CN115043657A - 具有自愈合超高温高熵碳氮化合物陶瓷及制备方法和应用 - Google Patents

具有自愈合超高温高熵碳氮化合物陶瓷及制备方法和应用 Download PDF

Info

Publication number
CN115043657A
CN115043657A CN202210590884.5A CN202210590884A CN115043657A CN 115043657 A CN115043657 A CN 115043657A CN 202210590884 A CN202210590884 A CN 202210590884A CN 115043657 A CN115043657 A CN 115043657A
Authority
CN
China
Prior art keywords
entropy
self
healing
ceramic
ablation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210590884.5A
Other languages
English (en)
Inventor
刘雄军
张盼
吕昭平
王辉
吴渊
蒋虽合
张晓宾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN202210590884.5A priority Critical patent/CN115043657A/zh
Publication of CN115043657A publication Critical patent/CN115043657A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58007Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • B64C1/40Sound or heat insulation, e.g. using insulation blankets
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58007Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides
    • C04B35/58014Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides based on titanium nitrides, e.g. TiAlON
    • C04B35/58021Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides based on titanium nitrides, e.g. TiAlON based on titanium carbonitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58007Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides
    • C04B35/58028Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides based on zirconium or hafnium nitrides
    • C04B35/58035Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides based on zirconium or hafnium nitrides based on zirconium or hafnium carbonitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • C04B2235/9615Linear firing shrinkage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明属于高熵陶瓷技术领域,具体涉及一种具有自愈合超高温高熵碳氮化合物陶瓷及制备方法和应用。该方法合成的高熵碳氮化合物陶瓷在2500K及以上大气环境进行烧蚀测试时,可生成具有四方结构的(TiaVbCrc)O2中熵氧化物,提高了构型熵,降低了黏度,并且由于其结构为球状致密结构,可作为烧蚀过程中的自愈合相。一方面愈合烧蚀孔洞从而提高耐烧蚀性能,另一方面愈合由于热震作用带来的微裂纹,使得该高熵陶瓷具有较高的抗热震性能。其硬度高达26‑38GPa,弹性模量高达420‑650GPa,断裂韧性高达4‑10MPa*m1/2,抗烧蚀性能好,其线烧蚀率为0.05‑0.1mm/s,质量烧蚀率为0.01‑0.25g/s,可用于极端环境下的高温防护材料。

Description

具有自愈合超高温高熵碳氮化合物陶瓷及制备方法和应用
技术领域
本发明属于高熵陶瓷技术领域,具体涉及一种具有自愈合超高温高熵碳氮化合物陶瓷及制备方法和应用。
背景技术
随着航空航天技术的迅猛发展,高超声速飞行器已成为各国抢占空中和空间战略优势的利器。然而在长时间高超声速巡航、跨大气层飞行和大气层再入等极端环境下,飞行器机翼前缘和鼻锥等关键部件在飞行过程中与大气剧烈摩擦,产生上千摄氏度的高温及热冲击。为应对以上极端环境,亟需开发具有高性能的热防护材料,即在高达2500K以上大气工况下长时间服役的耐氧化、耐烧蚀和优良抗热震作用的超高温陶瓷材料。
传统的二元超高温陶瓷,如ZrC,HfC,TaC,HfN等,由于氧化速度较快,抗热震性能差等原因,难以满足超高温材料的需求。为提高传统超高温陶瓷的抗氧化性以及抗热震性能,西北工业大学的Pi等人将SiC、MoSi2或ZrSi2加入到ZrC中,形成双相陶瓷(C/SiC–ZrB2–ZrC composites fabricated by reactive melt infiltration with ZrSi2alloy[J].Ceramics International.2012,38(8):6541-6548.)。由于含Si相的加入,其在1500℃以下温度氧化可形成SiO2,SiO2在高温下,由于具有合适的黏度,可以自愈合ZrC相的烧蚀孔洞以及微裂纹,从而提高基体的抗氧化和抗热震能力。
然而双相或多相材料本身就有很多致命的缺陷,例如:多相材料相比于单相材料有着更多的相界面,这些相界面在低温氧化过程中会为氧元素的扩散提供通道,极大的恶化材料的低温抗氧化性能。又如,不同相之间往往有着不同的相界面润湿性,难以混合均匀,当由于界面问题导致两相偏聚则将严重影响材料的力学性能。另外SiO2的自愈合能力只能应用于1600℃及以下,难以应用于超高温环境。因此,设计具有自愈合能力的单相超高温陶瓷具有重要的科学意义。
高熵陶瓷(high entropy ceramics,HECs),又称多主元、等原子比或近等原子比多组元陶瓷,是最近发展起来的一类新型陶瓷材料。与传统陶瓷相比,高熵陶瓷具有以下四个特征:(1)成分多主元。包含多个主要组成元素、各主元以等原子比或近等原子比混合、且每个主元的原子百分比含量在5-35%之间。(2)高熵效应。高熵陶瓷具有比传统陶瓷高得多的构型熵,因而其凝固组织容易得到单相无序固溶体结构(包括面心立方FCC、体心立方BCC和密排六方HCP)。(3)晶格畸变效应。不同原子大小的多种原子随机分布在同一个点阵上,势必导致晶格发生严重的扭曲变形。(4)缓慢扩散效应。化学成分的复杂性及严重的晶格畸变使得原子在高熵陶瓷内部的扩散变得异常困难。上述特征的协同作用使得高熵陶瓷具备一系列优异的力学、物理和化学性能,在高强度、高硬度,高耐磨性、高耐蚀性、耐高温软化、低热导率、优良软磁性等方面显示出广阔的应用前景。
到目前为止,在陶瓷领域,高熵陶瓷并无明确定义且研究较少。美国杜克大学Rost等人首次将这种高熵合金思想用于合成高熵氧化合物陶瓷(Entropy-stabilized oxides[J].Nature Communications.2015,6:8485),但仅仅是研究熵在形成单相的作用,并没有涉及高熵所带来的四大效应引起的性能提升;后续,美国加州大学Gild等人将这种高熵合金思想用于合成高熵超高温陶瓷(High-Entropy Metal Diborides:ANew Class of High-Entropy Materials and a New Type of Ultrahigh Temperature Ceramics[J].Scientific Reports.2016,6:37946),即在原有二元系超高温陶瓷基体中,添加与基体元素相似的多种其他元素,具有相对高的热力学混合熵,形成单一固溶体结构的化合物,可称之为高熵超高温陶瓷。并与其组成高熵陶瓷的单组元陶瓷的硬度以及1000℃-1200℃的抗氧化性上进行对比,发现性能均有所提高,但对于超高温环境下的服役性能没有提及。
多元碳硼化合物陶瓷(Zr0.8Ti0.2C0.74B0.26)的出现被人们所关注,由于具有远优于二元超高温陶瓷的抗氧化性能和抗烧蚀性能,是新一代热防护***材料重要发展方向。中南大学Zeng Y等人发表文章“Zeng Y,Wang D,Xiong X,et al.Ablation-resistantcarbide Zr0.8Ti0.2C0.74B0.26 for oxidizing environments up to 3,000℃.[J].NatureCommunications,2017,8:15836.”报道了这种陶瓷复合材料,采用反应熔渗法和包埋法相结合的方法,以碳纤维为增韧材料,制备了基体相为面心立方结构的碳化物。该材料在高达3000℃条件下具有良好的抗烧蚀和抗氧化性能。
发明内容
本发明公开了一种具有自愈合能力的超高温高熵碳氮化合物陶瓷的制备方法,以解决现有超高温防护材料领域技术上的问题或者其他潜在问题中的任意问题。
为解决上述技术问题,本发明的技术方案是:一种具有自愈合超高温高熵碳氮化合物陶瓷,所述具有自愈合超高温高熵碳氮化合物陶瓷适用于2500K及以上大气环境,具有自愈合超高温高熵碳氮化合物陶瓷的基体相为金属元素和非金属元素嵌套形成的单相连续固溶体,且金属元素和非金属元素的原子比为1:1。
进一步,所述具有自愈合超高温高熵碳氮化合物陶瓷的分子式为:(TiaVbCrcXdYe)(CfNg),其中,0.15≤a≤0.35at.%、0.05≤b≤0.35at.%、0.05≤c≤0.35at.%、0.05≤d≤0.35at.%,0.05≤e≤0.35at.%,且满足a+b+c+d+e=1,X、Y分别为Zr、Nb、Hf、Ta中的一种,C为碳元素,N为氮元素,0.1≤f≤1at.%,0.1≤g≤1at.%,且满足f+g=1。
进一步,所述具有自愈合超高温高熵碳氮化合物陶瓷为单一面心立方相结构。
本发明的另一目的提供一种制备上述的具有自愈合超高温高熵碳氮化合物陶瓷的方法,所述方法具体包括以下步骤:
S1)按照设计成分比例分别称取碳化合物和氮化物陶瓷粉末,再加入脱氧剂,混合均匀,得到混合物料;
S2)将S1)得到的混合物料进行球磨,得到高熵碳氮化合物陶瓷粉料;
S3)将S2)得到的高熵碳氮化合物陶瓷粉料采用放电等离子烧结法烧结,即得到具有自愈合超高温高熵碳氮化合物陶瓷。
进一步,所述制备得到的高熵碳氮化合物陶瓷的硬度高达26-38GPa,弹性模量高达420-650GPa,断裂韧性高达4-10MPa*m1/2,抗烧蚀性的线烧蚀率为0.05-0.1mm/s,质量烧蚀率为0.01-0.25g/s。
进一步,所述S1)中的碳化合物陶瓷粉末包括:TiC、ZrC、HfC、VC、NbC、TaC、Cr3C2和Mo2C;氮化物陶瓷粉末包括:TiN、ZrN、HfN、VN、NbN、TaN和Cr2N。
进一步,所述S1)中的脱氧剂为碳粉。
进一步,所述S2)中的球磨为行星球磨,具体工艺为:采用不锈钢罐体,介质为不锈钢球,不锈钢球球与混合物料比为4-12:1,球磨转速为200~500r/min,球磨时间为20~90h。
进一步,所述S3)中的放电等离子烧结法的工艺为:升温速度为50-200℃/min,升温至1400-2100℃,压力5-45MPa,保温1-10min。
一种具有自愈合能力的超高温高熵碳氮化合物陶瓷应用于飞行器机翼前缘的耐热涂层或鼻锥的部件制备。
所述自愈合能力指该高熵碳氮化合物陶瓷在超高温环境(≥2500K)服役时,由于剧烈的氧化所自发形成的中熵氧化物(TiaVbCrc)O2,具有致密球形结构且流动性好,可愈合烧蚀所造成的热震微裂纹及孔洞。
本发明有益效果:由于采用上述技术方案,本发明具有以下特点,本发明的具有自愈合超高温高熵碳氮化合物陶瓷,初始原材料可选范围广,利于优化设计组分含量;基体相由金属元素和非金属元素嵌套形成的单相连续固溶体,该单相固溶体相比于多相材料,不存在相界面问题,易于制备且工况条件下不会出现由于某一相的性能提前恶化而导致工件的整体失效;具有优异的硬度、弹性模量以及断裂韧性等力学性能。同时由于超高温环境,的剧烈氧化可形成中熵氧化物(TiaVbCrc)O2,根据Adam-Gibbs方程,构型熵的增加将降低材料的黏度,提高其流动性。因此中熵氧化物相比于单组元氧化物在烧蚀过程中有更好的流动性,起到自愈合烧蚀孔洞与微裂纹的作用,从而提高高熵碳氮化合物陶瓷的抗氧化以及抗热震性能。
附图说明
图1为本发明(Ti0.2Zr0.2V0.2Nb0.2Cr0.2)(C0.5N0.5)样品烧蚀前的X射线衍射谱图。
图2为本发明(Ti0.2Zr0.2V0.2Nb0.2Cr0.2)(C0.5N0.5)样品烧蚀前扫描电子显微镜及其能谱图。
图3为本发明(Ti0.2Zr0.2V0.2Nb0.2Cr0.2)(C0.5N0.5)样品烧蚀后Co靶微区X射线衍射图。
图4为本发明(Ti0.2Zr0.2V0.2Nb0.2Cr0.2)(C0.5N0.5)样品烧蚀后扫描电子显微镜图及其能谱图。
具体实施方式
下面具体实施对本发明的技术方案做进一步说明。
本发明提供了一种具有自愈合能力的超高温高熵碳氮化合物陶瓷材料,所述具有自愈合超高温高熵碳氮化合物陶瓷的分子式为:(TiaVbCrcXdYe)(CfNg),其中,0.15≤a≤0.35at.%、0.05≤b≤0.35at.%、0.05≤c≤0.35at.%、0.05≤d≤0.35at.%,0.05≤e≤0.35at.%,且满足a+b+c+d+e=1,X、Y分别为Zr、Nb、Hf、Ta中的一种,C为碳元素,N为氮元素,0.1≤f≤1at.%,0.1≤g≤1at.%,且满足f+g=1。
所述具有自愈合超高温高熵碳氮化合物陶瓷能够在2500k及以上大气环境进行氧乙炔烧蚀测试时,由于剧烈的氧化反应,可生成如HfO2,Ta2O5,ZrO2或Nb205等的高熔点氧化物。
所述的HfO2,Ta2O5,ZrO2以及Nb205等的高熔点氧化物,该类高熔点氧化物具有针状结构,可以抵抗烧蚀过程中氧乙炔气体的冲蚀腐蚀。
所述高熵碳氮化合物陶瓷在2500K以上大气环境进行氧乙炔烧蚀测试时,由于剧烈的氧化反应,还可生成如TiO2,VO2或CrO2等的低熔点氧化物。
所述TiO2,VO2或CrO2等的低熔点氧化物具有相同的四方结构。
所述具有相同的四方结构氧化物在烧蚀过程中可自发固溶,形成中熵氧化物(TiaVbCrc)O2
所述的中熵氧化物(TiaVbCrc)O2具有致密的球状结构。
所述的中熵氧化物(TiaVbCrc)O2由于构型熵的提高可以降低其黏度,提高其流动性。
所述的中熵氧化物(TiaVbCrc)O2在氧乙炔烧蚀过程中,由于氧乙炔气体的冲刷作用,可以自愈合烧蚀孔洞提高材料的抗烧蚀能力,可以愈合微裂纹提高材料的抗热震能力。
所述的具有自愈合超高温高熵碳氮化合物陶瓷为单一面心立方相结构。
本发明的另一目的是提供一种制备上述的具有自愈合超高温高熵碳氮化合物陶瓷的方法,所述方法具体包括以下步骤:
S1)按照设计成分比例分别称取混合碳化合物和氮化物陶瓷粉末,
S2)将S1)得到的混合物料进行球磨,得到高熵碳氮化合物陶瓷粉料,
S3)将S2)得到的高熵碳氮化合物陶瓷粉料置于放电等离子烧结炉内,进行烧结,即可得到具有自愈合的超高温高熵碳氮化合物陶瓷,所述高熵碳氮化合物陶瓷其硬度高达26-38GPa,弹性模量高达420-650GPa,断裂韧性高达4-10MPa*m1/2,抗烧蚀性能好,其线烧蚀率为0.05-0.1mm/s,质量烧蚀率为0.01-0.25g/s。
所述S1)中的混合陶瓷粉末包括:TiC、ZrC、HfC、VC、NbC、TaC、Cr3C2、Mo2C、TiN、ZrN、HfN、VN、NbN、TaN、Cr2N和碳粉。
所述S2)中行星球磨的具体工艺是:采用不锈钢罐体,不锈钢球,球与混合物料比为4-12:1,球磨转速为200~500r/min,球磨时间为20~90h。
所述S3)中烧结的具体工艺为:升温速度为50-200℃/min,至1400-2100℃,压力5-45MPa,保温1-10min。
一种上述方法制备的具备自愈合能力的超高温高熵碳氮化合物陶瓷,例如成分(Ti0.2Zr0.2V0.2Nb0.2Cr0.2)(C0.6N0.4)(Ti0.2Zr0.2V0.2Mo0.2Cr0.2)(C0.5N0.5)或(Ti0.2V0.2Nb0.2Cr0.2Mo0.2)(C0.5N0.5)可用于飞行器机翼前缘或鼻锥等的关键部件制备。
实施例1
自愈合超高温高熵碳氮化合物(Ti0.2Zr0.2V0.2Nb0.2Cr0.2)(C0.5N0.5)的制备:手套箱内称取NbC粉末13.115g、VC粉末7.869g、TiC粉末3.743g、TiN粉末3.867g、ZrN粉末13.155g、CrN粉末8.251g,放入不锈钢球磨罐内,其中不锈钢球磨罐中不锈钢球与粉末的质量比为10:1。将球磨罐以300rpm的转速球磨60h,过程中需要每转20min停转10min,防止过热氧化。期间需在手套箱内,每隔10h打开一次球磨罐,破碎罐内粘壁料。
取上述粉末47.3g填入直径30mm的石墨磨具中,将其置于放电等离子烧结炉内,于真空度小于100Pa以下,设置压力为40MPa,升温速度为100℃/min,升温至1900℃,保温5min后随炉冷却,即可得到直径为30mm厚度为10mm的高熵碳氮化合物陶瓷。如图1所示为(Ti0.2Zr0.2V0.2Nb0.2Cr0.2)(C0.5N0.5)样品的X射线衍射图谱。如图2所示为(Ti0.2Zr0.2V0.2Nb0.2Cr0.2)(C0.5N0.5)样品的扫描电镜及其对应的能谱图。由图可知该成分的高熵碳氮化合物陶瓷为单相FCC结构。
将上述样品经打磨抛光后,按照国军标GJB 323A-96所述烧蚀条件,对(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)(C0.44N0.44O0.12)样品进行氧乙炔烧蚀实验,得到其线烧蚀率为0.06mm/s,质量烧蚀率为0.01g/s。如图3所示为(Ti0.2Zr0.2V0.2Nb0.2Cr0.2)(C0.5N0.5)样品在2650K大气环境烧蚀后的Co靶微区XRD图。如图4所示为(Ti0.2Zr0.2V0.2Nb0.2Cr0.2)(C0.5N0.5)样品在2650K大气环境烧蚀后扫描电子显微镜和能谱图。
实施例2
自愈合超高温高熵碳氮化合物(Ti0.25Zr0.125V0.25Nb0.125Cr0.25)(C0.5N0.5)的制备:
手套箱内称取NbC粉末8.894g、VC粉末10.673g、TiC粉末5.076g、TiN粉末5.245g、ZrN粉末8.921g、CrN粉末11.191g,放入不锈钢球磨罐内,其中不锈钢球磨罐中不锈钢球与粉末的质量比为8:1。将球磨罐以250rpm的转速球磨90h,过程中需要每转20min停转10min,防止过热氧化。期间需在手套箱内,每隔10h打开一次球磨罐,破碎罐内粘壁料。
取上述粉末43.2g填入直径30mm的石墨磨具中,将其置于放电等离子烧结炉内,于真空度小于100Pa以下,设置压力为30MPa,升温速度为150℃/min,升温至1900℃,保温2min后随炉冷却,即可得到直径为30mm厚度为10mm的高熵碳氮化合物陶瓷。
将上述样品经打磨抛光后,按照国军标GJB 323A-96所述烧蚀条件,对(Ti0.25Zr0.125V0.25Nb0.125Cr0.25)(C0.5N0.5)样品进行氧乙炔烧蚀实验,得到其线烧蚀率为0.11mm/s,质量烧蚀率为0.04g/s。
实施例3
自愈合超高温高熵碳氮化合物(Ti0.2Zr0.2V0.2Nb0.2Cr0.2)(C0.6N0.4)的制备:
手套箱内称取NbC粉末13.148g、VC粉末7.889g、TiN粉末7.754g、ZrC粉末12.937g、CrN粉末8.271g,放入不锈钢球磨罐内,其中不锈钢球磨罐中不锈钢球与粉末的质量比为10:1。将球磨罐以300rpm的转速球磨60h,过程中需要每转20min停转10min,防止过热氧化。期间需在手套箱内,每隔10h打开一次球磨罐,破碎罐内粘壁料。
取上述粉末45.4g填入直径30mm的石墨磨具中,将其置于放电等离子烧结炉内,于真空度小于100Pa以下,设置压力为40MPa,升温速度为100℃/min,升温至1900℃,保温5min后随炉冷却,即可得到直径为30mm厚度为10mm的高熵碳氮化合物陶瓷。
将上述样品经打磨抛光后,按照国军标GJB 323A-96所述烧蚀条件,对(Ti0.2Zr0.2V0.2Nb0.2Cr0.2)(C0.6N0.4)样品进行氧乙炔烧蚀实验,得到其线烧蚀率为0.09mm/s,质量烧蚀率为0.03g/s。
实施例4
自愈合超高温高熵碳氮化合物(Ti0.2Zr0.2V0.2Nb0.2Cr0.2)(C0.7N0.3)的制备:
手套箱内称取NbC粉末13.181g、VC粉末7.909g、TiC粉末3.761g,TiN粉末3.887g、ZrC粉末12.97g、CrN粉末8.292g,放入不锈钢球磨罐内,其中不锈钢球磨罐中不锈钢球与粉末的质量比为10:1。将球磨罐以300rpm的转速球磨60h,过程中需要每转20min停转10min,防止过热氧化。期间需在手套箱内,每隔12h打开一次球磨罐,破碎罐内粘壁料。
