CN114963973A - 基于光纤光栅阵列传感薄膜的螺栓裂纹检测装置及方法 - Google Patents

基于光纤光栅阵列传感薄膜的螺栓裂纹检测装置及方法 Download PDF

Info

Publication number
CN114963973A
CN114963973A CN202210387799.9A CN202210387799A CN114963973A CN 114963973 A CN114963973 A CN 114963973A CN 202210387799 A CN202210387799 A CN 202210387799A CN 114963973 A CN114963973 A CN 114963973A
Authority
CN
China
Prior art keywords
grating
bolt
crack
fiber
fiber grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210387799.9A
Other languages
English (en)
Inventor
谢为国
张学军
周鹏
顾国庆
陈立云
曹阳
王冬冬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yancheng Quality And Technical Supervision Comprehensive Inspection And Testing Center Yancheng Product Quality Supervision And Inspection Institute
Yancheng Institute of Technology
Original Assignee
Yancheng Quality And Technical Supervision Comprehensive Inspection And Testing Center Yancheng Product Quality Supervision And Inspection Institute
Yancheng Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yancheng Quality And Technical Supervision Comprehensive Inspection And Testing Center Yancheng Product Quality Supervision And Inspection Institute, Yancheng Institute of Technology filed Critical Yancheng Quality And Technical Supervision Comprehensive Inspection And Testing Center Yancheng Product Quality Supervision And Inspection Institute
Priority to CN202210387799.9A priority Critical patent/CN114963973A/zh
Publication of CN114963973A publication Critical patent/CN114963973A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • G01D5/35309Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer
    • G01D5/35316Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer using a Bragg gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本发明公开了基于光纤光栅阵列传感薄膜的螺栓裂纹检测装置,包括薄膜传感器,所述薄膜传感器包括薄膜和若干根光纤光栅串传感器,多根所述光纤光栅串传感器形成光纤光栅传感阵列网络,将所述光纤光栅传感阵列网络嵌入到所述薄膜里,经高温固化后形成所述薄膜传感器,同时公开了该检测装置的检测方法,将所制备的薄膜传感器紧密粘结贴合在风电螺栓螺杆表面,并将薄膜传感器连接至多通道光纤光栅解调仪,然后将反馈的光谱解调信号经无线传输模块发送至风机主机仓的无线路由器,并通过网线由风机服务器接收,最终将光谱解调信号无线传输至风场控制中心,实时监控及预测风电螺栓的疲劳趋势。

