatalytic disinfection: Mechanism, pathways and DFT calculation
CN113940361A (zh) 一种核壳型磁性纳米Fe3O4/Cu/CuO@Ag复合材料制备方法
Deng et al. Facile synthesis of long-term stable silver nanoparticles by kaempferol and their enhanced antibacterial activity against Escherichia coli and Staphylococcus aureus
Jawad et al. Cytotoxicity Effect and Antibacterial Activity of Al2O3 Nanoparticles Activity against Streptococcus Pyogenes and Proteus Vulgaris
Bhatia et al. Duchsnea indica plant extract mediated synthesis of copper oxide nanomaterials for antimicrobial activity and free-radical scavenging assay
Ahari et al. Synthesis of the silver nanoparticle by chemical reduction method and preparation of nanocomposite based on AgNPS
CN115053914B (zh) 一种Fe3O4@SiO2@mTiO2@Ag-四环素的制备方法
Huang et al. Rapid synthesis of bismuth-organic frameworks as selective antimicrobial materials against microbial biofilms
Prakash et al. Investigation on visible light-driven antimicrobial and mechanistic activity of GO/TiO 2 (V–N) nanocomposite against wound pathogens
Ji et al. Synergistic antibacterial study of nano-Cu2O/CuO@ Ag-tetracycline composites
Gui et al. Biosynthesis of nanocrystalline silver chloride with high antibacterial activity using bacterial extracts
Zhang et al. A novel strategy to enhance photocatalytic killing of foodborne pathogenic bacteria by modification of non-metallic monomeric black phosphorus with Elaeagnus mollis polysaccharides
Wang et al. ZnO nanocluster loaded superparamagnetic iron oxide nanocomposites as recyclable antibacterial agent
Nguyen et al. Enhancement of antibacterial activity by a copper (II) and zinc (II) in chelation with ethylenediaminetetra-acetic acid and urea complex
Tan et al. Near-infrared light triggered photodynamic therapy and release of silver ion from CuTCPP nanosheet for synergistic Gram-positive bacteria elimination

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant