CN115010675B - 一种快速检测i-离子共价有机框架荧光探针的制备方法及其应用 - Google Patents

一种快速检测i-离子共价有机框架荧光探针的制备方法及其应用 Download PDF

Info

Publication number
CN115010675B
CN115010675B CN202210113209.3A CN202210113209A CN115010675B CN 115010675 B CN115010675 B CN 115010675B CN 202210113209 A CN202210113209 A CN 202210113209A CN 115010675 B CN115010675 B CN 115010675B
Authority
CN
China
Prior art keywords
fluorescent probe
covalent organic
organic framework
solution
framework fluorescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210113209.3A
Other languages
English (en)
Other versions
CN115010675A (zh
Inventor
侯淑华
王迪
宋思儒
张红
任冬梅
钟克利
汤立军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bohai University
Original Assignee
Bohai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bohai University filed Critical Bohai University
Priority to CN202210113209.3A priority Critical patent/CN115010675B/zh
Publication of CN115010675A publication Critical patent/CN115010675A/zh
Application granted granted Critical
Publication of CN115010675B publication Critical patent/CN115010675B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D259/00Heterocyclic compounds containing rings having more than four nitrogen atoms as the only ring hetero atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1074Heterocyclic compounds characterised by ligands containing more than three nitrogen atoms as heteroatoms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Molecular Biology (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

一种快速检测I离子共价有机框架荧光探针的制备方法及其应用,将1,3,5‑三甲酰基间苯三酚溶解于均三甲苯中,将2,5‑二氨基苯甲酸溶解于1,4‑二氧六环中,将两种溶液在超声条件下混合均匀,向混合溶液中加入偶氮苯,并乙酸作为催化剂,经反复先冻融再通N2进行脱气后,在120℃条件下反应3天,离心除去溶剂,研磨1小时后加入到异丙醇中,在365nm的紫外线照射下,边照射边搅拌1小时,然后用超声波细胞粉碎机破碎3小时,得到共价有机框架荧光探针优点是:制备的共价有机框架探针粒径小,具有良好灵敏度、强抗干扰能力,在溶液中均可均匀分散,对I的识别可以在溶液体系中进行,且适用于各种pH条件。