取上述粉末44.5g填入直径30mm的石墨磨具中,将其置于放电等离子烧结炉内,于真空度小于100Pa以下,设置压力为40MPa,升温速度为100℃/min,升温至1900℃,保温5min后随炉冷却,即可得到直径为30mm厚度为10mm的高熵碳氮化合物陶瓷。
将上述样品经打磨抛光后,按照国军标GJB 323A-96所述烧蚀条件,对(Ti0.2Zr0.2V0.2Nb0.2Cr0.2)(C0.7N0.3)样品进行氧乙炔烧蚀实验,得到其线烧蚀率为0.08mm/s,质量烧蚀率为0.02g/s。
实施例5
自愈合超高温高熵碳氮化合物(Ti0.2Zr0.2V0.2Nb0.2Cr0.2)(C0.8N0.2)的制备:
手套箱内称取NbC粉末13.214g、VC粉末7.929g、TiC粉末7.542g,ZrC粉末13.002g、CrN粉末8.313g,放入不锈钢球磨罐内,其中不锈钢球磨罐中不锈钢球与粉末的质量比为10:1。将球磨罐以300rpm的转速球磨60h,过程中需要每转20min停转10min,防止过热氧化。期间需在手套箱内,每隔12h打开一次球磨罐,破碎罐内粘壁料。
取上述粉末44.7g填入直径30mm的石墨磨具中,将其置于放电等离子烧结炉内,于真空度小于100Pa以下,设置压力为40MPa,升温速度为100℃/min,升温至2000℃,保温5min后随炉冷却,即可得到直径为30mm厚度为10mm的高熵碳氮化合物陶瓷。
将上述样品经打磨抛光后,按照国军标GJB 323A-96所述烧蚀条件,对(Ti0.2Zr0.2V0.2Nb0.2Cr0.2)(C0.8N0.2)样品进行氧乙炔烧蚀实验,得到其线烧蚀率为0.08mm/s,质量烧蚀率为0.01g/s。
本发明所制备的高熵碳氮化合物陶瓷,在2500K及以上大气环境下烧蚀时由于可以生成中熵(TiaVbCrc)O2氧化物,自愈合烧蚀孔洞以及微裂纹,从而使得材料具有较低的烧蚀率以及优良的抗热震能力。(Ti0.2Zr0.2V0.2Nb0.2Cr0.2)(C0.5N0.5)成分可应用于飞行器机翼前缘以及鼻锥等关键部件的热防护材料。
以上对本申请实施例所提供的一种具有自愈合超高温高熵碳氮化合物陶瓷及制备方法和应用,进行了详细介绍。以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。
如在说明书及权利要求书当中使用了某些词汇来指称特定组件。本领域技术人员应可理解,硬件制造商可能会用不同名词来称呼同一个组件。本说明书及权利要求书并不以名称的差异来作为区分组件的方式,而是以组件在功能上的差异来作为区分的准则。如在通篇说明书及权利要求书当中所提及的“包含”、“包括”为一开放式用语,故应解释成“包含/包括但不限定于”。“大致”是指在可接收的误差范围内,本领域技术人员能够在一定误差范围内解决所述技术问题,基本达到所述技术效果。说明书后续描述为实施本申请的较佳实施方式,然所述描述乃以说明本申请的一般原则为目的,并非用以限定本申请的范围。本申请的保护范围当视所附权利要求书所界定者为准。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的商品或者***不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种商品或者***所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的商品或者***中还存在另外的相同要素。
应当理解,本文中使用的术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
上述说明示出并描述了本申请的若干优选实施例,但如前所述,应当理解本申请并非局限于本文所披露的形式,不应看作是对其他实施例的排除,而可用于各种其他组合、修改和环境,并能够在本文所述申请构想范围内,通过上述教导或相关领域的技术或知识进行改动。而本领域人员所进行的改动和变化不脱离本申请的精神和范围,则都应在本申请所附权利要求书的保护范围内。

Claims (10)

1.一种具有自愈合超高温高熵碳氮化合物陶瓷,其特征在于,所述具有自愈合超高温高熵碳氮化合物陶瓷适用于2500K及以上大气环境,所述自愈合超高温高熵碳氮化合物陶瓷的基体相为金属元素和非金属元素嵌套形成的单相连续固溶体,且金属元素和非金属元素的原子比为1:1。
2.根据权利要求1所述的具有自愈合超高温高熵碳氮化合物陶瓷,其特征在于,所述具有自愈合超高温高熵碳氮化合物陶瓷的分子式为:(TiaVbCrcXdYe)(CfNg),其中,0.15≤a≤0.35at.%、0.05≤b≤0.35at.%、0.05≤c≤0.35at.%、0.05≤d≤0.35at.%,0.05≤e≤0.35at.%,且满足a+b+c+d+e=1,X、Y分别为Zr、Nb、Hf、Ta中的一种,C为碳元素,N为氮元素,0.1≤f≤1at.%,0.1≤g≤1at.%,且满足f+g=1。
3.根据权利要求2所述的具有自愈合超高温高熵碳氮化合物陶瓷,其特征在于,所述具有自愈合超高温高熵碳氮化合物陶瓷为单一面心立方相结构。
4.一种制备如权利要求书1-3任意一项所述的具有自愈合超高温高熵碳氮化合物陶瓷的方法,其特征在于,所述方法具体包括以下步骤:
S1)按照设计成分比例分别称取碳化合物和氮化物陶瓷粉末,再加入脱氧剂,混合均匀,得到混合物料;
S2)将S1)得到的混合物料进行球磨,得到高熵碳氮化合物陶瓷粉料;
S3)将S2)得到的高熵碳氮化合物陶瓷粉料采用放电等离子烧结法烧结,即得到具有自愈合超高温高熵碳氮化合物陶瓷。
5.根据权利要求4所述的方法,其特征在于,所述具有自愈合超高温高熵碳氮化合物陶瓷的硬度为26-38GPa,弹性模量为420-650GPa,断裂韧性为4-10MPa*m1/2,抗烧蚀性的线烧蚀率为0.05-0.1mm/s,质量烧蚀率为0.01-0.25g/s。
6.根据权利要求4所述的方法,其特征在于,所述S1)中的碳化合物陶瓷粉末包括:TiC、ZrC、HfC、VC、NbC、TaC、Cr3C2和Mo2C;氮化物陶瓷粉末包括:TiN、ZrN、HfN、VN、NbN、TaN和Cr2N。
7.根据权利要求4所述的方法,其特征在于,所述S1)中的脱氧剂为碳粉。
8.根据权利要求4所述的方法,其特征在于,所述S2)中的球磨为行星球磨,具体工艺为:采用不锈钢罐体,介质为不锈钢球,不锈钢球球与混合物料比为4-12:1,球磨转速为200~500r/min,球磨时间为20~90h。
9.根据权利要求4所述的方法,其特征在于,所述S3)中的放电等离子烧结法的工艺为:升温速度为50-200℃/min,升温至1400-2100℃,压力5-45MPa,保温1-10min。
10.一种如权利要求1-3任意一项所述的具有自愈合能力的超高温高熵碳氮化合物陶瓷应用于飞行器机翼前缘的耐热涂层或鼻锥的部件制备。
CN202210590884.5A 2022-05-27 2022-05-27 具有自愈合超高温高熵碳氮化合物陶瓷及制备方法和应用 Pending CN115043657A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210590884.5A CN115043657A (zh) 2022-05-27 2022-05-27 具有自愈合超高温高熵碳氮化合物陶瓷及制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210590884.5A CN115043657A (zh) 2022-05-27 2022-05-27 具有自愈合超高温高熵碳氮化合物陶瓷及制备方法和应用