Description

基于光纤光栅阵列传感薄膜的螺栓裂纹检测装置及方法
技术领域
本发明涉及大型风电机组螺栓结构健康监测技术领域,具体为基于光纤光栅阵列传感薄膜的螺栓裂纹检测装置及方法。
背景技术
随着风电产业迅猛发展的同时也带来了许多问题,风电机组在运行过程中的各种机械故障和事故也逐步进入高发期,运维压力显著增加。螺栓连接是风电机组中最主要的连接方式之一,诸如风电叶片、主轴轮毂,塔筒等风电机组的关键结构部件几乎全部采用高强度大扭矩螺栓连接。由于风速的时变特性,导致风电机组运行在交变载荷工况下,随着运行时间的增加,风电螺栓承受的交变应力作用极易引发其产生疲劳裂纹损伤。如果定检过程中没有及时发现裂纹将引发较为严重的后果,甚至造成重大安全事故和经济损失。为了确保风电机组运行安全,必须尽可能早地发现螺栓上的疲劳裂纹,以便及时更换。但是,风电螺栓早期疲劳裂纹在并且只在风机不停机时才能表现出来。然而,现有风电螺栓检测大多是在风机停机状态下采用人工定检。一方面,风机停机势必影响风场发电总量及发电效率,造成经济损失;另一方面,人工定检不仅成本高,安全隐患大,更重要的是也很难及时发现早期裂纹。因此,如何在风电机组不停机状态下在线检测风电螺栓裂纹,一直是风电螺栓损伤检测领域的重要技术难题,尚缺乏广泛认可的检测手段和行业标准。
目前,常见的风电螺栓检测技术包括电路回路技术、压电技术、振动-应力复合传感技术、超声波技术以及光纤光栅技术等。前几种技术主要关注风电螺栓松动、轴向力及变形等机械故障的诊断监测,监测信号比较容易受到电磁场影响。超声波技术虽然可以用于螺栓裂纹检测,但主要是普通螺栓的快速检测,且检测仍需人工操作,检测信号也容易受到电磁干扰。因而,超声波技术也较难实现风电螺栓裂纹的在线检测。光纤光栅传感技术以其耐腐蚀、灵敏度高、抗电磁干扰等优点目前已经在国内外风电螺栓结构健康监测领域得到广泛应用,主要涉及对风电螺栓的松动、变形、预紧力等监测及预警,例如利用光纤光栅传感器实时检测螺栓的应变及受力数据实现螺栓变形及松动的实时评估。
但是,现有基于光纤光栅传感技术的风电螺栓监测应用都不可避免地需要对螺栓进行开槽或开孔处理,一定程度上破坏了螺栓的整体结构强度,而且单个光纤光栅传感器仅能感知光栅区域处的螺栓应变变化,无法及时感知非光栅区域处的螺栓应变变化。由于风电螺栓疲劳裂纹发生的位置随机性和时间突然性,仅仅依靠单个光纤光栅传感器已经很难实时掌握螺栓的疲劳趋势,更无法实现螺栓疲劳裂纹的定量检测。
发明内容
针对现有风电螺栓光纤光栅检测技术不足,本发明提供基于光纤光栅阵列传感薄膜的螺栓裂纹检测装置及方法,在识别出螺栓裂纹的同时,大幅提高裂纹检测精度。
为实现上述目的,本发明提供如下技术方案:基于光纤光栅阵列传感薄膜的螺栓裂纹检测装置,包括薄膜传感器,所述薄膜传感器包括薄膜和若干根光纤光栅串传感器,多根所述光纤光栅串传感器形成光纤光栅传感阵列网络,将所述光纤光栅传感阵列网络嵌入到所述薄膜里,经高温固化后形成所述薄膜传感器。
优选的,所述光纤光栅传感阵列区域涂覆剥离并固定在浅底金属模具中,所述薄膜通过向所述浅底金属模具中倒入光学聚合物树脂,并利用刮刀对所述光学聚合物树脂进行均匀刮平,使所述光学聚合物树脂覆盖在所述光纤光栅传感阵列***,并经过高温固化一体成型。
优选的,每根所述光纤光栅串传感器所包含的所述光栅数目以及间距均相等。
基于光纤光栅阵列传感薄膜的螺栓裂纹检测装置的检测方法,包括以下步骤:
S1、采用高强度粘合剂将制备的所述薄膜传感器紧密粘结贴合在风电螺栓的螺杆表面,将螺栓垫片套进螺栓,并在螺栓垫片上制作楔形垫片缺口以引出薄膜传感器中的多根光纤束;
S2、将从所述螺栓垫片中引出的多根所述光纤束末端通过所述光纤束跳线头与多通道光纤光栅解调仪的多个通道连接;