Description

一种快速检测I-离子共价有机框架荧光探针的制备方法及其 应用
技术领域
本发明属于碘离子检测领域,特别涉及一种快速检测I-离子共价有机框架荧光探针的制备方法及其应用。
背景技术
碘是一种重要的微量元素,对维持和调节人体的细胞内环境的稳定性起着至关重要的作用。碘含量的缺乏或过多都会对身体造成一定的伤害,并引发相关的甲状腺疾病,如甲状腺肿大、甲状腺功能减退和甲状腺功能亢进,碘离子也是控制骨骼和大脑发育代谢的关键因素。作为人体生长必需的微量营养素之一,碘离子的分析方法的开发具有重要的研究意义。迄今为止,检测碘离子的分析方法有很多种,例如阴离子交换色谱法、微流体流动注射法,毛细管电泳、电位滴定等。虽然这些方法在一定条件下能够满足测定的要求,但也存在明显的缺陷,如对于样品的预处理相对复杂、测试成本相对较高及检测时间偏长等。因此,开发一种快速、有效地检测碘离子的分析方法是至关重要的。近年来,荧光光谱法由于具有灵敏度高、选择性好、操作简便和成本低等特点,受到了研究者的广泛关注。
共价有机框架(COF)材料是一种较新颖的多孔材料,COFs由于具有密度低、比表面积大、孔径可调控、稳定性高等优点,因此在气体储存、吸附、光电、催化和化学传感等方面具有良好的应用前景。它们比传统的荧光传感器具有独特的优势,例如,开放对接位点、永久孔隙率、超低密度、出色的热稳定性。然而绝大多数的COF材料在水中和大多数有机溶剂中易聚集沉淀,这在很大程度上影响了COF的实际应用。
发明内容
本发明要解决的技术问题是提供一种具有良好灵敏度、强抗干扰能力、可快速检测I-离子共价有机框架探针的制备方法及其应用,制备的共价有机框架探针粒径小,在溶液中均可均匀分散,对I-的识别可以在溶液体系中进行,且适用于各种pH条件,以增加检测的应用范围。
本发明的技术方案是:
一种快速检测I-离子共价有机框架探针的制备方法,其反应式如下:
具体步骤是:
将1,3,5-三甲酰基间苯三酚溶解于均三甲苯中,得到溶液I,将2,5-二氨基苯甲酸溶解于1,4-二氧六环中,得到溶液II,将溶液I和溶液II在超声条件下混合均匀,所述1,3,5-三甲酰基间苯三酚与2,5-二氨基苯甲酸的摩尔比为1:1.5,向混合溶液中加入偶氮苯,所述1,3,5-三甲酰基间苯三酚与偶氮苯的摩尔比为1:1.5,并乙酸作为催化剂,经反复先冻融再通N2进行脱气后,在120℃条件下反应3天,离心除去溶剂,研磨1小时后加入到异丙醇中,在365nm的紫外线照射下,边照射边搅拌1小时,然后用超声波细胞粉碎机破碎3小时,再分别用二氯甲烷、甲醇、四氢呋喃各清洗3次,离心,自然晾干,得到共价有机框架荧光探针
进一步的,所述乙酸的浓度为6mol/L。
一种上述共价有机框架荧光探针在快速检测I-离子荧光探针中的应用。
一种共价有机框架荧光探针在快速检测I-离子荧光探针中的应用,所述共价有机框架荧光探针能够选择性识别I-离子使用的溶剂为四氢呋喃水溶液。
进一步的,所述四氢呋喃水溶液是用四氢呋喃与去离子水按照体积比1:1配制的。
一种共价有机框架荧光探针在快速检测I-离子荧光探针中的应用,向四氢呋喃水溶液中加入共价有机框架荧光探针,搅拌均匀,得到浓度为0.01mg/mL~1mg/mL共价有机框架荧光探针分散液;在检测水样中,加入共价有机框架荧光探针分散液,在λ=230nm的激发波长下测定其荧光发射强度,在317nm处荧光强度减弱,该检测样中含有I-离子。
进一步的,所述共价有机框架荧光探针分散液为0.05mg/mL。
本发明的有益效果:
1)该荧光探针TpPa-COOH COF对I-的识别都有优良的选择性,特异性强,荧光探针TpPa-COOH COF与I-作用后,表现为荧光减弱,实现了对I-的荧光识别,检测灵敏度高,与其它常见阴离子如F-,Cl-,Br-,SCN-,PO4 3-,S2O3 2-,H2PO4 2-,N3-,SO3 2-,SO4 2-,CH3COO-,NO2 -,CO3 2-,HCO3 2-,S2-,CN-,HSO3 -作用荧光信号基本没有变化,抗干扰能力强。
2)合成时加入偶氮苯紫外光照射条件下制备共价有机框架探针,偶氮苯在紫外光照条件下构型变化促进探针COF分散,得到几百纳米的颗粒,且均匀分散在溶液中,使稳定的分散液可用于荧光检测。
3)该荧光探针TpPa-COOH COF具有纳米尺度、在C2H5OH/H2O(V:V=1:1)溶液、THF/H2O(V:V=1:1)溶液中均可均匀分散的特点,可以实现在溶液体系中对I-的识别,且适用于各种pH条件,增加了检测的准确度及应用范围。
附图说明
图1是本发明荧光探针TpPa-COOH COF的傅里叶红外光谱图;
图2是本发明荧光探针TpPa-COOH COF的拉曼光谱图;
图3是本发明荧光探针TpPa-COOH COF的X射线光电子能谱图;
图4是本发明荧光探针TpPa-COOH COF的扫描电子显微镜SEM图;
图5是本发明荧光探针TpPa-COOH COF在THF/H2O(V:V=1:1)溶液中加入不同阴离子的荧光光谱;
图6是本发明荧光探针TpPa-COOH COF在I-及其它金属离子存在下的荧光发射强度变化图;