Publications (1)

Publication Number Publication Date
CN115043657A true CN115043657A (zh) 2022-09-13

Family

ID=83160362

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210590884.5A Pending CN115043657A (zh) 2022-05-27 2022-05-27 具有自愈合超高温高熵碳氮化合物陶瓷及制备方法和应用

Country Status (1)

Country Link
CN (1) CN115043657A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116213715A (zh) * 2023-02-16 2023-06-06 成都美奢锐新材料有限公司 高熵合金粉末、高熵合金粉末的制备方法和混合合金粉末

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109180189A (zh) * 2018-10-08 2019-01-11 中南大学 一种高熵碳化物超高温陶瓷粉体及其制备方法
CN110590372A (zh) * 2019-10-14 2019-12-20 石家庄铁道大学 一种过渡金属碳氮化物高熵陶瓷及其制备方法和应用
CN111410536A (zh) * 2020-03-06 2020-07-14 中国科学院上海硅酸盐研究所 一种常压烧结制备致密(HfZrTaNbTi)C高熵陶瓷烧结体的方法
CN111471268A (zh) * 2020-03-12 2020-07-31 中国科学院化学研究所 一种碳化物高熵陶瓷前驱体及高熵陶瓷及制备方法
CN113233900A (zh) * 2021-06-07 2021-08-10 北京科技大学 一种氧化物增韧的耐烧蚀高熵碳氮化合物陶瓷的制备方法
CN113620712A (zh) * 2021-08-13 2021-11-09 华南理工大学 一种高熵碳化物陶瓷纳米粉体及其制备方法和应用
CN113880580A (zh) * 2021-11-12 2022-01-04 内蒙古工业大学 高熵碳化物超高温陶瓷粉体及其制备方法
CN114853477A (zh) * 2022-04-28 2022-08-05 浙江师范大学 一种耐烧蚀高熵碳化物-高熵硼化物-碳化硅复相陶瓷及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109180189A (zh) * 2018-10-08 2019-01-11 中南大学 一种高熵碳化物超高温陶瓷粉体及其制备方法
CN110590372A (zh) * 2019-10-14 2019-12-20 石家庄铁道大学 一种过渡金属碳氮化物高熵陶瓷及其制备方法和应用
CN111410536A (zh) * 2020-03-06 2020-07-14 中国科学院上海硅酸盐研究所 一种常压烧结制备致密(HfZrTaNbTi)C高熵陶瓷烧结体的方法
CN111471268A (zh) * 2020-03-12 2020-07-31 中国科学院化学研究所 一种碳化物高熵陶瓷前驱体及高熵陶瓷及制备方法
CN113233900A (zh) * 2021-06-07 2021-08-10 北京科技大学 一种氧化物增韧的耐烧蚀高熵碳氮化合物陶瓷的制备方法
CN113620712A (zh) * 2021-08-13 2021-11-09 华南理工大学 一种高熵碳化物陶瓷纳米粉体及其制备方法和应用
CN113880580A (zh) * 2021-11-12 2022-01-04 内蒙古工业大学 高熵碳化物超高温陶瓷粉体及其制备方法
CN114853477A (zh) * 2022-04-28 2022-08-05 浙江师范大学 一种耐烧蚀高熵碳化物-高熵硼化物-碳化硅复相陶瓷及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116213715A (zh) * 2023-02-16 2023-06-06 成都美奢锐新材料有限公司 高熵合金粉末、高熵合金粉末的制备方法和混合合金粉末

Similar Documents

Publication Publication Date Title
WO2020077770A1 (zh) 一种具有多元高熵的陶瓷及其制备方法和应用
CN112374916B (zh) 一种用于C/ZrC-SiC复合材料的陶瓷防护层及其制备方法
US7597971B2 (en) Thermal barrier coating material
CN108585897B (zh) 一种难熔金属高温抗氧化Si-Mo-YSZ涂层及其制备方法
US20230167029A1 (en) Ablation-resistant high-entropy carbide-high-entropy diboride-silicon carbide multiphase ceramic and preparation thereof
CN109912313A (zh) 一种新型多元单相超高温陶瓷改性碳/碳复合材料及其制备方法
CN113233900B (zh) 一种氧化物增韧的耐烧蚀高熵碳氮化合物陶瓷的制备方法
CN104630533A (zh) 一种刀具材料的复合硬质合金的制备方法
CN112877559B (zh) 一种多组元超高熵轻量化难熔复合材料
CN115043657A (zh) 具有自愈合超高温高熵碳氮化合物陶瓷及制备方法和应用
CN106565244B (zh) 一种颗粒增强三元层状陶瓷零件的表面氮化方法
CN112830791A (zh) 一种高熵陶瓷及其制备方法和应用
CN114163244A (zh) 一种外硬内韧氮化硅陶瓷及其制备方法
Zhang et al. Refractory multicomponent boron-carbide high entropy oxidation-protective coating for carbon-carbon composites
CN112063966B (zh) 一种提高钼合金表面抗高温烧蚀性能的方法
Meng et al. Effects of refractory metal additives on diboride‐based ultra‐high temperature ceramics: A review
KR20100125503A (ko) 금속 복합분말, 소결체 및 이의 제조 방법
CN111196726B (zh) 一种SiBCN-Ta4HfC5复相陶瓷及其制备方法
WO2023174159A1 (zh) 金属基复合材料及其制备方法与应用
CN116375477A (zh) 一种高硬度、抗氧化的高熵陶瓷及其制备方法
US20180105901A1 (en) Method of making a molybdenum alloy having a high titanium content
Liu et al. Ablation resistance and mechanism of SiC/ZrC-ZrB2 double layer coating for C/C composites under plasma flame
CN114262229A (zh) 一种高强韧二硼化物-碳化物复相高熵陶瓷的制备方法和应用
CN114107888A (zh) 一种含有TaB扩散障层的新型钽基Si-Mo-ZrB2复合涂层及其三步制备法
CN116178027B (zh) 一种高硬度、高韧性和强抗氧化性的高熵硼化物基陶瓷及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20220913

RJ01 Rejection of invention patent application after publication