S3、由于所述薄膜传感器中的所述光栅位置是固定的,不同光栅位置就对应着所述螺栓的螺杆上的不同位置,当所述螺栓的螺杆上出现裂纹时,裂纹区域处所对应的光纤光栅反射光谱峰值波长漂移量将会明显高于没有裂纹区域处所对应的光纤光栅反射光谱峰值波长漂移量,并在所述多通道光纤光栅解调仪中反馈形成不同的光谱信号,经过无线传输模块发送至风机主机仓的路由器,并通过网线由风机服务器接收;
S4、最终通过物联网技术将所述光谱信号无线传输至风场控制中心,实时监控及预测所述风电螺栓的疲劳趋势。
优选的,所述S3中,根据所述多通道光纤光栅解调仪中不同通道内具有高峰值波长漂移量的光纤光栅反射光谱数目判断裂纹的数目,同时根据所述具有高峰值波长漂移量的光纤光栅反射光谱位置所对应的光纤光栅阵列中的光栅位置识别出所述裂纹所处的位置。
优选的,检测的所述裂纹的种类包括轴向裂纹扩展、周向裂纹扩展以及斜向裂纹扩展。
优选的,当裂纹沿螺栓的螺杆轴向扩展覆盖至同一光纤中多个光栅位置时,根据所述多通道光纤光栅解调仪同一通道光纤光栅反射光谱峰值波长变化所对应的光纤光栅阵列中相邻光栅间距确定所述轴向裂纹扩展的长度。
优选的,当裂纹沿螺栓的螺杆周向扩展覆盖至不同光纤中同一纬度多个光栅位置时,根据所述多通道光纤光栅解调仪相邻通道光栅光谱峰值波长变化所对应的不同光纤中同一纬度光栅阵列间距确定所述周向裂纹扩展的长度。
优选的,当裂纹沿螺栓的螺杆斜向扩展覆盖至不同光纤中多个光栅位置时,根据所述多通道光纤光栅解调仪相邻通道光栅光谱峰值波长变化所对应的不同光纤中不同维度光栅阵列间距确定所述斜向裂纹扩展的长度及方向。
与现有技术相比,本发明的有益效果:
1、本发明除了可以实施风电螺栓松动、变形、预警力等常规监测项目以外,更重要的是可以在线检测螺栓疲劳裂纹损伤。
2、本发明中,可直接将柔性光纤光栅阵列薄膜传感器粘贴在风电螺栓表面,无需在风电螺栓表面开槽或开孔布置光纤光栅阵列薄膜传感器,真正实现风电螺栓在线无损检测。
3、本发明利用光纤光栅阵列传感技术,可以实现螺栓多区域裂纹位置、长度及方向等裂纹参数的实时定量检测。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。
在附图中:
图1是本发明风电螺栓裂纹在线检测装置结构示意图;
图2是本发明柔性光纤光栅阵列薄膜传感器的结构示意图;
图3是本发明风电螺栓的结构示意图;
图4是本发明螺栓垫片的结构示意图;
图5是本发明风电螺栓裂纹参数检测方法的流程图;
图6是本发明轴向裂纹扩展的结构示意图;
图7是本发明周向裂纹扩展的结构示意图;
图8是本发明斜向裂纹扩展的结构示意图;
图中标号:1、螺栓;2、光纤;3、光栅;4、薄膜;5、光纤束跳线头;6、垫片缺口;7、垫片;8、薄膜传感器;9、粘合层;10、多通道光纤光栅解调仪;11、无线传输模块;12、路由器;13、网线;14、风机服务器;15、风场控制中心。
具体实施方式
以下结合附图对本发明的优选实施例进行说明,应当理解,此处所描述的优选实施例仅用于说明和解释本发明,并不用于限定本发明。
如图1-图4所示,基于光纤光栅阵列传感薄膜的螺栓裂纹检测装置,包括薄膜传感器8,所述薄膜传感器8包括薄膜4和若干根光纤光栅串传感器,每根光纤2上刻蚀多个光栅3,形成光纤光栅串传感器,多根所述光纤光栅串传感器形成所述光纤光栅传感阵列网络,每根所述光纤光栅串传感器所包含的所述光栅3数目以及间距均相等,将所述光纤光栅传感阵列网络嵌入或植入到所述薄膜4里,形成一种柔性薄膜传感器8,其中所述薄膜4通过向浅底金属模具中倒入光学聚合物树脂,并利用刮刀对所述光学聚合物树脂进行均匀刮平,使所述光学聚合物树脂覆盖在所述光纤光栅传感阵列网络***,并经过高温固化一体成型。