图7是本发明荧光探针TpPa-COOH COF在THF/H2O(V:V=1:1)溶液中I-的荧光滴定光谱;
图8是本发明荧光探针TpPa-COOH COF在不同pH条件下加入I-离子前后荧光强度变化图。
具体实施方式
本发明可以通过以下的实施例进一步说明,但不仅仅局限于实施例。
实施例1
合成共价有机框架荧光探针TpPa-COOH COF其反应式如下:
将1,3,5-三甲酰基间苯三酚(Tp,0.21g,1mmol)溶解于18mL的均三甲苯中,并2,5-二氨基苯甲酸(Pa-COOH,0.23g,1.5mmol)溶解于18mL的1,4-二氧六环中,再将两种溶液混合进行超声溶解,向混合溶液中加入偶氮苯(0.273g,1.5mmol),并滴加6mL浓度为6M的乙酸作为催化剂,经先冻融再通N2反复脱气后,,在120℃条件下反应3天,反应结束后,离心除去溶剂,研磨1小时后加入到500mL的异丙醇中,在365nm的紫外线照射下,边照射边搅拌1小时,之后用超声波细胞粉碎机破碎3小时,使其在溶液中分散的更加均匀;破碎完成后再分别用二氯甲烷,甲醇,四氢呋喃各清洗三次,离心,室温晾干,得到砖红色粉末共价有机框架荧光探针TpPa-COOH COF。
该共价有机框架荧光探针TpPa-COOH COF的基本数据:
傅里叶变换红外光谱(FT-IR)在1568cm-1和1200cm-1处显示强峰,分别对应于以酮形式存在的C=C拉伸和C—N拉伸带。与两种单体相比,Tp的C=O拉伸带(1643cm-1)和Pa-COOH的N-H拉伸带(3300cm-1~3400cm-1)消失,从而表明成功制备了TpPa-COOH COF(如图1)。
拉曼光谱中1392cm-1、1604cm-1和1667cm-1处的峰分别对应于苯环和胺官能团的拉伸振动,在1604cm-1处的拉曼谱带对应于COF结构中苯环的C=C拉伸振动,1667cm-1处的拉曼拉伸信号与COF结构中酮-烯胺键的C=O相关(如图2)。
X射线光电子能谱进一步分析了TpPa-COOH COF的化学结构,在XPS中发现了C1s、N1s、O1s信号的峰,从而确认了新化合物的形成(如图3)。
扫描电子显微镜SEM图像表明合成的探针TpPa-COOH COF具有较小的粒径,粒径只要几百纳米(图4)。
对比例1
将1,3,5-三甲酰基间苯三酚(Tp,0.21g,1mmol)溶解于18mL的均三甲苯中,并2,5-二氨基苯甲酸(Pa-COOH,0.23g,1.5mmol)溶解于18mL的1,4-二氧六环中,再将两种溶液混合进行超声溶解,并滴加6mL浓度为6M的乙酸作为催化剂,经先冻融再通N2反复脱气后,在120℃条件下反应3天,反应结束后,离心除去溶剂,研磨1小时后加入到500mL的异丙醇中,搅拌1小时,之后用超声波细胞粉碎机破碎3小时,使其在溶液中分散的更加均匀;破碎完成后再分别用二氯甲烷,甲醇,四氢呋喃各清洗三次,离心,室温晾干,得到产品共价有机框架化合物。该共价有机框架化合物颗粒较大,粒径在几微米到十几微米之间。
一、本发明实施例1的荧光探针TpPa-COOH COF的荧光光谱测定:
本发明实施例1的荧光探针TpPa-COOH COF的荧光光谱测定溶液配制,准确称量50mg的TpPa-COOH COF化合物,用5mL的二次蒸馏水溶解,溶解后用超声波细胞粉碎机破碎1小时,使得TpPa-COOH COF均匀分散在水中,即得到测试荧光性能所用的10mg/mL的荧光探针分散液,备用。
取2mL稀释至浓度为0.05mg/mL的荧光探针TpPa-COOH COF分散液,然后分别加入20μL浓度为50mmol/L的各种离子(F-,Cl-,Br-,I-,SCN-,PO4 3-,S2O3 2-,H2PO4 2-,N3-,SO3 2-,SO4 2-,CH3COO-,NO2 -,CO3 2-,HCO3 2-,S2-,CN-,HSO3 -)溶液,摇匀,后在λ=230nm的激发波长下测定其荧光发射光谱(如图5),结果发现荧光探针TpPa-COOH COF在317nm处有强荧光;加入I-后,荧光探针TpPa-COOH COF在317nm处荧光强度变弱,而其它离子没有发现类似变化。
二、本发明实施例1和对比例1的共价有机框架荧光探针TpPa-COOH COF在四氢呋喃水溶液中的分散稳定性
(1)在四氢呋喃水溶液中的分散稳定性
分别配制2mL浓度为0.01mg/mL、0.05mg/mL、1mg/mL的本发明实施例1荧光探针TpPa-COOH COF的THF/H2O(V:V=1:1)分散液,室温放置7天瓶底均无沉淀析出,说明探针能在此四氢呋喃水溶液中稳定分散。
分别配制2mL浓度为0.01mg/mL、0.05mg/mL、1mg/mL的本发明对比例1共价有机框架化合物的THF/H2O(V:V=1:1)混合液,24小时后瓶底均有大量沉淀析出。
(2)在乙醇溶液中的分散稳定性
分别配制2mL浓度为0.01mg/mL、0.05mg/mL、1mg/mL的本发明实施例1荧光探针TpPa-COOH COF的C2H5OH/H2O(V:V=1:1)分散液,室温放置7天瓶底均无沉淀析出,说明探针能在乙醇溶液中稳定分散。
分别配制2mL浓度为0.01mg/mL、0.05mg/mL、1mg/mL的本发明对比例1共价有机框架化合物的C2H5OH/H2O(V:V=1:1)混合液,24小时后瓶底均有大量沉淀析出。
三、本发明实施例1的荧光探针TpPa-COOH COF的对I-离子识别的选择性和抗干扰性:
取2mL浓度为0.05mg/mL本发明实施例1的荧光探针TpPa-COOH COF的THF/H2O(V:V=1:1)分散液,然后分别加入20μL浓度为50mmol/L的离子I-溶液,摇匀,后在λ=230nm的激发波长下测定其荧光发射光谱,结果显示加入其它阴离子如:F-,Cl-,Br-,I-,SCN-,PO4 3-,S2O3 2-,H2PO4 2-,N3-,SO3 2-,SO4 2-,CH3COO-,NO2 -,CO3 2-,HCO3 2-,S2-,CN-,HSO3 -对其荧光发射和可见吸收强度影响很小,这就表明了荧光探针TpPa-COOH COF对I-识别具有较高的选择性和较好的抗干扰能力(图6)。
四、荧光探针TpPa-COOH COF的荧光光谱滴定实验及检测限的测定:
取2mL浓度为0.05mg/mL本发明实施例1的荧光探针TpPa-COOH COF的THF/H2O(V:V=1:1)分散液,加入不同浓度的I-可发现,随着I-浓度的增加,荧光探针TpPa-COOH COF在317nm处荧光强度逐渐减弱,当I-浓度增加到1.5μM时,其荧光强度几乎不变,说明此时已达到饱和。通过离子浓度与荧光强度的关系曲线呈现良好的线性关系。其中探针TpPa-COOHCOF对I-的检测限为0.028μmol/L,R2>0.99(图7)。
五、荧光探针TpPa-COOH COF在不同酸碱条件下检测性能:
取2mL浓度为0.05mg/mL本发明实施例1的荧光探针TpPa-COOH COF的THF/H2O(V:V=1:1)分散液,加入HCl或NaOH,分别配制成不同pH值,在pH值为1~13的范围内探针TpPa-COOH COF的荧光强度都很高;在加入I-后,pH值为1~13的范围内,荧光强度均显著降低且较为稳定。实验结果表明,在pH为1~13的范围内,探针TpPa-COOH COF都可以对I-的识别具有较好的响应(图8)。
以上仅为本发明的具体实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种快速检测I-离子共价有机框架荧光探针的制备方法,其特征是:
具体步骤如下:
将1,3,5-三甲酰基间苯三酚溶解于均三甲苯中,得到溶液I,将2,5-二氨基苯甲酸溶解于1,4-二氧六环中,得到溶液II,将溶液I和溶液II在超声条件下混合均匀,所述1,3,5-三甲酰基间苯三酚与2,5-二氨基苯甲酸的摩尔比为1:1.5,向混合溶液中加入偶氮苯,所述1,3,5-三甲酰基间苯三酚与偶氮苯的摩尔比为1:1.5,并乙酸作为催化剂,经反复先冻融再通N2进行脱气后,在120 ℃ 条件下反应3天,离心除去溶剂,研磨1小时后加入到异丙醇中,在365 nm 的紫外线照射下,边照射边搅拌1小时,然后用超声波细胞粉碎机破碎3小时,再分别用二氯甲烷、甲醇、四氢呋喃各清洗3次,离心,自然晾干,得到共价有机框架荧光探针
2.根据权利要求1所述的快速检测I-离子共价有机框架荧光探针的制备方法,其特征是: 所述乙酸的浓度为6mol/L。
3.一种如权利要求1所述的共价有机框架荧光探针在快速检测I-离子中的应用。
4.根据权利要求3所述的共价有机框架荧光探针在快速检测I-离子中的应用,其特征是: 所述共价有机框架荧光探针能够选择性识别I-离子使用的溶剂为四氢呋喃水溶液。
5.根据权利要求4所述的共价有机框架荧光探针在快速检测I-离子中的应用,其特征是:所述四氢呋喃水溶液是用四氢呋喃与去离子水按照体积比1:1配制的。
6.根据权利要求5所述的共价有机框架荧光探针在快速检测I-离子中的应用,其特征是:向四氢呋喃水溶液中加入共价有机框架荧光探针,搅拌均匀,得到浓度为0.01mg/mL~1mg/mL共价有机框架荧光探针分散液;在检测水样中,加入共价有机框架荧光探针分散液,在λ=230 nm的激发波长下测定其荧光发射强度,在317nm处荧光强度减弱,该检测样中含有I-离子。
7.根据权利要求6所述的共价有机框架荧光探针在快速检测I-离子中的应用,其特征是:所述共价有机框架荧光探针分散液浓度为0.05 mg/mL。
CN202210113209.3A 2022-01-30 2022-01-30 一种快速检测i-离子共价有机框架荧光探针的制备方法及其应用 Active CN115010675B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210113209.3A CN115010675B (zh) 2022-01-30 2022-01-30 一种快速检测i-离子共价有机框架荧光探针的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210113209.3A CN115010675B (zh) 2022-01-30 2022-01-30 一种快速检测i-离子共价有机框架荧光探针的制备方法及其应用