如图1和图5-图8所示,基于光纤光栅阵列传感薄膜的螺栓裂纹检测装置的检测方法,包括以下步骤:
S1、采用高强度粘合剂将制备的所述薄膜传感器8紧密粘结贴合在风电螺栓1的螺杆表面,将螺栓垫片7套进螺栓1,并在螺栓垫片7上制作楔形垫片7缺口6以引出薄膜传感器8中的多根光纤2束;
S2、将从所述螺栓垫片7中引出的多根所述光纤2束末端通过所述光纤束跳线头5与多通道光纤光栅解调仪10的多个通道连接;
S3、由于所述薄膜传感器8中的所述光栅3位置是固定的,不同光栅3位置就对应着所述螺栓1的螺杆上的不同位置,当所述螺栓1的螺杆上出现裂纹时,裂纹区域处所对应的光栅3光谱峰值波长漂移量将会明显高于没有裂纹区域处所对应的光栅3光谱峰值波长漂移量,根据所述多通道光纤光栅解调仪10中不同通道内具有高峰值波长漂移量的光纤光栅反射光谱数目判断裂纹的数目,同时根据所述具有高峰值波长漂移量的光纤光栅反射光谱位置所对应的光纤光栅阵列中的光栅3位置识别出所述裂纹所处的位置;
当裂纹沿螺栓1螺杆的轴向扩展覆盖至同一光纤2中多个光栅3位置时,根据多通道光纤光栅解调仪10同一通道光栅3光谱峰值波长变化所对应的光纤光栅阵列中相邻光栅3间距可以确定轴向裂纹扩展的长度;
当裂纹沿螺栓1螺杆周向扩展覆盖至不同光纤2中同一纬度多个光栅3位置时,根据多通道光纤光栅解调仪10相邻通道光栅3光谱峰值波长变化所对应的不同光纤2中同一纬度光栅3阵列间距可以确定周向裂纹扩展的长度;
当裂纹沿螺栓1螺杆斜向扩展覆盖至不同光纤2中多个光栅3位置时,根据多通道光纤光栅解调仪10相邻通道光栅3光谱峰值波长变化所对应的不同光纤2中不同维度光栅3阵列间距,可以确定斜向裂纹扩展的长度及方向;
然后在所述多通道光纤光栅解调仪10中反馈形成不同的光谱信号,经过无线传输模块11发送至风机主机仓的无线路由器12,并通过网线13由风机服务器14接收;
S4、最终通过物联网技术将所述光谱信号无线传输至风场控制中心15,实时监控及预测所述风电螺栓1的疲劳趋势。
具体操作为:
首先,制备薄膜传感器8,将多根局部区域涂覆层剥离的光纤2拉紧固定在中间预先开孔的浅底矩形金属模具中,其中每根光纤光栅串传感器所含的光栅3数目及间距均相等;然后,在浅底金属模具中倒入弹性光学聚合物树脂,并用刮刀均匀摊平弹性光学聚合物树脂,经高温固化形成薄膜4,最终形成嵌入光纤光栅传感阵列网络的柔性薄膜传感器8。
其次,粘贴薄膜传感器8,采用高强度粘合剂形成粘合层9,将所制备的薄膜传感器8紧密粘结贴合在风电螺栓1螺杆表面,将螺栓垫片7套进螺栓1,并在螺栓垫片7上制作楔形垫片缺口6以引出薄膜传感器8中的多根光纤2束。
最后,连接薄膜传感器8至多通道光纤光栅解调仪10,将从螺栓垫片7中引出的多根光纤2束末端通过光纤束跳线头5与多通道光纤光栅解调仪10的多个通道连接,多通道光纤光栅解调仪10中反馈的光谱解调信号经无线传输模块11发送至风机主机仓的无线路由器12,并通过网线13由风机服务器14接收,最终通过物联网技术将光谱解调信号无线传输至风场控制中心15,实时监控及预测风电螺栓1的疲劳趋势。
最后应说明的是:以上所述仅为本发明的优选实例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.基于光纤光栅阵列传感薄膜的螺栓裂纹检测装置,其特征在于:包括薄膜传感器,所述薄膜传感器包括薄膜和若干根光纤光栅串传感器,多根所述光纤光栅串传感器形成光纤光栅传感阵列网络,将所述光纤光栅传感阵列网络嵌入到所述薄膜里,经高温固化后形成所述薄膜传感器。
2.根据权利要求1所述的基于光纤光栅阵列传感薄膜的螺栓裂纹检测装置,其特征在于:所述光纤光栅传感阵列区域涂覆剥离并固定在浅底金属模具中,所述薄膜通过向所述浅底金属模具中倒入光学聚合物树脂,并利用刮刀对所述光学聚合物树脂进行均匀刮平,使所述光学聚合物树脂覆盖在所述光纤光栅传感阵列***,并经过高温固化一体成型。
3.根据权利要求2所述的基于光纤光栅阵列传感薄膜的螺栓裂纹检测装置,其特征在于:每根所述光纤光栅串传感器所包含的所述光栅数目以及间距均相等。
4.一种基于上述权利要求1-3中任一项所述的基于光纤光栅阵列传感薄膜的螺栓裂纹检测装置的检测方法,其特征在于,包括以下步骤:
S1、采用高强度粘合剂将制备的所述薄膜传感器紧密粘结贴合在风电螺栓的螺杆表面,将螺栓垫片套进螺栓,并在螺栓垫片上制作楔形垫片缺口以引出薄膜传感器中的多根光纤束;
S2、将从所述螺栓垫片中引出的多根所述光纤束末端通过所述光纤束跳线头与多通道光纤光栅解调仪的多个通道连接;
S3、由于所述薄膜传感器中的所述光栅位置是固定的,不同光栅位置就对应着所述螺栓的螺杆上的不同位置,当所述螺栓的螺杆上出现裂纹时,裂纹区域处所对应的光纤光栅反射光谱峰值波长漂移量将高于没有裂纹区域处所对应的光纤光栅反射光谱峰值波长漂移量,并在所述多通道光纤光栅解调仪中反馈形成不同的光谱信号,经过无线传输模块发送至风机主机仓的路由器,并通过网线由风机服务器接收;
S4、最终通过物联网技术将所述光谱信号无线传输至风场控制中心,实时监控及预测所述风电螺栓的疲劳趋势。
5.根据权利要求4所述的基于光纤光栅阵列传感薄膜的螺栓裂纹检测装置的检测方法,其特征在于:所述S3中,根据所述多通道光纤光栅解调仪中不同通道内具有高峰值波长漂移量的光纤光栅反射光谱数目判断裂纹的数目,同时根据所述具有高峰值波长漂移量的光纤光栅反射光谱位置所对应的光纤光栅阵列中的光栅位置识别出所述裂纹所处的位置。
6.根据权利要求5所述的基于光纤光栅阵列传感薄膜的螺栓裂纹检测装置的检测方法,其特征在于:检测的所述裂纹的种类包括轴向裂纹扩展、周向裂纹扩展以及斜向裂纹扩展。
7.根据权利要求6所述的基于光纤光栅阵列传感薄膜的螺栓裂纹检测装置的检测方法,其特征在于:当裂纹沿螺栓的螺杆轴向扩展覆盖至同一光纤中多个光栅位置时,根据所述多通道光纤光栅解调仪同一通道光纤光栅反射光谱峰值波长变化所对应的光纤光栅阵列中相邻光栅间距确定所述轴向裂纹扩展的长度。
8.根据权利要求6所述的基于光纤光栅阵列传感薄膜的螺栓裂纹检测装置的检测方法,其特征在于:当裂纹沿螺栓的螺杆周向扩展覆盖至不同光纤中同一纬度多个光栅位置时,根据所述多通道光纤光栅解调仪相邻通道光栅光谱峰值波长变化所对应的不同光纤中同一纬度光栅阵列间距确定所述周向裂纹扩展的长度。
9.根据权利要求6所述的基于光纤光栅阵列传感薄膜的螺栓裂纹检测装置的检测方法,其特征在于:当裂纹沿螺栓的螺杆斜向扩展覆盖至不同光纤中多个光栅位置时,根据所述多通道光纤光栅解调仪相邻通道光栅光谱峰值波长变化所对应的不同光纤中不同维度光栅阵列间距确定所述斜向裂纹扩展的长度及方向。
CN202210387799.9A 2022-04-13 2022-04-13 基于光纤光栅阵列传感薄膜的螺栓裂纹检测装置及方法 Pending CN114963973A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210387799.9A CN114963973A (zh) 2022-04-13 2022-04-13 基于光纤光栅阵列传感薄膜的螺栓裂纹检测装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210387799.9A CN114963973A (zh) 2022-04-13 2022-04-13 基于光纤光栅阵列传感薄膜的螺栓裂纹检测装置及方法