Publications (2)

Publication Number Publication Date
CN115010675A CN115010675A (zh) 2022-09-06
CN115010675B true CN115010675B (zh) 2023-08-01

Family

ID=83067346

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210113209.3A Active CN115010675B (zh) 2022-01-30 2022-01-30 一种快速检测i-离子共价有机框架荧光探针的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN115010675B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108276383A (zh) * 2018-02-10 2018-07-13 贵州大学 一种识别碘离子的荧光探针及其制备方法和识别方法
AU2020103559A4 (en) * 2020-01-13 2021-02-04 Qilu University Of Technology Ratiometric fluorescent probe for detecting hypochlorous acid, and preparation method and use thereof
CN113461887A (zh) * 2021-01-28 2021-10-01 渤海大学 一种用于盐差发电的一维纳米通道自支撑共价有机框架膜及其应用
CN113929876A (zh) * 2021-10-22 2022-01-14 西北师范大学 一种具有c=c双键荧光探针共价有机框架材料及其合成方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108276383A (zh) * 2018-02-10 2018-07-13 贵州大学 一种识别碘离子的荧光探针及其制备方法和识别方法
AU2020103559A4 (en) * 2020-01-13 2021-02-04 Qilu University Of Technology Ratiometric fluorescent probe for detecting hypochlorous acid, and preparation method and use thereof
CN113461887A (zh) * 2021-01-28 2021-10-01 渤海大学 一种用于盐差发电的一维纳米通道自支撑共价有机框架膜及其应用
CN113929876A (zh) * 2021-10-22 2022-01-14 西北师范大学 一种具有c=c双键荧光探针共价有机框架材料及其合成方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A Carboxyl-Functionalized Covalent Organic Framework Synthesized in a Deep Eutectic Solvent for Dye Adsorption;Bin Dong等;Chemistry-A European Journal;第27卷(第8期);2692-2698 *
一种近红外发射荧光探针的合成及其荧光增强识别Hg2+;宋文琦等;化学通报;第84卷(第7期);726-731 *