Publications (1)

Publication Number Publication Date
CN114963973A true CN114963973A (zh) 2022-08-30

Family

ID=82971873

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210387799.9A Pending CN114963973A (zh) 2022-04-13 2022-04-13 基于光纤光栅阵列传感薄膜的螺栓裂纹检测装置及方法

Country Status (1)

Country Link
CN (1) CN114963973A (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020092976A1 (en) * 2000-04-17 2002-07-18 Eiichi Sugai Patch type optical fiber sensor
CN102645176A (zh) * 2012-05-18 2012-08-22 哈尔滨工业大学 耐高温型光纤光栅片式应变传感器及其制备方法
CN104089729A (zh) * 2014-07-23 2014-10-08 上海市建筑科学研究院 一种光纤光栅式结构连接螺栓受力监测传感器及方法
CN204495294U (zh) * 2015-04-02 2015-07-22 江苏欧讯能源科技有限公司 一种基于光纤光栅的高强度风电塔筒螺栓监测***
CN105158265A (zh) * 2015-09-17 2015-12-16 山东大学 一种复合材料冲击损伤在线检测装置和检测方法
CN205940821U (zh) * 2016-08-11 2017-02-08 北京金风科创风电设备有限公司 管道或螺栓孔的载荷检测装置及风力发电机组
CN205982113U (zh) * 2016-08-11 2017-02-22 北京金风科创风电设备有限公司 风力发电机组的裂纹检测装置及风力发电机组
CN208383354U (zh) * 2018-05-11 2019-01-15 上海航天设备制造总厂有限公司 检测阀门螺纹连接处应变的光纤光栅传感***
CN110208273A (zh) * 2018-12-11 2019-09-06 中国航空工业集团公司北京长城计量测试技术研究所 一种飞机油箱内结构裂纹扩展监测方法及装置
WO2021098880A1 (zh) * 2019-11-22 2021-05-27 奥动新能源汽车科技有限公司 光纤力传感装置及监测螺栓或螺母松动的***、方法
CN113983942A (zh) * 2021-10-18 2022-01-28 中国科学院武汉岩土力学研究所 一种盾构隧道管片错台的光纤光栅监测方法及装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020092976A1 (en) * 2000-04-17 2002-07-18 Eiichi Sugai Patch type optical fiber sensor
CN102645176A (zh) * 2012-05-18 2012-08-22 哈尔滨工业大学 耐高温型光纤光栅片式应变传感器及其制备方法
CN104089729A (zh) * 2014-07-23 2014-10-08 上海市建筑科学研究院 一种光纤光栅式结构连接螺栓受力监测传感器及方法
CN204495294U (zh) * 2015-04-02 2015-07-22 江苏欧讯能源科技有限公司 一种基于光纤光栅的高强度风电塔筒螺栓监测***
CN105158265A (zh) * 2015-09-17 2015-12-16 山东大学 一种复合材料冲击损伤在线检测装置和检测方法
CN205940821U (zh) * 2016-08-11 2017-02-08 北京金风科创风电设备有限公司 管道或螺栓孔的载荷检测装置及风力发电机组
CN205982113U (zh) * 2016-08-11 2017-02-22 北京金风科创风电设备有限公司 风力发电机组的裂纹检测装置及风力发电机组
CN208383354U (zh) * 2018-05-11 2019-01-15 上海航天设备制造总厂有限公司 检测阀门螺纹连接处应变的光纤光栅传感***
CN110208273A (zh) * 2018-12-11 2019-09-06 中国航空工业集团公司北京长城计量测试技术研究所 一种飞机油箱内结构裂纹扩展监测方法及装置
WO2021098880A1 (zh) * 2019-11-22 2021-05-27 奥动新能源汽车科技有限公司 光纤力传感装置及监测螺栓或螺母松动的***、方法
CN113983942A (zh) * 2021-10-18 2022-01-28 中国科学院武汉岩土力学研究所 一种盾构隧道管片错台的光纤光栅监测方法及装置

Similar Documents

Publication Publication Date Title
US6981423B1 (en) System and method for sensing torque on a rotating shaft
US7322250B1 (en) System and method for sensing torque on a rotating shaft
Schubel et al. Review of structural health and cure monitoring techniques for large wind turbine blades
CN110220682B (zh) 用于监测螺栓松动的监测装置和监测方法
EP0757238B1 (en) Bonded joint analysis
Güemes SHM technologies and applications in aircraft structures
CN102084130B (zh) 用于风轮机组件的嵌入式光纤传感器
Ghoshal et al. Experimental investigations in embedded sensing of composite components in aerospace vehicles
US11448195B2 (en) Sensor arrangement for a wind turbine
CN110181888B (zh) 基于超低反射率fbg阵列传感器的智能蜂窝复合材料
WO2006007056A1 (en) Smart component for use in an operating environment
US10151667B2 (en) Method for monitoring deformation of a rotating element via a monitoring device employing optical fibre, and wind turbine equipped with such a device
CN112796957B (zh) 一种风机叶片的检测方法和装置以及设备
CN110806316B (zh) 用于水润滑轴承受力状态检测的光纤光栅传感装置及其监测***
Santos et al. Operation and maintenance of floating offshore wind turbines
CN110208273B (zh) 一种飞机油箱内结构裂纹扩展监测方法及装置
CN114963973A (zh) 基于光纤光栅阵列传感薄膜的螺栓裂纹检测装置及方法
CN114152630A (zh) 一种智能涂层监测***及其应用
WO2009126991A1 (en) Method and system for monitoring strain in a structure using an optical fibre
CN103498790A (zh) 基于光纤光栅传感的机泵群状态监测方法及装置
CN112229552B (zh) 螺栓分布式受力状态监测光纤光栅传感器
CN210738740U (zh) 一种风力发电机组风轮叶片增功延长节粘接开裂的报警装置
KR101357705B1 (ko) 동력장치 결합부의 연성파괴 방지를 위한 부비트랩 모니터링 시스템
CN111103000A (zh) 一种编织玻璃纤维封装的传感器制作方法
CN205982113U (zh) 风力发电机组的裂纹检测装置及风力发电机组

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Xie Weiguo

Inventor after: Zhang Xuejun

Inventor after: Zhou Peng

Inventor after: Gu Guoqing

Inventor after: Chen Liyun

Inventor after: Cao Yang

Inventor after: Wang Dongdong

Inventor before: Xie Weiguo

Inventor before: Zhang Xuejun

Inventor before: Zhou Peng

Inventor before: Gu Guoqing

Inventor before: Chen Liyun

Inventor before: Cao Yang

Inventor before: Wang Dongdong