Also Published As

Publication number Publication date
CN115010675A (zh) 2022-09-06

Similar Documents

Publication Publication Date Title
Wang et al. Magnetic Fe 3 O 4@ MOFs decorated graphene nanocomposites as novel electrochemical sensor for ultrasensitive detection of dopamine
Zhang et al. 3, 4-Hydroxypyridinone-modified carbon quantum dot as a highly sensitive and selective fluorescent probe for the rapid detection of uranyl ions
CN106442436B (zh) 用于检测水中痕量4-硝基苯酚的磁性量子点印迹材料、制备方法及用途
Ardalani et al. A new generation of highly sensitive potentiometric sensors based on ion imprinted polymeric nanoparticles/multiwall carbon nanotubes/polyaniline/graphite electrode for sub-nanomolar detection of lead (II) ions
Li et al. Application of l-cysteine capped core–shell CdTe/ZnS nanoparticles as a fluorescence probe for cephalexin
Lin et al. Highly sensitive sensing of hydroquinone and catechol based on β-cyclodextrin-modified carbon dots
Lu et al. A dual reference ion-imprinted ratiometric fluorescence probe for simultaneous detection of silver (I) and lead (II)
Liu et al. Carbon dots incorporated metal–organic framework for enhancing fluorescence detection performance
Wei et al. A novel molecularly imprinted polymer thin film at surface of ZnO nanorods for selective fluorescence detection of para-nitrophenol
Liu et al. β-Cyclodextrin-modified silver nanoparticles as colorimetric probes for the direct visual enantioselective recognition of aromatic α-amino acids
CN106750316A (zh) 一种磁性核‑壳型纳米粒表面铀酰分子印迹聚合物的制备方法
Shu et al. Polymer surface ligand and silica coating induced highly stable perovskite nanocrystals with enhanced aqueous fluorescence for efficient Hg 2+ and glutathione detection
Zhang et al. Selective capture and fluorescent quantification of glycoproteins using aminophenylboronic acid functionalized mesoporous silica coated CdTe quantum dots
CN103043709B (zh) 一种氧化石墨烯/AgInS2纳米杂化材料的制备方法
Tashkhourian et al. Chiral recognition of naproxen enantiomers using starch capped silver nanoparticles
Yang et al. Detection of trace leucomalachite green with a nanoprobe of CdTe quantum dots coated with molecularly imprinted silica via synchronous fluorescence quenching
Kong et al. Absorption, fluorescence and resonance Rayleigh scattering spectra of hydrophobic hydrogen bonding of eosin Y/Triton X-100 nanoparticles and their analytical applications
CN115010675B (zh) 一种快速检测i-离子共价有机框架荧光探针的制备方法及其应用
CN113655039A (zh) 一种基于分子印迹技术构建的微囊藻毒素比率荧光传感器
CN117347336A (zh) 一种检测卡那霉素的荧光适配体生物传感器及其制备方法和应用
CN104877662A (zh) 巯基聚乙烯醇量子点复合材料的制备及在检测水样中痕量Cu2+的应用
CN107699235A (zh) 基于Mn掺杂ZnS量子点的固体磷光探针材料的制备及应用
Li et al. Synthesis and evaluation of a molecularly imprinted polymer with high-efficiency recognition for dibutyl phthalate based on Mn-doped ZnS quantum dots
Guan et al. Efficient detection of trace Hg2+ in water based on the fluorescence quenching of environment-friendly thiol-functionalized poly (vinyl alcohol) capped CdS quantum dots nanocomposite
CN107699228B (zh) 一种纳米二氧化硅负载的氟离子荧光探针、制备方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant